STA 314: Statistical Methods for Machine Learning I Lecture 3 - Bias-Variance Decomposition

Chris J. Maddison

University of Toronto

Today

- Expand a bit on Q3 and Q4 of the HW1.
- Today we will talk about the bias-variance decomposition, which is beginning to make more precise our discussion of overfitting and underfitting last class.

STA314-Lec1 2/29

Q3, HW1

• Given any finite set $\{x_i\}_{i=1}^N$ of $x_i \in \mathbb{R}$, we can define the uniform random variable over $\{x_i\}_{i=1}^N$, which is any D such that

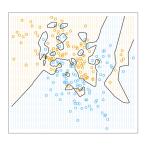
$$P(D=x_i)=\frac{1}{N}$$

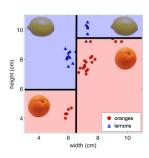
- Sampling from this random variable is easy: sample an integer $J \in \{1, ..., N\}$ uniformly at random and return x_J .
- For this distribution, we have

$$\mathbb{E}[D] = \sum_{i=1}^{N} P(D = x_i) x_i = \sum_{i=1}^{N} \frac{1}{N} x_i$$

Recall: supervised learning

• In supervised learning, our learning algorithms (k-NN, decision trees) produce predictions $\hat{y}^*(\mathbf{x}) \approx t$ for a query point \mathbf{x} .





Recall: supervised learning

• We can think of this as picking a predictor function $\hat{y}^* \in \mathcal{H}$ from a hypothesis class by minimizing the average loss on the training set

$$\hat{\mathbf{y}}^{\star} = \arg\min_{\mathbf{y} \in \mathcal{H}} \hat{\mathcal{R}}[\mathbf{y}, \mathcal{D}^{\textit{train}}]$$

• Then, we measure the average loss on an unseen test set to approximate how well \hat{y}^* does on the true data generating distribution,

$$\hat{\mathcal{R}}[\hat{\mathbf{y}}^{\star}, \mathcal{D}_{test}] \approx \mathcal{R}[\hat{\mathbf{y}}^{\star}]$$

Recall: supervised learning

- This view of supervise learning is a very idealized view:
 - ▶ k-NN algorithm for k > 1 doesn't really select the predictor by minimizing a global loss.
 - ▶ Decision tree fitting does select \hat{y}^* based on training loss, but it is often greedy and sometimes does not find the global optimal \hat{y}^* .
- Still, it's a very useful general model for supervised learning.

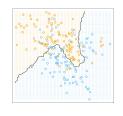
Q4, HW1

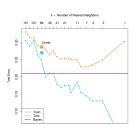
• Let's consider Q4 in HW1 as a way to review this supervised framewrok.

Intro ML(UofT) STA314-Lec1 7/29

Bias-Variance Decomposition

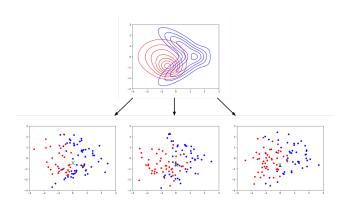
 Recall that overly simple hypothesis classes underfit the data, and overly complex ones overfit.





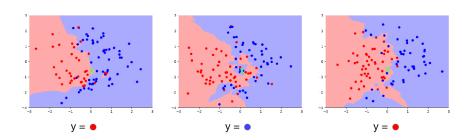
- Last lecture we talked about this intuitively.
- We can quantify this effect in terms of the bias-variance decomposition.
 - ► So far we've been talking about the training set as if it is fixed, but it makes more sense to think of it as random.
 - ▶ So, we'd like to understand how our learning algorithm is impacted by selecting a predictor on a finite, random, training set.

- Recall: the training set $\mathcal{D}^{train} = \{(\mathbf{x}^{(i)}, t^{(i)})\}_{i=1}^N$ contains N i.i.d. draws from a single data generating distribution p_{data} .
- Consider a fixed query point x (green x below).
- Consider sampling many training sets \mathcal{D}_n^{train} independently from p_{data} .



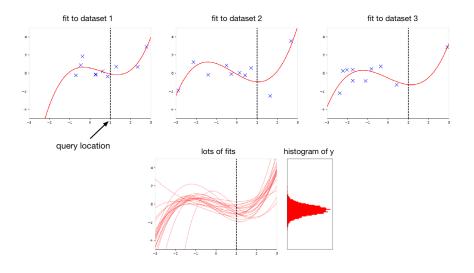
Intro ML(UofT) STA314-Lec1 9 / 29

- For each training set \mathcal{D}_n^{train} , run learning alg. to get a predictor $\hat{y}_n^{\star} \in \mathcal{H}$.
- Compute the prediction $\hat{y}_n^*(\mathbf{x})$ and compare it to a label t drawn from $p_{\text{data}}(t|\mathbf{x})$.
- We can view \hat{y}_n^* as a random variable, where the randomness comes from the choice of training set.



Intro ML(UofT) STA314-Lec1 10 / 29

Here is the analogous setup for regression:



- Recap of basic setup:
 - Fix a query point x.
 - ▶ Sample the (true) target t from the conditional distribution $p_{\text{data}}(t|\mathbf{x})$.
 - Repeat:
 - Sample a random training dataset \(\mathcal{D}_n^{\text{train}} \) i.i.d. from the data generating distribution \(p_{\text{data}}. \)
 - ▶ Run the learning algorithm on \mathcal{D}_n^{train} to get a prediction $\hat{y}_n^*(\mathbf{x})$ from \mathcal{H} at \mathbf{x} .
 - Compute the loss $L(\hat{y}_n^*(\mathbf{x}), t)$.
 - Average the losses.
- Notice: y is independent of t given x.
- This gives a distribution over the loss at \mathbf{x} , with expectation $\mathbb{E}[L(\hat{y}^*(\mathbf{x}),t)|\mathbf{x}]$ taken over t and the random training set \mathcal{D}^{train} where $\hat{y}^* = \arg\min_{y \in \mathcal{H}} \hat{\mathcal{R}}[y,\mathcal{D}^{train}]$.
- For each query point \mathbf{x} , the expected loss is different. We are interested in minimizing the expectation of this with respect to $\mathbf{x} \sim p_{\rm data}(\mathbf{x})$.

- For now, focus on squared error loss, $L(y,t) = \frac{1}{2}(y-t)^2$ with $y,t \in \mathbb{R}$.
- A first step: suppose we knew the conditional distribution $p_{\text{data}}(t \mid \mathbf{x})$. What is the best deterministic value $y(\mathbf{x}) \in \mathbb{R}$ should we predict?
 - ▶ Here, we are treating t as a random variable and choosing $y(\mathbf{x})$.
- Claim: $y^*(\mathbf{x}) = \mathbb{E}[t \mid \mathbf{x}]$ is the best possible prediction.
- **Proof:** Consider a fixed $y \in \mathbb{R}$

$$\begin{split} \mathbb{E}[(y-t)^2 \,|\, \mathbf{x}] &= \mathbb{E}[y^2 - 2yt + t^2 \,|\, \mathbf{x}] \\ &= y^2 - 2y\mathbb{E}[t \,|\, \mathbf{x}] + \mathbb{E}[t^2 \,|\, \mathbf{x}] \\ &= y^2 - 2y\mathbb{E}[t \,|\, \mathbf{x}] + \mathbb{E}[t \,|\, \mathbf{x}]^2 + \mathsf{Var}[t \,|\, \mathbf{x}] \\ &= y^2 - 2yy^*(\mathbf{x}) + y^*(\mathbf{x})^2 + \mathsf{Var}[t \,|\, \mathbf{x}] \\ &= (y - y^*(\mathbf{x}))^2 + \mathsf{Var}[t \,|\, \mathbf{x}] \end{split}$$

$$\mathbb{E}[(y-t)^2 \mid \mathbf{x}] = (y-y^*(\mathbf{x}))^2 + \mathsf{Var}[t \mid \mathbf{x}]$$

- The first term is nonnegative, and can be made 0 by setting $y = y^*(\mathbf{x})$.
- The second term corresponds to the inherent unpredictability, or noise, of the targets, and is called the Bayes error.
 - ▶ This is the best we can ever hope to do with any learning algorithm. An algorithm that achieves it is Bayes optimal.
 - Notice that this term doesn't depend on y.
- This process of choosing a single value $y^*(\mathbf{x})$ based on $p_{\text{data}}(t \mid \mathbf{x})$ is an example of decision theory.

STA314-Lec1 14 / 29

- But, in practice, our prediction $\hat{y}^*(\mathbf{x})$ is not $y^*(\mathbf{x})$. Instead, it is a random variable (where the randomness comes from randomness of the training set) taking values in \mathcal{H} .
- We can decompose out the expected loss.
- Suppressing the dependence on x for clarity:

$$\mathbb{E}[(\hat{y}^* - t)^2] = \mathbb{E}[(\hat{y}^* - y^*)^2] + \operatorname{Var}(t)$$

$$= \mathbb{E}[y^{*2} - 2y^*\hat{y}^* + \hat{y}^{*2}] + \operatorname{Var}(t)$$

$$= y^{*2} - 2y^* \mathbb{E}[\hat{y}^*] + \mathbb{E}[\hat{y}^{*2}] + \operatorname{Var}(t)$$

$$= y^{*2} - 2y^* \mathbb{E}[\hat{y}^*] + \mathbb{E}[\hat{y}^*]^2 + \operatorname{Var}(\hat{y}^*) + \operatorname{Var}(t)$$

$$= \underbrace{(y^* - \mathbb{E}[\hat{y}^*])^2}_{\text{bias}} + \underbrace{\operatorname{Var}(\hat{y}^*)}_{\text{variance}} + \underbrace{\operatorname{Var}(t)}_{\text{Bayes error}}$$

Bayes Optimality

- Let's step back and consider what we just did. First, recall:
 - ▶ Picking a predictor by minimizing the average loss on the training set

$$\hat{\mathbf{y}}^{\star} = \arg\min_{\mathbf{y} \in \mathcal{H}} \hat{\mathcal{R}}[\mathbf{y}, \mathcal{D}^{train}]$$

returns a random predictor \hat{y}^* .

▶ But, we're interested in our performance in terms of expected loss:

$$\mathcal{R}[\hat{\textbf{y}}^{\star}]$$

In our case:

$$\mathcal{R}[\hat{\mathbf{y}}^{\star}] = \mathbb{E}\left[\mathbb{E}[(\hat{\mathbf{y}}^{\star}(\mathbf{x}) - t)^2 \,|\, \mathbf{x}]\right].$$

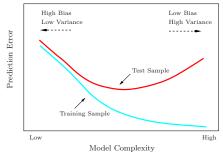
Bayes Optimality

$$\mathbb{E}\left[\mathbb{E}[(\hat{y}^{\star}(\mathbf{x}) - t)^{2} \,|\, \mathbf{x}]\right] = \mathbb{E}\left[\underbrace{(y^{\star}(\mathbf{x}) - \mathbb{E}[\hat{y}^{\star}(\mathbf{x}) \,|\, \mathbf{x}])^{2}}_{\text{bias}} + \underbrace{\operatorname{Var}[\hat{y}^{\star}(\mathbf{x}) \,|\, \mathbf{x}]}_{\text{variance}} + \underbrace{\operatorname{Var}[t \,|\, \mathbf{x}]}_{\text{Bayes error}}\right]$$

- So, we just split the expected loss $\mathcal{R}[\hat{y}^*]$ into three terms:
 - bias: how wrong the expected prediction is
 - variance: the amount of variability in the predictions
 - Bayes error: the inherent unpredictability of the targets
- How does our choice of \mathcal{H} interact with this analysis?

Intro ML (UofT) STA314-Lec1 17/29

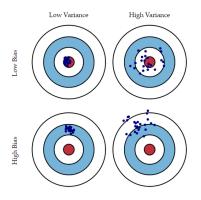
Bayes Optimality



- Source: ESL
- If \mathcal{H} is large, then \hat{y}^* can get close y^* , therefore reducing bias. It's also sensitive to the finite training set, therefore increasing variance.
- If \mathcal{H} is small, then \hat{y}^* is typically from y^* , therefore increasing bias. It's less sensitive to the finite training set, therefore reducing variance.
- Even though this analysis only applies to squared error, we often loosely use "bias" and "variance" as synonyms for "underfitting" and "overfitting".

Bias and Variance

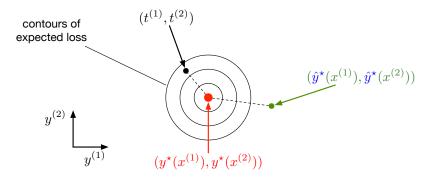
• Throwing darts = predictions for each draw of a dataset



Source: ESL.

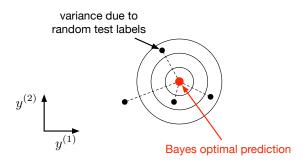
 Be careful, the expected loss averages over points x from the data distribution, so this produces its own type of variance.

- In practice, measure the average loss $\hat{\mathcal{R}}[\hat{y}^*, \mathcal{D}_{test}]$ on the test set instead of $\mathcal{R}[\hat{y}^*]$.
- Let's visualize the bias-variance decomposition by plotting the space of predictions of the model, where each axis correspond to predictions on a two test examples $(\mathbf{x}^{(1)}, \mathbf{x}^{(2)})$.



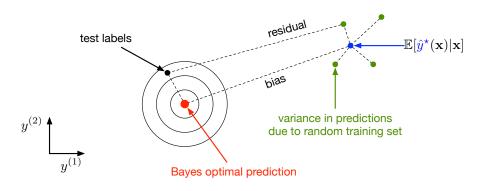
Intro ML (UofT) STA314-Lec1 20 / 29

• The Bayes error is an irreducible error that comes from the randomness in $p_{\text{data}}(t \mid \mathbf{x})$.

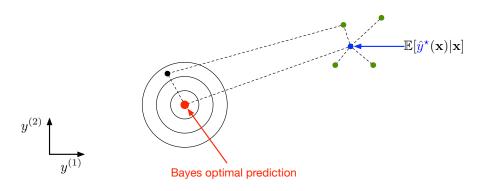


Intro ML (UofT) STA314-Lec1 21 / 29

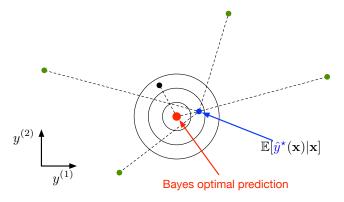
• Selecting a predictor $\hat{y}^* \in \mathcal{H}$ from a training set comes with bias and variance.



- An overly simple model (e.g. k-NN with large k) might have
 - high bias (too simplistic to capture the structure in the data)
 - low variance (there's enough data to get a stable estimate of the decision boundary)



- An overly complex model (e.g. KNN with k = 1) may have
 - low bias (since it learns all the relevant structure)
 - high variance (it fits the quirks of the data you happened to sample)



Intro ML (UofT) STA314-Lec1 24 / 29

Validation

- Before we move on to bagging, it's a good time to mention validation.
- We may want to assess how likely a learning algorithm is to generalize before picking one and reporting the final test error.
- In other words, until now we've been picking predictors that optimize the training loss, but we want a technique for picking predictors that are likely to generalize as well.

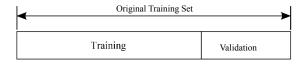
STA314-Lec1 25/29

Validation

- For example, we may want to assess the following types of choices:
 - 1. Hyper-parameters of the learning algorithm that lead to better generalization. Often there are parameters that cannot be fit on the training set, e.g., k in k-NN, because the training set would give meaningless answers about the best setting, i.e., k=1 is always gives optimal training set loss for k-NN.
 - 2. Picking predictors that generalize better. E.g., should we use a decision tree or k-NN if we want to generalize?
- We make these choices using validation to avoid measuring test loss (then the test set would no longer be unseen data!).
- Suppose we are trying to estimate the generalization of two learning algorithms, e.g., a decision tree and a *k*-NN model.

Hold-out validation

 The most common method of validation is to hold-out a subset of the training set and use it to assess how likely we are to generalize to unseen data.



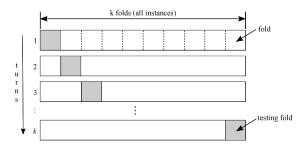
• In our example of deciding between a decision tree and k-NN in terms of generalization, we would fit $\hat{y}_{k\mathrm{NN}}^{\star}$ and $\hat{y}_{\mathrm{d-tree}}^{\star}$ on the training set and measure the average loss on the validation set

$$\hat{\mathcal{R}}[\hat{y}_{k\mathrm{NN}}^{\star},\mathcal{D}^{\mathit{valid}}]$$
 vs. $\hat{\mathcal{R}}[\hat{y}_{d ext{-tree}}^{\star},\mathcal{D}^{\mathit{valid}}]$

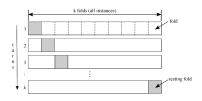
- We pick the predictor \hat{y}_{kNN}^{\star} vs. \hat{y}_{d-tree}^{\star} with lowest validation loss.
- Problem: this is usually a waste of data.

K-fold cross validation

• Second most common way: partition training data randomly into K equally sized subsets. For each "turn", use the first K-1 subsets (or "folds") as training data and the last subset as validation



K-fold cross validation



• In our running example: fit a new predictor using each learning algorithm on K-1 folds for each of the K turns, and measure the validation loss on the held-out fold, averaged over the turns:

$$\frac{1}{K} \sum_{i=1}^{K} \hat{\mathcal{R}}[\hat{y}^{\star}_{k\text{NN},i}, \mathcal{D}^{\textit{valid}}_{i}] \text{ vs. } \frac{1}{K} \sum_{i=1}^{K} \hat{\mathcal{R}}[\hat{y}^{\star}_{d-\textit{tree},i}, \mathcal{D}^{\textit{valid}}_{i}]$$

where $\hat{y}_{A,i}^{\star}$ is the predictor fit on the training subset of the *i*th turn using algorithm A and \mathcal{D}_{i}^{valid} is the validation subset of the *i*th turn.

• We pick the learning algorithm, e.g., k-NN v. decision tree, with lowest validation loss averaged across the K turns.