STA 314: Statistical Methods for Machine Learning I Lecture 4 - Ensembles & Linear Regression

Chris J. Maddison

University of Toronto

Today

- We will cover ensembling methods that combine multiple models and can perform better than the individual members.
 - We've seen individual models (KNN, decision trees)
- We will study bagging in particular, which trains models independently on random "resamples" of the training data.
- We will start our study of linear predictors, starting with linear regression.
- Highly recommend the course notes on the suggested reading: linear regression and calculus.

STA314-Lec1 2/50

- What if we could somehow sample m independent training sets from p_{data} ?
- In the previous discussion, we would have picked a separate predictor

$$\hat{\mathbf{y}}_{n}^{\star} = \arg\min_{\mathbf{y} \in \mathcal{H}} \hat{\mathcal{R}}[\mathbf{y}, \mathcal{D}_{n}^{train}]$$

averaged the losses $L(\hat{y}_n^{\star}(\mathbf{x}^{(i)}), t^{(i)})$ on the test set.

• What if instead we used the average prediction?

$$\bar{\mathbf{y}}^{\star}(\mathbf{x}) = \frac{1}{m} \sum_{n=1}^{m} \hat{\mathbf{y}}_{n}^{\star}(\mathbf{x})$$

- How does this affect the three terms of the expected loss?
 - Bayes error: unchanged, since we have no control over it
 - Bias: unchanged, since the averaged prediction has the same expectation

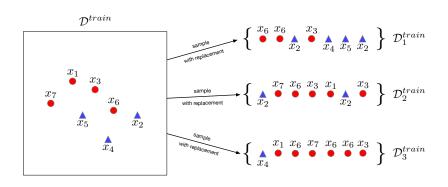
$$\mathbb{E}[\bar{y}^{\star}] = \mathbb{E}\left[\frac{1}{m} \sum_{n=1}^{m} \hat{y}_{n}^{\star}\right] = \mathbb{E}[\hat{y}_{n}^{\star}]$$

▶ Variance: reduced, since we're averaging over independent samples

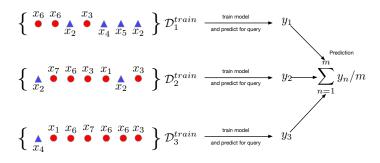
$$\mathsf{Var}[\bar{\boldsymbol{y}}^{\star}] = \mathsf{Var}\left[\frac{1}{m}\sum_{n=1}^{m}\hat{\boldsymbol{y}}_{n}^{\star}\right] = \frac{1}{m^{2}}\sum_{n=1}^{m}\mathsf{Var}[\hat{\boldsymbol{y}}_{n}^{\star}] = \frac{1}{m}\mathsf{Var}[\hat{\boldsymbol{y}}_{n}^{\star}].$$

Bagging: The Idea

- In practice, the sampling distribution p_{data} is often finite or expensive to sample from.
- So training separate models on independently sampled datasets is very wasteful of data!
 - ▶ Why not train a single model on the union of all sampled datasets?
- Solution: given training set \mathcal{D}^{train} , use the empirical distribution $p_{\mathcal{D}^{train}}$ as a proxy for p_{data} . This is called bootstrap aggregation, or bagging .
 - ▶ Take a single dataset \mathcal{D}^{train} with N examples.
 - ▶ Generate m new datasets ("resamples" or "bootstrap samples"), each by sampling N training examples from \mathcal{D}^{train} , with replacement.
 - Average the predictions of models trained on each of these datasets.
- The bootstrap is one of the most important ideas in all of statistics!



in this example N=7, m=3



predicting on a query point x

STA314-Lec1 7 / 50

Bagging: Effect on Hypothesis Space

- We saw that in case of squared error, bagging does not affect bias.
- ullet But it can change the hypothesis space ${\cal H}.$
- Illustrative example:
 - $x \sim U(-3,3), t \sim \mathcal{N}(0,1)$
 - $\mathcal{H} = \{ wx \mid w \in \{-1, 1\} \}$
 - ► Sampled datasets & fitted hypotheses:

Ensembled hypotheses (mean over 1000 samples):

- ► The ensembled hypothesis is not in the original hypothesis space!
- This effect is often more pronounced when combining classifiers.

Bagging: Effect of Correlation

- Problem: the datasets are not independent, so we don't get the 1/m variance reduction.
 - ▶ Possible to show that if the sampled predictions have variance σ^2 and correlation ρ , then

$$\operatorname{Var}\left(\frac{1}{m}\sum_{n=1}^{m}y_{n}\right)=\frac{1}{m}(1-
ho)\sigma^{2}+
ho\sigma^{2}.$$

- Ironically, it can be advantageous to introduce *additional* variability into your algorithm, as long as it reduces the correlation between samples.
 - Intuition: you want to invest in a diversified portfolio, not just one stock.
 - ► Can help to use average over multiple algorithms, or multiple configurations of the same algorithm.

Intro ML (UofT) STA314-Lec1 9/50

Random Forests

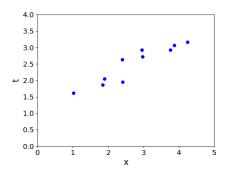
- Random forests = bagged decision trees, with one extra trick to decorrelate the predictions
 - When choosing each node of the decision tree, choose a random set of d input features, and only consider splits on those features
- Random forests are probably the best black-box machine learning algorithm
 — they often work well with no tuning whatsoever.
 - one of the most widely used algorithms in Kaggle competitions

Bagging Summary

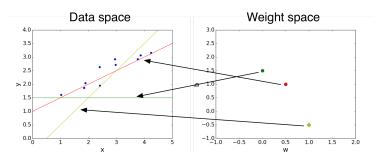
- Bagging reduces overfitting by averaging predictions.
- Used in most competition winners
 - ▶ Even if a single model is great, a small ensemble usually helps.
- Limitations:
 - Does not reduce bias in case of squared error.
 - There is still correlation between classifiers.
 - Random forest solution: Add more randomness.
 - Naive mixture (all members weighted equally).
 - If members are very different (e.g., different algorithms, different data sources, etc.), we can often obtain better results by using a principled approach to weighted ensembling.

- So far, we've talked about procedures for learning.
 - KNN, decision trees, bagging
- For the remainder of this course, we'll take a more modular approach:
 - choose a model describing the relationships between variables of interest
 - define a loss function quantifying how bad is the fit to the data
 - choose a regularizer saying how much we prefer different candidate explanations
 - ▶ fit the model, e.g. using an optimization algorithm
- By mixing and matching these modular components, your ML skills become combinatorially more powerful!

Intro ML(UofT) STA314-Lec1 12 / 50



- ullet Want to predict a scalar t as a function of a scalar x
- Given a dataset of pairs $\{(\mathbf{x}^{(i)}, t^{(i)})\}_{i=1}^{N}$
- The $\mathbf{x}^{(i)}$ are inputs, and the $t^{(i)}$ are targets.



• Model: y is a linear function of x:

$$y = wx + b$$

- y is the prediction
- w is the weight
- b is the bias
- w and b together are the parameters
- Settings of the parameters are the hypotheses

Intro ML (UofT) STA314-Lec1 14 / 50

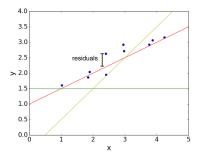
Loss function: squared error (says how bad the fit is)

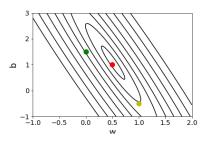
$$L(y,t) = \frac{1}{2}(y-t)^2$$

- \bullet y t is the residual, and we want to make this small in magnitude
- The $\frac{1}{2}$ factor is just to make the calculations convenient.
- Average loss function (sometimes called the cost):

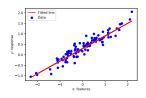
$$\hat{\mathcal{R}}(w,b) = \frac{1}{2N} \sum_{i=1}^{N} \left(y^{(i)} - t^{(i)} \right)^{2}$$
$$= \frac{1}{2N} \sum_{i=1}^{N} \left(wx^{(i)} + b - t^{(i)} \right)^{2}$$

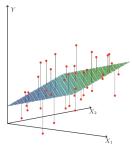
Intro ML (UofT) STA314-Lec1 15 / 50





What is linear? 1 feature vs D features





- If we have only 1 feature: y = wx + b where $w, x, b \in \mathbb{R}$.
- Cost is

$$\hat{\mathcal{R}}(w,b) = \frac{1}{2N} \sum_{i=1}^{N} \left(w x^{(i)} + b - t^{(i)} \right)^{2}$$

- If we have D features: $y = \mathbf{w}^{\top} \mathbf{x} + b$ where $\mathbf{w}, \mathbf{x} \in \mathbb{R}^{D}$, $b \in \mathbb{R}$
- Cost is

$$\hat{\mathcal{R}}(\mathbf{w}, b) = \frac{1}{2N} \sum_{i=1}^{N} \left(\mathbf{w}^{\top} \mathbf{x}^{(i)} + b - t^{(i)} \right)^{2}$$

Relation between the prediction y and inputs x is linear in both cases.

• Notation-wise, $\frac{1}{2N} \sum_{i=1}^{N} (y^{(i)} - t^{(i)})^2$ gets messy if we expand $y^{(i)}$:

$$\frac{1}{2N} \sum_{i=1}^{N} \left(\left(\sum_{j=1}^{D} w_{j} x_{j}^{(i)} + b \right) - t^{(i)} \right)^{2}$$

• The code equivalent is to compute the prediction using a for loop:

• Excessive super/sub scripts are hard to work with, and Python loops are slow, so we vectorize algorithms by expressing them in terms of vectors and matrices.

$$\mathbf{w} = (w_1, \dots, w_D)^{\top}$$
 $\mathbf{x} = (x_1, \dots, x_D)^{\top}$
 $y = \mathbf{w}^{\top} \mathbf{x} + b$

• This is simpler and executes much faster:

$$y = np.dot(w, x) + b$$

Why vectorize?

- The equations, and the code, will be simpler and more readable. Gets rid of dummy variables/indices!
- Vectorized code is much faster
 - Cut down on Python interpreter overhead
 - Use highly optimized linear algebra libraries (hardware support)
 - Matrix multiplication very fast on GPU (Graphics Processing Unit)

Switching in and out of vectorized form is a skill you gain with practice

- Some derivations are easier to do element-wise
- Some algorithms are easier to write/understand using for-loops and vectorize later for performance

 We can organize all the training examples into a design matrix X with one row per training example, and all the targets into the target vector t.

one feature across all training examples

$$\mathbf{X} = \begin{pmatrix} \mathbf{x}^{(1)\top} \\ \mathbf{x}^{(2)\top} \\ \mathbf{x}^{(3)\top} \end{pmatrix} = \begin{pmatrix} 8 & 0 & 3 & 0 \\ 6 & -1 & 5 & 3 \\ 2 & 5 & -2 & 8 \end{pmatrix} \text{ one training example (vector)}$$

• Computing the predictions for the whole dataset:

$$\mathbf{X}\mathbf{w} + b\mathbf{1} = \begin{pmatrix} \mathbf{w}^T \mathbf{x}^{(1)} + b \\ \vdots \\ \mathbf{w}^T \mathbf{x}^{(N)} + b \end{pmatrix} = \begin{pmatrix} y^{(1)} \\ \vdots \\ y^{(N)} \end{pmatrix} = \mathbf{y}$$

Intro ML (UofT) STA314-Lec1 20 / 50

Computing the squared error cost across the whole dataset:

$$\mathbf{y} = \mathbf{X}\mathbf{w} + b\mathbf{1}$$
$$\hat{\mathcal{R}} = \frac{1}{2N} \|\mathbf{y} - \mathbf{t}\|^2$$

- Sometimes we may use $\hat{\mathcal{R}} = \frac{1}{2} ||\mathbf{y} \mathbf{t}||^2$, without a normalizer. This would correspond to the sum of losses, and not the averaged loss. The minimizer does not depend on N (but optimization might!).
- We can also add a column of 1's to design matrix, combine the bias and the weights, and conveniently write

$$\mathbf{X} = \begin{bmatrix} 1 & [\mathbf{x}^{(1)}]^{\top} \\ 1 & [\mathbf{x}^{(2)}]^{\top} \\ 1 & \vdots \end{bmatrix} \in \mathbb{R}^{N \times (D+1)} \text{ and } \mathbf{w} = \begin{bmatrix} b \\ w_1 \\ w_2 \\ \vdots \end{bmatrix} \in \mathbb{R}^{D+1}$$

Then, our predictions reduce to $\mathbf{y} = \mathbf{X}\mathbf{w}$.

Solving the Minimization Problem

We defined a cost function. This is what we'd like to minimize.

Two commonly applied mathematical approaches:

- Algebraic, e.g., using inequalities:
 - ▶ to show z^* minimizes f(z), show that $\forall z, f(z) \geq f(z^*)$
 - ▶ to show that a = b, show that $a \ge b$ and $b \ge a$
- Calculus: minimum of a smooth function (if it exists) occurs at a critical point, i.e. point where the derivative is zero.
 - multivariate generalization: set the partial derivatives to zero (or equivalently the gradient).

Solutions may be direct or iterative

- Sometimes we can directly find provably optimal parameters (e.g. set the gradient to zero and solve in closed form). We call this a direct solution.
- We may also use optimization techniques that iteratively get us closer to the solution. We will get back to this soon.

 Partial derivatives: derivatives of a multivariate function with respect to one of its arguments.

$$\frac{\partial}{\partial x_1} f(x_1, x_2) = \lim_{h \to 0} \frac{f(x_1 + h, x_2) - f(x_1, x_2)}{h}$$

- To compute, take the single variable derivatives, pretending the other arguments are constant.
- Example: partial derivatives of the prediction y

$$\frac{\partial y}{\partial w_j} = \frac{\partial}{\partial w_j} \left[\sum_{j'} w_{j'} x_{j'} + b \right]$$

$$= x_j$$

$$\frac{\partial y}{\partial b} = \frac{\partial}{\partial b} \left[\sum_{j'} w_{j'} x_{j'} + b \right]$$

$$= 1$$

Chain rule for derivatives:

$$\begin{split} \frac{\partial L}{\partial w_j} &= \frac{\mathrm{d}L}{\mathrm{d}y} \frac{\partial y}{\partial w_j} \\ &= \frac{\mathrm{d}}{\mathrm{d}y} \left[\frac{1}{2} (y - t)^2 \right] \cdot x_j \\ &= (y - t) x_j \\ \frac{\partial L}{\partial b} &= y - t \end{split}$$

• Cost derivatives (average over data points):

$$\frac{\partial \hat{\mathcal{R}}}{\partial w_j} = \frac{1}{N} \sum_{i=1}^{N} (y^{(i)} - t^{(i)}) x_j^{(i)}$$
$$\frac{\partial \hat{\mathcal{R}}}{\partial b} = \frac{1}{N} \sum_{i=1}^{N} y^{(i)} - t^{(i)}$$

STA314-Lec1 24 / 50

 The minimum must occur at a point where the partial derivatives are zero.

$$\frac{\partial \hat{\mathcal{R}}}{\partial w_i} = 0 \qquad \frac{\partial \hat{\mathcal{R}}}{\partial b} = 0.$$

- If $\partial \hat{\mathcal{R}}/\partial w_i \neq 0$, you could reduce the cost by changing w_i .
- This turns out to give a system of linear equations, which we can solve efficiently.
- Let's see what this looks like, assuming for simplicity that we set b=0 (we can always at a dummy dimension to our data)

- We seek \mathbf{w} to minimize $\hat{\mathcal{R}}(\mathbf{w}) = \frac{1}{2} \|\mathbf{X}\mathbf{w} \mathbf{t}\|^2$
- Consider the vector of partial derivatives, or gradient:

$$\frac{\partial \hat{\mathcal{R}}}{\partial \mathbf{w}} = \begin{pmatrix} \frac{\partial \hat{\mathcal{R}}}{\partial w_1} \\ \vdots \\ \frac{\partial \hat{\mathcal{R}}}{\partial w_D} \end{pmatrix}$$

Setting this to 0 (see course notes for additional details) we get:

$$\frac{\partial \hat{\mathcal{R}}}{\partial w} = \mathbf{X}^{\top} \mathbf{X} \mathbf{w} - \mathbf{X}^{\top} \mathbf{t} = \mathbf{0}$$

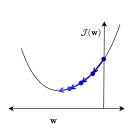
• From which we get the following optimal weights:

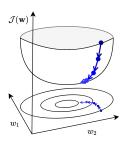
$$\mathbf{w}^* = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{t}$$

• Linear regression is one of only a handful of models in this course that permit direct solution.

Gradient Descent

- Now let's see a second way to minimize the cost function which is more broadly applicable: gradient descent.
- Many times, we do not have a direct solution: Taking derivatives of $\hat{\mathcal{R}}$ w.r.t **w** and setting them to 0 doesn't have an explicit solution.
- Gradient descent is an iterative algorithm, which means we apply an update repeatedly until some criterion is met.
- We initialize the weights to something reasonable (e.g. all zeros) and repeatedly adjust them in the direction of steepest descent.





Gradient Descent

- Observe:
 - if $\partial \hat{\mathcal{R}}/\partial w_j > 0$, then increasing w_j increases $\hat{\mathcal{R}}$.
 - if $\partial \hat{\mathcal{R}}/\partial w_j < 0$, then increasing w_j decreases $\hat{\mathcal{R}}$.
- The following update always decreases the cost function for small enough α (unless $\partial \hat{\mathcal{R}}/\partial w_i = 0$):

$$w_j \leftarrow w_j - \alpha \frac{\partial \hat{\mathcal{R}}}{\partial w_j}$$

- $\alpha > 0$ is a learning rate (or step size). The larger it is, the faster **w** changes.
 - ▶ We'll see later how to tune the learning rate, but values are typically small, e.g. 0.01 or 0.0001.
 - ▶ If cost is the sum of N individual losses rather than their average, smaller learning rate will be needed $(\alpha' = \alpha/N)$.

Gradient descent

• Update rule in vector form:

$$\mathbf{w} \leftarrow \mathbf{w} - \alpha \frac{\partial \hat{\mathcal{R}}}{\partial \mathbf{w}}$$
$$= \mathbf{w} - \frac{\alpha}{N} \sum_{i=1}^{N} (y^{(i)} - t^{(i)}) \mathbf{x}^{(i)}$$

• We know from calculus that the directional derivative of $\hat{\mathcal{R}}$ at \mathbf{w} in the direction of \mathbf{v} is

$$- \left\| \frac{\partial \hat{\mathcal{R}}}{\partial \mathbf{w}} \right\| \| \mathbf{v} \| \leq \frac{\partial \hat{\mathcal{R}}}{\partial \mathbf{w}}^{\top} \mathbf{v} \leq \left\| \frac{\partial \hat{\mathcal{R}}}{\partial \mathbf{w}} \right\| \| \mathbf{v} \|$$

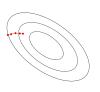
• So, if we consider unit vectors \mathbf{v} , the direction of greatest increase in $\hat{\mathcal{R}}$ at \mathbf{w} is in the direction of the gradient. So, gradient descent updates the weights in the direction of fastest *decrease*.

Gradient Descent for Linear Regression

- The squared error loss of linear regression is a convex function.
- Even for linear regression, where there is a direct solution, we sometimes need to use GD.
- Why gradient descent, if we can find the optimum directly?
 - ▶ GD can be applied to a much broader set of models
 - ▶ GD can be easier to implement than direct solutions
 - For regression in high-dimensional space, GD is more efficient than direct solution
 - ▶ Linear regression solution: $(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{t}$
 - ▶ Matrix inversion is an $\mathcal{O}(D^3)$ algorithm
 - ▶ Each GD update costs O(ND)
 - Or less with stochastic GD (SGD, in a few slides)
 - ▶ Huge difference if $D \gg 1$

Learning Rate (Step Size)

• In gradient descent, the learning rate α is a hyperparameter we need to tune. Here are some things that can go wrong:



 α too small: slow progress

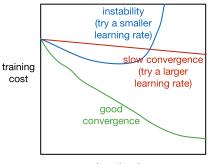
 α too large: oscillations

 α much too large: instability

• Good values are typically between 0.001 and 0.1. You should do a grid search if you want good performance (i.e. try 0.1, 0.03, 0.01, ...).

Training Curves

 To diagnose optimization problems, it's useful to look at training curves: plot the training cost as a function of iteration.



iteration #

 Warning: in general, it's very hard to tell from the training curves whether an optimizer has converged. They can reveal major problems, but they can't guarantee convergence.

Gradient descent

Visualization:

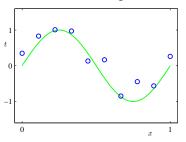
http://www.cs.toronto.edu/~guerzhoy/321/lec/W01/linear_regression.pdf#page=21

Gradient descent

- Why gradient descent, if we can find the optimum directly?
 - ▶ GD can be applied to a much broader set of models
 - GD can be easier to implement than direct solutions, especially with automatic differentiation software
 - ▶ For regression in high-dimensional spaces, GD is more efficient than direct solution (matrix inversion is an $\mathcal{O}(D^3)$ algorithm).

Feature mappings

Suppose we want to model the following data



-Pattern Recognition and Machine Learning, Christopher Bishop.

 One option: fit a low-degree polynomial; this is known as polynomial regression

$$y = w_3 x^3 + w_2 x^2 + w_1 x + w_0$$

• Do we need to derive a whole new algorithm?

Feature mappings

- We get polynomial regression for free!
- Define the feature map

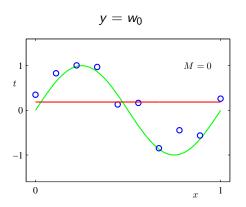
$$\psi(x) = \begin{pmatrix} 1 \\ x \\ x^2 \\ x^3 \end{pmatrix}$$

• Polynomial regression model:

$$y = \mathbf{w}^{\top} \psi(x)$$

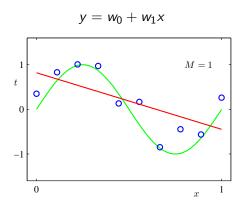
 All of the derivations and algorithms so far in this lecture remain exactly the same!

Fitting polynomials

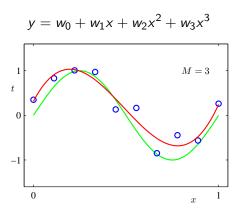


-Pattern Recognition and Machine Learning, Christopher Bishop.

Intro ML (UofT) STA314-Lec1 37/5

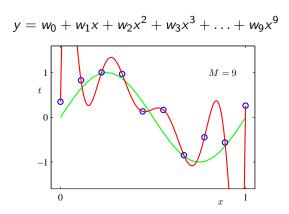


-Pattern Recognition and Machine Learning, Christopher Bishop.



-Pattern Recognition and Machine Learning, Christopher Bishop.

Fitting polynomials

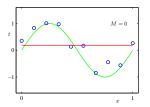


-Pattern Recognition and Machine Learning, Christopher Bishop.

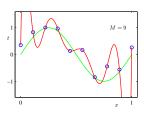
Intro ML (UofT) STA314-Lec1 40/50

Generalization

Underfitting: model is too simple — does not fit the data.



Overfitting: model is too complex — fits perfectly, does not generalize.

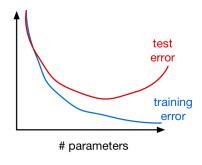


Intro ML (UofT) STA314-Lec1 41/50

Generalization

 \bullet Training and test error as a function of # training examples and # parameters:





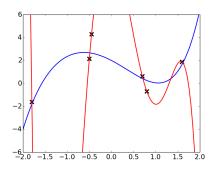
Intro ML (UofT) STA314-Lec1 42/50

Regularization

- The degree of the polynomial is a hyperparameter, just like *k* in KNN. We can tune it using a validation set.
- But restricting the size of the model is a crude solution, since you'll never be able to learn a more complex model, even if the data support it.
- Another approach: keep the model large, but regularize it
 - Regularizer: a function that quantifies how much we prefer one hypothesis vs. another

L^2 Regularization

Observation: polynomials that overfit often have large coefficients.



$$y = 0.1x^5 + 0.2x^4 + 0.75x^3 - x^2 - 2x + 2$$
$$y = -7.2x^5 + 10.4x^4 + 24.5x^3 - 37.9x^2 - 3.6x + 12$$

So let's try to keep the coefficients small.

L^2 Regularization

Another reason we want weights to be small:

• Suppose inputs x_1 and x_2 are nearly identical for all training examples. The following two hypotheses make nearly the same predictions:

$$\mathbf{w} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \qquad \mathbf{w} = \begin{pmatrix} -9 \\ 11 \end{pmatrix}$$

• But the second network might make weird predictions if the test distribution is slightly different (e.g. x_1 and x_2 match less closely).

L^2 (or ℓ_2) Regularization

• We can encourage the weights to be small by choosing as our regularizer the L^2 penalty.

$$\phi(\mathbf{w}) = \frac{1}{2} \|\mathbf{w}\|_2^2 = \frac{1}{2} \sum_j w_j^2.$$

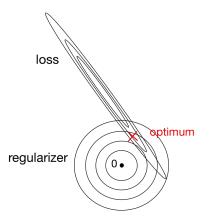
- Note: To be precise, the L^2 norm is Euclidean distance, so we're regularizing the *squared* L^2 norm.
- The regularized cost function makes a tradeoff between fit to the data and the norm of the weights.

$$\hat{\mathcal{R}}_{\text{reg}}(\mathbf{w}) = \hat{\mathcal{R}}(\mathbf{w}) + \lambda \phi(\mathbf{w}) = \hat{\mathcal{R}}(\mathbf{w}) + \frac{\lambda}{2} \sum_{j} w_{j}^{2}$$

- If you fit training data poorly, $\hat{\mathcal{R}}$ is large. If your optimal weights have high values, ϕ is large.
- Large λ penalizes weight values more.
- ullet Like M, λ is a hyperparameter we can tune with a validation set.

L^2 (or ℓ_2) Regularization

• The geometric picture:



For the least squares problem, we have $\hat{\mathcal{R}}(\mathbf{w}) = \frac{1}{2M} \|\mathbf{X}\mathbf{w} - \mathbf{t}\|^2$.

• When $\lambda > 0$ (with regularization), regularized cost gives

$$\begin{aligned} \mathbf{w}_{\lambda}^{\mathsf{Ridge}} &= \operatorname*{argmin}_{\mathbf{w}} \hat{\mathcal{R}}_{\mathrm{reg}}(\mathbf{w}) = \operatorname*{argmin}_{\mathbf{w}} \frac{1}{2N} \|\mathbf{X}\mathbf{w} - \mathbf{t}\|_{2}^{2} + \frac{\lambda}{2} \|\mathbf{w}\|_{2}^{2} \\ &= (\mathbf{X}^{\top}\mathbf{X} + \lambda N \mathbf{I})^{-1} \mathbf{X}^{\top} \mathbf{t} \end{aligned}$$

- The case $\lambda = 0$ (no regularization) reduces to least squares solution!
- Note that it is also common to formulate this problem as $\operatorname{argmin}_{\mathbf{w}} \frac{1}{2} \|\mathbf{X}\mathbf{w} - \mathbf{t}\|_{2}^{2} + \frac{\lambda}{2} \|\mathbf{w}\|_{2}^{2}$ in which case the solution is $\mathbf{w}_{\lambda}^{\mathsf{Ridge}} = (\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I})^{-1}\mathbf{X}^{\top}\mathbf{t}.$

STA314-Lec1 48 / 50

Gradient Descent under the L^2 Regularization

• Gradient descent update to minimize $\hat{\mathcal{R}}$:

$$\mathbf{w} \leftarrow \mathbf{w} - \alpha \frac{\partial}{\partial \mathbf{w}} \hat{\mathcal{R}}$$

• The gradient descent update to minimize the L^2 regularized cost $\hat{\mathcal{R}} + \lambda \mathcal{R}$ results in weight decay:

$$\begin{aligned} \mathbf{w} &\leftarrow \mathbf{w} - \alpha \frac{\partial}{\partial \mathbf{w}} \left(\hat{\mathcal{R}} + \lambda \phi \right) \\ &= \mathbf{w} - \alpha \left(\frac{\partial \hat{\mathcal{R}}}{\partial \mathbf{w}} + \lambda \frac{\partial \phi}{\partial \mathbf{w}} \right) \\ &= \mathbf{w} - \alpha \left(\frac{\partial \hat{\mathcal{R}}}{\partial \mathbf{w}} + \lambda \mathbf{w} \right) \\ &= (1 - \alpha \lambda) \mathbf{w} - \alpha \frac{\partial \hat{\mathcal{R}}}{\partial \mathbf{w}} \end{aligned}$$

Conclusion so far

Linear regression exemplifies recurring themes of this course:

- choose a model and a loss function
- formulate an optimization problem
- solve the minimization problem using one of two strategies
 - direct solution (set derivatives to zero)
 - gradient descent (next topic)
- vectorize the algorithm, i.e. represent in terms of linear algebra
- make a linear model more powerful using features
- improve the generalization by adding a regularizer