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@ We will cover ensembling methods that combine multiple models and
can perform better than the individual members.

» We've seen individual models (KNN, decision trees)

o We will study bagging in particular, which trains models
independently on random ‘“resamples’ of the training data.

@ We will start our study of linear predictors, starting with linear
regression.

@ Highly recommend the course notes on the suggested reading: linear
regression and calculus.
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Bagging: Motivation

@ What if we could somehow sample m independent training sets from pgata?

@ In the previous discussion, we would have picked a separate predictor

ox . 7’% Dtrain
Yo = arg min Ly, D]

averaged the losses L(y*(x()), t()) on the test set.

@ What if instead we used the average prediction?
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Bagging: Motivation

@ How does this affect the three terms of the expected loss?

» Bayes error: unchanged, since we have no control over it
» Bias: unchanged, since the averaged prediction has the same

expectation
1 m
E[y*]=E |— pr
[7°] [m nz::lyn

» Variance: reduced, since we're averaging over independent samples

=E[y]

m

1 ~x 1 ¢ Ax] 1 Ak
mzyn] = pgvarb/n] - ;Var[yn]'

n=1

Var[y*] = Var
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Bagging: The ldea

@ In practice, the sampling distribution pga.ta is often finite or expensive to
sample from.

@ So training separate models on independently sampled datasets is very
wasteful of datal

» Why not train a single model on the union of all sampled datasets?

@ Solution: given training set D" use the empirical distribution ppen as a
proxy for pgata. This is called bootstrap aggregation, or bagging .

» Take a single dataset D@ with N examples.

» Generate m new datasets (“resamples” or “"bootstrap samples”), each
by sampling N training examples from D" with replacement.

» Average the predictions of models trained on each of these datasets.

@ The bootstrap is one of the most important ideas in all of statistics!
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Bagging
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in this example N =7, m=3
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Bagging
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Bagging: Effect on Hypothesis Space

@ We saw that in case of squared error, bagging does not affect bias.
@ But it can change the hypothesis space H.

@ lllustrative example:

x ~U(-3,3), t ~N(0,1)
H={wx|we{-1,1}}
Sampled datasets & fitted hypotheses:

v

v

v

v

Ensembled hypotheses (mean over 1000 samples):

> The ensembled hypothesis is not in

: the original hypothesis space!

@ This effect is often more pronounced when combining classifiers.
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Bagging: Effect of Correlation

@ Problem: the datasets are not independent, so we don't get the 1/m
variance reduction.

» Possible to show that if the sampled predictions have variance % and
correlation p, then

1 & 1 2. 2
Var (m;y,,> :;(lfp)o + po”.

@ lronically, it can be advantageous to introduce additional variability into your
algorithm, as long as it reduces the correlation between samples.

» Intuition: you want to invest in a diversified portfolio, not just one
stock.

» Can help to use average over multiple algorithms, or multiple
configurations of the same algorithm.
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Random Forests

@ Random forests = bagged decision trees, with one extra trick to decorrelate
the predictions

» When choosing each node of the decision tree, choose a random set of
d input features, and only consider splits on those features

@ Random forests are probably the best black-box machine learning algorithm
— they often work well with no tuning whatsoever.

» one of the most widely used algorithms in Kaggle competitions
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Bagging Summary

@ Bagging reduces overfitting by averaging predictions.
@ Used in most competition winners

» Even if a single model is great, a small ensemble usually helps.
@ Limitations:

» Does not reduce bias in case of squared error.
» There is still correlation between classifiers.

» Random forest solution: Add more randomness.
> Naive mixture (all members weighted equally).

> If members are very different (e.g., different algorithms, different data
sources, etc.), we can often obtain better results by using a principled
approach to weighted ensembling.
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Overview

@ So far, we've talked about procedures for learning.
» KNN, decision trees, bagging
@ For the remainder of this course, we'll take a more modular approach:
» choose a model describing the relationships between variables of
interest
> define a loss function quantifying how bad is the fit to the data
» choose a regularizer saying how much we prefer different candidate
explanations
> fit the model, e.g. using an optimization algorithm
@ By mixing and matching these modular components, your ML skills
become combinatorially more powerful!
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Problem Setup
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@ Want to predict a scalar t as a function of a scalar x
o Given a dataset of pairs {(x(), t())}N

e The x() are inputs, and the t() are targets.
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Problem Setup

Data space Weight space
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y is the prediction
w is the weight

Model: y is a linear function of x:

Yy = wx

w and b together are the parameters

°
)
@ b is the bias
°
°

+b

Settings of the parameters are the hypotheses
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Problem Setup

@ Loss function: squared error (says how bad the fit is)

Ly, t) = 3(y — t)?

@ y — tis the residual, and we want to make this small in magnitude

o The % factor is just to make the calculations convenient.
@ Average loss function (sometimes called the cost):

)= 5y 2o (7020’
Ay

2N (x4 b~ 2t )2

i=1
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Problem Setup
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What is linear? 1 feature vs D features

@ If we have only 1 feature:
y = wx + b where w, x, b € R.

@ Cost is

1 < 2
=N Z (WX(i) +b— t(i))

o If we have D features: y =w'x+ b
where w,x € RP, b€ R
o Cost is

N

)= 23 (05 )

i=1

Xy

Relation between the prediction y and inputs x is linear in both cases.
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o Notation-wise, & SN | (y() — t(i))2 gets messy if we expand y(/):

N D 2
1 () (i)
a2 | [ 2owx”+b) —t

i=1 j=1

@ The code equivalent is to compute the prediction using a for loop:
yv=b
for j in range(M):
y +=wlil * x[1]

@ Excessive super/sub scripts are hard to work with, and Python loops
are slow, so we vectorize algorithms by expressing them in terms of
vectors and matrices.

T X=(X1,...,XD)T

W=(W1,...,WD)

y=w'x+b

@ This is simpler and executes much faster:
y = np.dot(w, XJ + b
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Why vectorize?

@ The equations, and the code, will be simpler and more readable. Gets
rid of dummy variables/indices!
@ Vectorized code is much faster

» Cut down on Python interpreter overhead
» Use highly optimized linear algebra libraries (hardware support)
» Matrix multiplication very fast on GPU (Graphics Processing Unit)

Switching in and out of vectorized form is a skill you gain with practice

@ Some derivations are easier to do element-wise

@ Some algorithms are easier to write/understand using for-loops and
vectorize later for performance
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@ We can organize all the training examples into a design matrix X with
one row per training example, and all the targets into the target

example (vector)

vector t.
one feature across
all training examples
x(DT 80| 3
X=[x®T]=16|-1 5
3T 2[5 =2

0
3 one training
8

@ Computing the predictions for the whole dataset:

wx® 4+ p

Xw + bl =

wa(N) +b
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@ Computing the squared error cost across the whole dataset:
y = Xw + bl
R

1 2
|y -t
Sly =t

@ Sometimes we may use R = lly — t]|%, without a normalizer. This
would correspond to the sum of losses, and not the averaged loss.
The minimizer does not depend on N (but optimization might!).

@ We can also add a column of 1's to design matrix, combine the bias
and the weights, and conveniently write

1 [x(l)]T b
X = |1 x| ¢ RV and w = :; c RD+1
1

Then, our predictions reduce to y = Xw.
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Solving the Minimization Problem

We defined a cost function. This is what we'd like to minimize.

Two commonly applied mathematical approaches:

@ Algebraic, e.g., using inequalities:
» to show z* minimizes f(z), show that Vz, f(z) > f(z*)
» to show that a = b, show that a> band b> a
@ Calculus: minimum of a smooth function (if it exists) occurs at a
critical point, i.e. point where the derivative is zero.

» multivariate generalization: set the partial derivatives to zero (or
equivalently the gradient).

Solutions may be direct or iterative

@ Sometimes we can directly find provably optimal parameters (e.g. set the
gradient to zero and solve in closed form). We call this a direct solution.

@ We may also use optimization techniques that iteratively get us closer to the
solution. We will get back to this soon.
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Direct solution

o Partial derivatives: derivatives of a multivariate function with respect
to one of its arguments.

f(x1 4+ h,x2) — f(x1, %)
—f = i
6X1 (X1,X2) hTQO h

@ To compute, take the single variable derivatives, pretending the other
arguments are constant.
@ Example: partial derivatives of the prediction y

dy
67‘”]—6‘”1 |:Z:W/X/ :|

= xj

Jdy 0
9 b |:Z"VJ’XJ’+I’:|
j/
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Direct solution

@ Chain rule for derivatives:

oL _dLoy

8Wj_dy8Wj
7d 1 2
~3 ls0-7
=(y—t)

o _,

ob 7

o Cost derivatives (average over data points):

5 N

OR 1 i i i

owy = 20—
i=1
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N
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Direct solution

@ The minimum must occur at a point where the partial derivatives are
zero. ~
oR
Iw;

OR

0 %—O.

o If 67@/8\/\/1- # 0, you could reduce the cost by changing w;.

@ This turns out to give a system of linear equations, which we can
solve efficiently.

@ Let's see what this looks like, assuming for simplicity that we set
b =0 (we can always at a dummy dimension to our data )
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Direct solution

o We seek w to minimize R(w) = I Xw — 2
o Consider the vector of partial derivatives, or gradient:

R
~ ]
orR | ™
ow I’
R
owp

@ Setting this to 0 (see course notes for additional details) we get:

OR

—— =X"Xw - X"t =0
ow

@ From which we get the following optimal weights:

w* = (XTX)"IX"t

@ Linear regression is one of only a handful of models in this course that

permit direct solution.
26 / 50

Intro ML (UofT) STA314-Lecl



Gradient Descent

@ Now let's see a second way to minimize the cost function which is
more broadly applicable: gradient descent.

@ Many times, we do not have a direct solution: Taking derivatives of
R w.r.t w and setting them to 0 doesn't have an explicit solution.

@ Gradient descent is an iterative algorithm, which means we apply an
update repeatedly until some criterion is met.

e We initialize the weights to something reasonable (e.g. all zeros) and
repeatedly adjust them in the direction of steepest descent.

g}

VA
(=

< >
w
w wy
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Gradient Descent

@ Observe:
> if 67’?\,/8Wj > 0, then increasing w; increases R.
> if 87,?\,/8Wj < 0, then increasing w; decreases R.

@ The following update always decreases the cost function for small
enough o (unless OR /0w = 0):

OR

Wi — W — a——
j j )
ow;

@ « > 0 is a learning rate (or step size). The larger it is, the faster w
changes.
» We'll see later how to tune the learning rate, but values are typically
small, e.g. 0.01 or 0.0001.
> If cost is the sum of N individual losses rather than their average,
smaller learning rate will be needed (o = a/N).
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Gradient descent

e Update rule in vector form:

R
W<—W—Qo—

ow
a N : :
_ NZ — )0

@ We know from calculus that the directional derivative of R at w in
the direction of v is

T
v <

ow

R R
| vl < 5=

|||V||

@ So, if we consider unit vectors v, the direction of greatest increase in
R at w is in the direction of the gradient. So, gradient descent
updates the weights in the direction of fastest decrease.
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Gradient Descent for Linear Regression

@ The squared error loss of linear regression is a convex function.

@ Even for linear regression, where there is a direct solution, we
sometimes need to use GD.
@ Why gradient descent, if we can find the optimum directly?

» GD can be applied to a much broader set of models
» GD can be easier to implement than direct solutions
» For regression in high-dimensional space, GD is more efficient than
direct solution
> Linear regression solution: (X X)™!X Tt
Matrix inversion is an O(D?) algorithm
Each GD update costs O(ND)
Or less with stochastic GD (SGD, in a few slides)
Huge difference if D > 1

vvyyvyy
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Learning Rate (Step Size)

@ In gradient descent, the learning rate « is a hyperparameter we need
to tune. Here are some things that can go wrong:

o too small: « too large:
slow progress oscillations

« much too large:
instability

@ Good values are typically between 0.001 and 0.1. You should do a
grid search if you want good performance (i.e. try 0.1,0.03,0.01,...).

Intro ML (UofT) STA314-Lecl 31/50



Training Curves

@ To diagnose optimization problems, it's useful to look at training
curves: plot the training cost as a function of iteration.

instability
(try a smaller
learning rate)

convergence
(try a larger
learning rate)

training
cost

convergence

iteration #

@ Warning: in general, it's very hard to tell from the training curves
whether an optimizer has converged. They can reveal major problems,
but they can’t guarantee convergence.
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Gradient descent

Visualization:

http://www.cs.toronto.edu/~guerzhoy/321/lec/W01/linear_
regression.pdf#page=21
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Gradient descent

@ Why gradient descent, if we can find the optimum directly?
» GD can be applied to a much broader set of models
» GD can be easier to implement than direct solutions, especially with
automatic differentiation software
> For regression in high-dimensional spaces, GD is more efficient than
direct solution (matrix inversion is an O(D3) algorithm).
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@ Suppose we want to model the following data

-Pattern Recognition and Machine Learning, Christopher Bishop.

@ One option: fit a low-degree polynomial; this is known as polynomial
regression
y = W3x3 + ng2 + wix + wy

@ Do we need to derive a whole new algorithm?
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Feature mappings

@ We get polynomial regression for free!

@ Define the feature map

1
w(x) = |
X3
@ Polynomial regression model:
y =wg(x)

@ All of the derivations and algorithms so far in this lecture remain
exactly the same!
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Fitting polynomials

y=Ww
1 o M=0 A
o)
t
o) AN o
O 4
o
_1 4
0 1

-Pattern Recognition and Machine Learning, Christopher Bishop.
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Fitting polynomials

Y = wp + w1x

-Pattern Recognition and Machine Learning, Christopher Bishop.
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Fitting polynomials

2
Y = wo + wiX + wox® + W3x3

-Pattern Recognition and Machine Learning, Christopher Bishop.
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Fitting polynomials

y:W0+Wlx+W2x2+W3x3+...+W9X9

-Pattern Recognition and Machine Learning, Christopher Bishop.
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Generalization

Underfitting : model is too simple — does not fit the data.

|
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Generalization

@ Training and test error as a function of # training examples and #

parameters:

test
error

training
error

# training examples
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Regularization

@ The degree of the polynomial is a hyperparameter, just like k in KNN.
We can tune it using a validation set.

@ But restricting the size of the model is a crude solution, since you'll
never be able to learn a more complex model, even if the data
support it.

@ Another approach: keep the model large, but regularize it

» Regularizer: a function that quantifies how much we prefer one
hypothesis vs. another
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L? Regularization

Observation: polynomials that overfit often have large coefficients.

_—62.0 -1.5 -1.0 -05 00 05 10 15 20

y =0.1x> +0.2x* + 0.75x3 — x2 — 2x + 2
y = —7.2x% +10.4x* + 24.5x> — 37.9x%> — 3.6x + 12

So let's try to keep the coefficients small.
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L? Regularization

Another reason we want weights to be small:

@ Suppose inputs x; and x» are nearly identical for all training examples.
The following two hypotheses make nearly the same predictions:

w = ! w = -9
-\l \11
@ But the second network might make weird predictions if the test
distribution is slightly different (e.g. x; and xo match less closely).

) STA314-Lecl 45 /50



L2 (or 5 ) Regularization

@ We can encourage the weights to be small by choosing as our
regularizer the L2 penalty.

1
o(w) = 3lwl3 =3 >~ w.
J

» Note: To be precise, the L2 norm is Euclidean distance, so we're
regularizing the squared L% norm.

@ The regularized cost function makes a tradeoff between fit to the data
and the norm of the weights.

A

Rreg(w) = R(w) + Ad(w) = R(w) + % 3w
J

o If you fit training data poorly, R is large. If your optimal weights have
high values, ¢ is large.

@ Large X penalizes weight values more.

o Like M, X is a hyperparameter we can tune with a validation set.
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L2 (or 5 ) Regularization

@ The geometric picture:

loss

regularizer

Intro ML (UofT) STA314-Lecl 47 /50



L? Regularized Least Squares: Ridge regression

For the least squares problem, we have R(w) = S || Xw — 2.

@ When X\ > 0 (with regularization), regularized cost gives

: N 1 A
w9 — argmin Ryeq(w) =argmin — || Xw — t||3 + = [|w|3

=(XTX +AND)IXTt

@ The case A = 0 (no regularization) reduces to least squares solution!

@ Note that it is also common to formulate this problem as
argmin,, 3||Xw — t||3 + 2||w||3 in which case the solution is
w9 — (XTX 4+ Al 1XTt.
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Gradient Descent under the L? Regularization

o Gradient descent update to minimize R:

0 -
—a—TR
W <— W Otaw

@ The gradient descent update to minimize the L2 regularized cost
R 4+ AR results in weight decay:

wew—aaiw (7@—1—)@)

0 ow
:w—a<8R+)\w>

ow
:(1—a)\)w—ag—7;
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Conclusion so far

Linear regression exemplifies recurring themes of this course:

@ choose a model and a loss function
o formulate an optimization problem

@ solve the minimization problem using one of two strategies

» direct solution (set derivatives to zero)
» gradient descent (next topic)

vectorize the algorithm, i.e. represent in terms of linear algebra

make a linear model more powerful using features

improve the generalization by adding a regularizer
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