STA 314: Statistical Methods for Machine Learning |

Lecture 3 - Bias-Variance Decomposition

Chris J. Maddison

University of Toronto

Intro ML (UofT) STA314-Lecl 1/29

@ Expand a bit on Q3 and Q4 of the HW1.

@ Today we will talk about the bias-variance decomposition, which is beginning
to make more precise our discussion of overfitting and underfitting last class.

Intro ML (UofT) STA314-Lecl 2/29

Q3, HW1

@ Given any finite set {x;}!\; of x; € R, we can define the uniform random
variable over {x;}" ,, which is any D such that

1

P(DZX,')Z N

@ Sampling from this random variable is easy: sample an integer

Je{1,..., N} uniformly at random and return x;.

@ For this distribution, we have

E[D] = ZP ;:Z%x,

Intro ML (UofT) STA314-Lecl 3/29

Recall: supervised learning

@ In supervised learning, our learning algorithms (k-NN, decision trees)

produce predictions y*(x) = t for a query point x.

height (cm)

Intro ML (UofT) STA314-Lecl

R
P |1

>

®
>
>
%o
o

=)

o.'. ‘

IS

6 8
width (cm)

IS

4/29

Recall: supervised learning

@ We can think of this as picking a predictor function y* € H from a
hypothesis class by minimizing the average loss on the training set

P . 7’% Dtrain
y* = arg min Ly,]

@ Then, we measure the average loss on an unseen test set to approximate
how well y* does on the true data generating distribution,

7/\?'[)7*7 Dtest] ~ R[}I}*]

Intro ML (UofT) STA314-Lecl 5/29

Recall: supervised learning

@ This view of supervise learning is a very idealized view:

» k-NN algorithm for k > 1 doesn’t really select the predictor by
minimizing a global loss.

» Decision tree fitting does select y* based on training loss, but it is
often greedy and sometimes does not find the global optimal y*.

@ Still, it's a very useful general model for supervised learning.

Intro ML (UofT) STA314-Lecl 6/29

Q4, HW1

@ Let's consider Q4 in HW1 as a way to review this supervised framewrok.

Intro ML (UofT) STA314-Lecl 7/29

Bias-Variance Decomposition

@ Recall that overly simple hypothesis classes underfit the data, and overly
complex ones overfit.

K= Numberof Nearest Neghoors.

Q

é %5 i

@ Last lecture we talked about this intuitively.

@ We can quantify this effect in terms of the bias-variance decomposition.

» So far we've been talking about the training set as if it is fixed, but it
makes more sense to think of it as random.

» So, we'd like to understand how our learning algorithm is impacted by
selecting a predictor on a finite, random, training set.

) STA314-Lecl 8/29

Bias-Variance Decomposition: Basic Setup

@ Recall: the training set D" = {(x(), ()} contains N i.i.d. draws from
a single data generating distribution pqasa.

@ Consider a fixed query point x (green x below).

@ Consider sampling many training sets Df,’ai” independently from pgata-

@

Intro ML (UofT) STA314-Lecl 9/29

Bias-Variance Decomposition: Basic Setup

@ For each training set D" run learning alg. to get a predictor y* € H.

@ Compute the prediction y¥(x) and compare it to a label ¢t drawn from
pdata(t|x)-

@ We can view) as a random variable, where the randomness comes from
the choice of training set.

L -
Lo vett8e . . 2t N
. . . e
o "0 : . % e b
o o o, . o e o o8 URELRCH o
| Lo * PR L ° .
-
1 RLER 2 © 1 e 0 ote Ve 1
> S . A A
F el < &%
.
. .
f 7 i T s : T : > : T : >
y=e y=e y=e

) STA314-Lecl 10 /29

Bias-Variance Decomposition: Basic Setup

Here is the analogous setup for regression:

fit to dataset 1 fit to dataset 2

fit to dataset 3

query location

Intro ML (UofT) STA314-Lecl

Bias-Variance Decomposition: Basic Setup

@ Recap of basic setup:

» Fix a query point x.
» Sample the (true) target t from the conditional distribution pgata(t|x).
> Repeat:
» Sample a random training dataset D" i.i.d. from the data generating
distribution pgata.
> Run the learning algorithm on D" to get a prediction 7 (x) from H
at x.
» Compute the loss L(y;(x), t).

> Average the losses.
@ Notice: y is independent of t given x.

@ This gives a distribution over the loss at x, with expectation
E[L(9*(x), t)| x] taken over t and the random training set D" where
= arg min, ey, R[y, D).

@ For each query point x, the expected loss is different. We are interested in
minimizing the expectation of this with respect to X ~ pgata(X).

) STA314-Lecl 12 /29

Bayes Optimality

@ For now, focus on squared error loss, L(y,t) = 3(y — t)? with y,t € R.

A first step: suppose we knew the conditional distribution pgata(t|x). What
is the best deterministic value y(x) € R should we predict?

> Here, we are treating t as a random variable and choosing y(x).

Claim: y*(x) = E[t|x] is the best possible prediction.
@ Proof: Consider a fixed y € R
Elly — £ |x] = E[/? — 2yt + £ |]
= y? — 2yE[t|x] + E[t* |x]
= y? —2yE[t|x] + E[t|x]* + Var[t | x]
= y% = 2yy*(x) + y*(x)* + Var[t|]
= (v = y*(x))* + Var[t| x]

) STA314-Lecl 13 /29

Bayes Optimality

El(y —t)*|x] = (y — y*(x))? + Var[t|x]

@ The first term is nonnegative, and can be made 0 by setting y = y*(x).

@ The second term corresponds to the inherent unpredictability, or noise, of
the targets, and is called the Bayes error.

» This is the best we can ever hope to do with any learning algorithm.
An algorithm that achieves it is Bayes optimal.
> Notice that this term doesn't depend on y.

@ This process of choosing a single value y*(x) based on pgata(t|x) is an
example of decision theory.

) STA314-Lecl 14 /29

Bayes Optimality

@ But, in practice, our prediction y*(x) is not y*(x). Instead, it is a random
variable (where the randomness comes from randomness of the training set)

taking values in .
@ We can decompose out the expected loss.

@ Suppressing the dependence on x for clarity:

E[(y* — t)°] = E[(§* — y*)] + Var(t)
= E[y*® — 2y*9* + §*2] + Var(t)
= y*? = 2y*E[y*] + E[y*?] + Var(t)
= y*? —2y*E[p*] + E[p*]? + Var(y*) + Var(t)
= (y* —E[’])? + Var(y*) + Var(t)

bias variance Bayes error

) STA314-Lecl 15 /29

Bayes Optimality

@ Let's step back and consider what we just did. First, recall:

» Picking a predictor by minimizing the average loss on the training set
p* = arg min Ry, D"
y g min Ry]

returns a random predictor y*.
» But, we're interested in our performance in terms of expected loss:

R[]

@ In our case:
R[P*] =E [E[(7"(x) — t)*[x] -

Intro ML (UofT) STA314-Lecl 16 /29

Bayes Optimality

E[E[(7"(x) - t)*[X]] =E | (y*(x) — E[y*(x) |x])* + Var[p*(x)|x] + Var[t|x]
———

bias variance Bayes error

@ So, we just split the expected loss R[y*] into three terms:

> bias: how wrong the expected prediction is
» variance: the amount of variability in the predictions
» Bayes error: the inherent unpredictability of the targets

@ How does our choice of H interact with this analysis?

) STA314-Lecl 17 /29

Bayes Optimality

High Bias Low Bias
Low Variance High Variance
- -—

Test Sample

Prediction Error

Training Sample

Low High
Model Complexity Source: ESL

@ If H is large, then y* can get close y*, therefore reducing bias. It's also
sensitive to the finite training set, therefore increasing variance.

@ If H is small, then y* is typically from y*, therefore increasing bias. It's less
sensitive to the finite training set, therefore reducing variance.

@ Even though this analysis only applies to squared error, we often loosely use
“bias” and ‘variance” as synonyms for “underfitting” and “overfitting”.

) STA314-Lecl 18/

Bias and Variance

@ Throwing darts = predictions for each draw of a dataset

Low Variance High Variance

()

'.v'
'l

@ Be careful, the expected loss averages over points x from the data
distribution, so this produces its own type of variance.

Low Bias

High Bias

Source: ESL.

) STA314-Lecl 19 /29

Bias/Variance Decomposition: Another Visualization

@ In practice, measure the average loss ﬁ[y*,ptest] on the test set instead of
R[y*].

@ Let's visualize the bias-variance decomposition by plotting the space of
predictions of the model, where each axis correspond to predictions on a two

test examples (x(1);x(2)).

contours of (t(l)’ t(Z))

expected loss

\ (=), 5* (=)
(e

1 N . (2
y™ (" (zM), y* (2))

Intro ML (UofT) STA314-Lecl 20/29

Bias/Variance Decomposition: Another Visualization

@ The Bayes error is an irreducible error that comes from the
randomness in pgata(t|x).

variance due to
random test labels

)

y(l)) .
Bayes optimal prediction

Intro ML (UofT) STA314-Lecl 21/29

Bias/Variance Decomposition: Another Visualization

@ Selecting a predictor y* € H from a training set comes with bias and

variance.
\ A

test label residu@ %

est labels
T e[(x)[x]
O »
B ":.5‘\35 T
(2) variance in predictions
Y due to random training set
y(l)) .

Bayes optimal prediction

Intro ML (UofT) STA314-Lecl 22/29

Bias/Variance Decomposition: Another Visualization

@ An overly simple model (e.g. k-NN with large k) might have

» high bias (too simplistic to capture the structure in the data)
» low variance (there's enough data to get a stable estimate of the
decision boundary)

2
T e[(%))
T e

Y Bayes optimal prediction

Intro ML (UofT) STA314-Lecl 23/29

Bias/Variance Decomposition: Another Visualization

@ An overly complex model (e.g. KNN with k = 1) may have

» low bias (since it learns all the relevant structure)
» high variance (it fits the quirks of the data you happened to sample)

Yy Bayes optimal prediction

Intro ML (UofT) STA314-Lecl 24/29

@ Before we move on to bagging, it's a good time to mention validation.

@ We may want to assess how likely a learning algorithm is to generalize before
picking one and reporting the final test error.

@ In other words, until now we've been picking predictors that optimize the
training loss, but we want a technique for picking predictors that are likely
to generalize as well.

Intro ML (UofT) STA314-Lecl

@ For example, we may want to assess the following types of choices:

1. Hyper-parameters of the learning algorithm that lead to better
generalization. Often there are parameters that cannot be fit on the
training set, e.g., k in k-NN, because the training set would give
meaningless answers about the best setting, i.e., k = 1 is always gives
optimal training set loss for k-NN.

2. Picking predictors that generalize better. E.g., should we use a decision
tree or k-NN if we want to generalize?

@ We make these choices using validation to avoid measuring test loss (then
the test set would no longer be unseen datal).

@ Suppose we are trying to estimate the generalization of two learning
algorithms, e.g., a decision tree and a k-NN model.

) STA314-Lecl 26 /29

Hold-out validation

@ The most common method of validation is to hold-out a subset of the
training set and use it to assess how likely we are to generalize to unseen
data.

Original Training Set

Training Validation

@ In our example of deciding between a decision tree and k-NN in terms of
generalization, we would fit §/\y and ¥} .. on the training set and measure
the average loss on the validation set

RPinns D] vs. R[Prees D"

@ We pick the predictor Py VS. Vitree With lowest validation loss.

@ Problem: this is usually a waste of data.

) STA314-Lecl 27 /29

K-fold cross validation

@ Second most common way: partition training data randomly into K equally
sized subsets. For each “turn”, use the first K — 1 subsets (or “folds”) as
training data and the last subset as validation

k folds (all instances) o
>

A

fold

A

) . testing fold
b g

© Do e

Intro ML (UofT) STA314-Lecl 28/29

K-fold cross validation

k folds (all instances)

- testing fold
d =

@ In our running example: fit a new predictor using each learning algorithm on
K — 1 folds for each of the K turns, and measure the validation loss on the
held-out fold, averaged over the turns:

K K

1 B[ox vali 1 B[vali

RZR[YkNN,hDi "] vs. RZR[yd—tree,HDi "
i1 i1

where §7 . is the predictor fit on the training subset of the ith turn using
algorithm A and D!?' is the validation subset of the ith turn.

@ We pick the learning algorithm, e.g., k-NN v. decision tree, with lowest
validation loss averaged across the K turns.

) STA314-Lecl 29 /29

