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arg min & arg max

@ Given a function f : R — R, we may want
its minimum point, i.e., the point x* € R
such that for all x € R

F(x™) < f(x) $69

@ arg min returns the minimum point,

M
. .
x* = arg min f(x
g min £(x)
X*
arg max returns the maximum point. X —e
. [ "]
@ arg min,er (x — a)? = a. 0

@ If there is more than one minimum or
maximum point, then the arg min or
arg max are sets.
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@ Decision Trees

» Simple but powerful learning algorithm

» Used widely in Kaggle competitions

» Lets us motivate concepts from information theory (entropy, mutual
information, etc.)

@ Loss functions and the question of generalization

» We've been dancing around this question, let's formalize it a bit.
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Decision Trees

@ Make predictions by splitting on attributes according to a tree structure.

B/vidth >6.5cm? ]

Yes No

helght > 9.5cm? helght > 6.0cm?

,/\ ;\
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Decision Trees

@ Make predictions by splitting on attributes according to a tree structure.

Test example

E/vidth > 6.5cm? ]

Yes o

[height>9.5cm? ] [height>6.0cm? ]

Yes
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Decision Trees—Discrete attributes

First, what if attributes are discrete?

Example Input Attributes Goal
Alt | Bar | Fri | Hun| Pat | Price | Rain | Res | Type Est WillWait

X1 Yes| No | No | Yes| Some| $$8 No | Yes| French| 0-10 | y, = Yes
Xo Yes| No | No | Yes Full 3 No | No Thai 3060 | y, = No
X3 No | Yes| No | No | Some 3 No | No | Burger | 0-10 | ys= Yes
Xy Yes| No | Yes| Yes Full 3 Yes | No Thai 10-30 | yy = Yes
X5 Yes| No | Yes| No | Full | $$8 | No | Yes| French| >60 | ys= No
Xg No | Yes No | Yes| Some| 38 | Yes| Yes| ltalian | 0-10 | ys= Yes
X7 No | Yes| No | No | None $ Yes | No | Burger | 0-10 | y;= No
Xg No| No | No | Yes| Some| 3§ | VYes| Yes Thai 0-10 | ys= Yes
X9 No | Yes| Yes| No Full $ Yes | No | Burger| >60 Y9 = No
X10 Yes | Yes| Yes| Yes| Full | $$8 | No | Yes| ltalian | 10-30 | yio = No
X711 No | No | No | No | None 3 No | No Thai 0-10 | yu1 = No
X12 Yes | Yes| Yes| Yes| Full 3 No | No | Burger | 30-60 | y12 = Yes

1. Alternate: whether there is a suitable alternative restaurant nearby.

2. Bar: whether the restaurant has a comfortable bar area to wait in.

3. | | Fri/sat: true on Fridays and Saturdays.

4. Hungry: whether we are hungry.

5. | | Patrons: how many people are in the restaurant (values are None, Some, and Full)

6. | | Price: the restaurant's price range ($, $$, $$$).

7. | | Raining: whether it is raining outside.

8. Reservation: whether we made a reservation

9. Type: the kind of restaurant (French, Italian, Thai or Burger)

attributes: 10. | | WaitEstimate: the wait estimated by the host (0-10 minutes, 10-30, 30-60, >60).
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Decision Trees—Discrete attributes

@ Split discrete attributes into a partition of possible values.

Patrons?

None ome Full

[ WaitEstimate? |

Alternate?

| Reservation? || Fri/sat? |
No Yes No Yes

No Yes
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Decision Tree ntinuous attributes

@ For continuous attributes, we partition the range by checking whether that
attribute is greater than or less than some threshold.

@ Decision boundary is made up of axis-aligned planes.

width > 6.5cm?

L] e
a Yes
_ ol al Lo
€ ad oD e
s Ky('J height > 9.5cm? height > 6.0cm?
5
24 Yes/\‘lo YesN

L ]
° @ oranges
A lemons
4 6 8 10
width (cm)
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Decision Trees

width > 6.5cm?

[height>9.50m? ] [height>6.0cm? ]

on: ” YesN _
- @ e @

Internal nodes test a attribute, i.e., a dimension of the representation.

Branching is determined by the attribute value.

Children of a node partition the range of the attribute from the parent.

Leaf nodes are outputs (predictions).
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Decision Trees—Classification and Regression

0 4
@ Each path from root to a leaf defines a region R, - ju -
' g e @
of input space ; £y
o Let {(X(ml)a t(ml))a R (X(mk)a t(mk))} be the K Gr
training examples that fall into R, . 4 -S ., m:":

@ Classification tree (we will focus on this):
» discrete output

> leaf value y™ typically set to the most common value in
{elm) . gma)y

@ Regression tree:
» continuous output

> leaf value y™ typically set to the mean value in {t(™), .. t(m)}
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Learning Decision Trees

@ For any training set we can construct a decision tree that has exactly the
one leaf for every training point, but it probably won't generalize.

» Decision trees are universal function approximators.

@ But, finding the smallest decision tree that correctly classifies a training set
is computationally challenging.

> If you are interested, check: Hyafil & Rivest'76.

@ So, how do we construct a useful decision tree?
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Learning Decision Trees

@ Resort to a greedy heuristic:

» Start with the whole training set and an empty decision tree.
» Pick a attribute and candidate split that would most reduce the loss.
» Split on that attribute and recurse on subpartitions.

@ Which loss should we use?

> Let’s see if misclassification rate is a good loss.
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Choosing a Good Split

@ Consider the following data. Let’s split on width.

e ee
< ® oranges
2 A O Al
< emons
L A
width
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Choosing a Good Split

@ Recall: classify by majority.

A B
_e| eoe o eo|eo
< ® oranges
o
Q Ae® Al A lemons
L A L A
width width

@ A and B have the same misclassification rate, so which is the best split?
Votel!
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Choosing a Good Split

@ A feels like a better split, because the left-hand region is very certain about
whether the fruit is an orange.

A B
_e| ee o eofe
< ® oranges
2
2 A O Al® A lemons
L A L A
width width

@ Can we quantify this?
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Choosing a Good Split

@ How can we quantify uncertainty in prediction for a given leaf node?

> If all examples in leaf have same class: good, low uncertainty
> If each class has same amount of examples in leaf: bad, high
uncertainty

@ Idea: Use counts at leaves to define probability distributions; use a
probabilistic notion of uncertainty to decide splits.

@ A brief detour through information theory...
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Quantifying Uncertainty

@ The entropy of a discrete random variable is a number that quantifies the
uncertainty inherent in its possible outcomes.

@ The mathematical definition of entropy that we give in a few slides may
seem arbitrary, but it can be motivated axiomatically.

> If you're interested, check: Information Theory by Robert Ash.

@ To explain entropy, consider flipping two different coins...
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We Flip Two Different Coins

Sequence 1:

0001000000000 00100 ...7

Sequence 2:

1010111010011 0101...7
16

10

8
versus
: L
I—

0 1 0 1
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Quantifying Uncertainty

@ The entropy of a loaded coin with probability p of heads is given by

—plogy(p) — (1 — p)logy(1 — p)

8/9
419 59
-
— 0 1
0 1
—§|082§—§|0g2§~§ —§Iog2§—§log2§z0.99

@ Notice: the coin whose outcomes are more certain has a lower entropy.

@ In the extreme case p =0 or p = 1, we were certain of the outcome before
observing. So, we gained no certainty by observing it, i.e., entropy is 0.
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Quantifying Uncertainty

entropy
1.0r

0.8+
0.6+
0.4+

0.2

L I L - robability p of heads
0.2 0.4 0.6 0.8 1.0 P e

@ Claude Shannon showed: you cannot store the outcome of a random draw
using fewer expected bits than the entropy without losing information.

@ So units of entropy are bits; a fair coin flip has 1 bit of entropy.

» So, entropy can be seen as the expected information content of a
random variable.
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@ More generally, the entropy of a discrete random variable Y is given by

H(Y) == p(y)log, p(y)
yey
Interpret p(y) log, p(y) = 0 if p(y) = 0.
@ “High Entropy”:

» Variable has a uniform like distribution over many outcomes
> Flat histogram
> Values sampled from it are less predictable

@ “Low Entropy”

» Distribution is concentrated on only a few outcomes
» Histogram is concentrated in a few areas
» Values sampled from it are more predictable
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@ Suppose we observe partial information X about a random variable Y
» For example, X = sign(Y).

@ We want to work towards a definition of the expected amount of information
that will be conveyed about Y by observing X.

» Or equivalently, the expected reduction in our uncertainty about Y
after observing X.
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Entropy of a Joint Distribution

Cloudy [ Not Cloudy

@ Example:
X = {Raining, Not raining}, Raining | 24/100 1/100
Y = {Cloudy, Not cloudy}

Not Raining| 25/100 50/100

HIX,Y) = =) p(x,y)log, p(x,y)

xeXyeY
_ 44 1 1 25, 025 50, 50
= 100 %2100 100 227100 100 22100 100 2100
~ 1.56bits
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Specific Conditional Entropy

Cloudy [ Not Cloudy
@ Example:

X = {Raining, Not raining}, Raining | 24/100 1/100
Y = {Cloudy, Not cloudy}

Not Raining| 25/100 50/100

@ What is the entropy of cloudiness Y, given that it is raining?

HYIX=x) = =Y p(ylx)log, p(y|x)
yey

24, .24 1,
25 %8295 7 25

1
0gy % ~ 0.24bits

@ We used: p(y|x) = pé)((;(};), and p(x)=> p(x,y) (sumin a row)
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Conditional Entropy

Cloudy [ Not Cloudy
@ Example:

X = {Raining, Not raining}, Raining | 24/100 1/100
Y = {Cloudy, Not cloudy}

Not Raining| 25/100 50/100

@ The expected conditional entropy:

H(YIX) = > p()H(Y|X = x)
xeX
= => > plx,y)log, p(y|x)
xeXyeY
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Conditional Entropy

Cloudy [ Not Cloudy

@ Example:
X = {Raining, Not raining}, Raining | 24/100 1/100
Y = {Cloudy, Not cloudy}

Not Raining| 25/100 50/100

@ Entropy of cloudiness given the knowledge of whether or not it is raining?

HYIX) = Y p(x)H(YIX = x)
xeX
1 o 3 .
= ZH(YhS raining) + ZH(Y|not raining)
~ 0.75 bits
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Conditional Entropy

@ Some useful properties:
» Non-negative: H(X) >0
» Chain rule: H(X,Y) = H(X|Y)+ H(Y) = H(Y|X) + H(X)
» Independence: If X and Y independent, then X does not affect our
uncertainty about Y: H(Y|X) = H(Y)
» Knowing Y makes our knowledge of Y certain: H(Y|Y) =0
» Knowing X can only decrease uncertainty about Y: H(Y|X) < H(Y)
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Information Gain

Cloudy (Not Cloudy

Raining 24/100 1/100

Not Raining| 25/100 50/100

@ How much more certain am | about whether it's cloudy if I'm told whether it
is raining?
» My uncertainty in Y minus my expected uncertainty that would remain
in Y after seeing X.

@ This is the information gain /G(Y,X) in Y due to X, or the mutual
information of Y and X

IG(Y,X) = H(Y)— H(Y|X) (1)
@ If X is completely uninformative about Y: IG(Y,X) =0
o If X is completely informative about Y: IG(Y,X) = H(Y)
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Revisiting Our Original Example

@ Information gain measures the informativeness of a variable, which is exactly
what we desire in a decision tree split!

@ The information gain of a split: how much information (over the training
set) about the class label, Y = {red, blue}, is gained by knowing that you
are considering data on one side of the split, X = {/eft, right}.
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Revisiting Our Original Example

Let's compute /IG(Y, X) for example.

B
_ e eol|e
= ® oranges
2
Q Ao A lemons
® A
width
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Revisiting Our Original Example

@ What is the information gain of split B? Not terribly informative...

B
.| ® o|® —_————
< ® oranges
2
2 Al® A lemons

® A
width
@ Root entropy of class outcome: H(Y) = —2 log,(2) — 2 log,(2) ~ 0.86

@ Leaf conditional entropy of class outcome: H(Y|X = left) =~ 0.81,
H(Y|X = right) = 0.92

® IG(Y,X)~0.86— (4-0.81+ 2 -0.92) ~ 0.006
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Revisiting Our Original Example

@ What is the information gain of split A7 Very informative!

A
.| ® L N
< ® oranges
2
2 Ao A lemons
® A
width
@ Root entropy of class outcome: H(Y) = —2 log,(2) — 2 log,(2) ~ 0.86

@ Leaf conditional entropy of class outcome: H(Y|X = left) = 0,
H(Y|X = right) = 0.97

® IG(Y,X)~0.86—(2-0+2-0.97) ~ 0.17!!
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Constructing Decision Trees

o

lwidth > 6.5cm?

height (cm)

{heigh( >6.0cm? ]

{height >9.5cm?
.l.
4 o ® oranges Yes No Yes No
A lemons

4 6 8 10 N a0
width (cm) w é v v

@ At each level, one must choose:

1. Which attribute to split.
2. Possibly where to split it.

@ Choose them based on how much information we would gain from the
decision! (choose attribute that gives the highest gain)
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Decision Tree Construction Algorithm

@ Simple, greedy, recursive approach, builds up tree node-by-node

1. pick a attribute to split at a non-terminal node
2. split examples into groups based on attribute value
3. for each group:

> if no examples — return majority from parent

> else if all examples in same class — return class

> else loop to step 1

@ Terminates when all leaves contain only examples in the same class or are
empty.
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Back to Our Example

Example Input Attributes Goal
Alt | Bar | Fri | Hun| Pat | Price| Rain| Res | Type Est WillWait

X1 Yes| No| No | Yes| Some| $3%5 | No | Yes| French| 0-10 | y; = Yes
Xo Yes No | No | Yes Full 3 No | No Thai 30-60 | y» = No
X3 No | Yes| No | No | Some $ No | No | Burger| 0-10 | y3= Yes
X4 Yes No | Yes| Yes Full 3 Yes | No Thai 10-30 | y, = Yes
X5 Yes No | Yes| No Full | $$8 | No | Yes| French| >60 | ys;= No
Xg No | Yes No | Yes| Some| 3% | Yes| Yes| ltalian | 0-10 | yg= Yes
X7 No | Yes| No | No | None $ Yes | No | Burger| 0-10 | yr= No
Xg No | No No| Yes| Some| 83§ | Yes| Yes Thai 0-10 | ys= Yes
Xg No | Yes| Yes| No Full 3 Yes | No | Burger| >60 y9 = No
X10 Yes  Yes| Yes| Yes| Full | $$% | No | Yes| ltalian | 10-30 | 310 = No
X1 No | No | No | No | None $ No | No Thai 0-10 | yi1 = No
X12 Yes  Yes | Yes| Yes| Full 3 No | No | Burger| 30-60 | y12 = Yes

1. Alternate: whether there is a suitable alternative restaurant nearby.

2. Bar: whether the restaurant has a comfortable bar area to wait in.

3. | | Fri/Sat: true on Fridays and Saturdays.

4. | | Hungry: whether we are hungry.

5. Patrons: how many people are in the restaurant (values are None, Some, and Full).

6. | | Price: the restaurant's price range (§, $%, $$$).

7. Raining: whether it is raining outside.

8. Reservation: whether we made a reservation.

9. | | Type: the kind of restaurant (French, Italian, Thai or Burger).

attributes: |10 || WaitEstimate: the wait estimated by the host (0-10 minutes, 10-30, 30-60, >60).

[from: Russell & Norvig]
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attribute Selection

2 2 4 4
IG(T) Y)=1— | —=H(Y|Fr. — H(Y|It. — H(Y|Thai — H(Y|Bur.
(Type, ¥) = 1= [ ZHYIFr) + ZH(VIIL) + 5 HOY [ Thai) + 25 H(Y[Bur)

=0

2 4 6 24
IG(Patron, Y) =1 — | = H(0,1) + — H(1,0) + —H(=, 2)| ~ 0.541
(Patron, ) [12 0.1) + 5 HE, 0+ FHH(E. 5
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Which Tree is Better? Votel

Patrons?

Patrons?

Full

WaitEstimate?

None

Alternate?

Yes

| Reservation? |[ Fri/sat? |
No Yes
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What Makes a Good Tree?

@ Not too small: need to handle important but possibly subtle distinctions in
data

@ Not too big:

» Computational efficiency (avoid redundant, spurious attributes)
» Avoid over-fitting training examples
» Human interpretability

@ "“Occam’s Razor": find the simplest hypothesis that fits the observations

» Useful principle, but hard to formalize (how to define simplicity?)
» See Domingos, 1999, “The role of Occam's razor in knowledge
discovery"

@ We desire small trees with informative nodes near the root
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Decision Tree Miscellany

@ Problems:

> You have exponentially less data at lower levels
» Too big of a tree can overfit the data
> Greedy algorithms don't necessarily yield the global optimum

@ Handling continuous attributes
» Split based on a threshold, chosen to maximize information gain

@ Decision trees can also be used for regression on real-valued outputs. Choose
splits to minimize squared error, rather than maximize information gain.
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Comparison to k-NN

Advantages of decision trees over k-NN

Good when there are lots of attributes, but only a few are important
Good with discrete attributes

Easily deals with missing values (just treat as another value)

Robust to scale of inputs

Fast at test time

More interpretable
Advantages of k-NN over decision trees

Few hyperparameters
Able to handle attributes/features that interact in complex ways (e.g. pixels)

Can incorporate interesting distance measures (e.g. shape contexts)

Typically make better predictions in practice
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@ Today, we deepen our understanding of generalization.

» This will help us understand how to combine classifiers to get better
performance (ensembling methods).

) STA314-Lecl 41/60



Learning & Generalization

@ Recall that we said that overly simple learning algorithms underfit the data,
and overly complex ones overfit.

Q

11

@ Today we will be a bit more precise about what this means and what the
goal of supervised learning is in general.
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Loss Functions

@ Given an input-label pair (x, t), a loss function L(y, t) defines how bad it is
if the algorithm predicts y.

@ Example: 0-1 loss for classification

0 ify=t

Lo-1(y,t) = {1 ify £t

> Average 0-1 loss gives the error rate.

@ Example: squared error loss for regression
1 2
Lsn(y.t) = 50— )

» The average squared error loss is called mean squared error (MSE).

@ Let's focus on 0-1 loss with inputs x € R and labels t € {0, 1}.
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Loss Functions

@ Both k-NN and decision trees make predictions for all queries x.

@ We can think of the predictions of our learning algorithm forming a mapping
y : R9 — {0,1} that we call a predictor.

@ For a random data point drawn (X, t) ~ pqata from some data generating
distribution, we can measure the expected error for the predictor y:

Rl = Y [ Lo Opuaa(x,0) d

te{0,1}

@ For a finite data set D = {(x(), t())}¥  we can measure the average error:

Rly, D] := ZI—O 1(y(x), £
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Goal of Supervised Learning

@ Find a predictor y that achieves the lowest expected loss.

y arg y:]Rdnl)l?O,l} [y]

» If we're performing regression, we will optimize over y : R — R.
> If we're performing classification, we will optimize over
y:RY = {1,...,C}L
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x ~ uniform[0, 1]

0 ifx<05
t(x) = .
1 ifx>05
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x ~ uniform[0, 1] ,6 mistake V7 t

.

0 ifx<0.5 [
t(x) = : ]
1 ifx>05 !
What is the expected error? RSEEEEE i
0 ifx<0.75 :
= 2 1 — ] 1\
v {1 tx>o075 B ¥ :
o] X (
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x ~ uniform[0, 1] i. .......... 3
£(x) = 0 %fx<0.5 \f=0 ::
1 ifx>05 (Emmmmmmmnne -?
y*(x) = t(x) 1 L \
| |
Opt. predictor is y* = t. O X (
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Supervised Learning in practice

@ y is taken from a more restricted set of functions H C {y : RY — {0,1}}
called a hypothesis space.

» H may correspond to the set of all decisions boundaries that can be
representation by a k-NN algorithm.

» H may correspond to the set of all decisions boundaries that can be
representation by a decision tree.

@ We have a training set Dy ain = {(x(i), t(i))},’-\’zl, which we assume to be
independent and identically distributed (i.i.d.) draws from pgata.
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Supervised Learning in practice

@ Pick y by minimizing the loss on the training set
min R[y, Duain] = §*
yeH [y traln] y

@ But we really care about performance of y* in terms of expected loss.

@ So, we measure its average error on an unseen test set
Diest = {(x t)IM iid. pgata to approximate how well it does on the
true data generating distribution,

RIP*, Diest] = R[P*]

@ We say that we want y* to generalize from the training set to the test set.
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Underfitting & Overfitting

@ This is the essence of supervised learning.

» many open questions, depending on the choice of H.
» can study this problem as N — oo or as H changes.

@ Let's study this as 7 changes and return to underfitting and overfitting.

Errors
A

underfitting — <— overfitting

> “size” of H

Source: Francis Bach. Learning Theory from First Principles.
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2D Example

z
X €o,1] u, 0
_—— ’
@ x is uniform on the ellipses. O
@ t € {e, e} depends on te {';’Z

which ellipse x falls in O

L

(o0}
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2D Example

2
X € [o,1] )
J—
[ ] ‘: Ce
Sec 23%°
e o ©®
tefe?
oo’ :0.- ® o
S L ot
(o) (o,0)
Train Set Test Set
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2D Example

a,n

Let's consider a simple
hypothesis class.

‘H = {y with vertical decision
boundaries}.

(o,0)
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2D Example

Best predictor on training set does poorly on both the training set and test set.

M'z%"'&[‘*bs
u,n

t,0

(o,0)

Train Set

Test Set

This is underfitting.
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2D Example

Let’s consider a more complex
hypothesis class.

‘H = {y with linear decision
boundaries}.
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2D Example

Best predictor on training set does well on both the training set and test set.

u,n a,n

(o0 (o0}

Train Set Test Set

This is well fit.
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2D Example

!
.............

Let's consider a very complex

hypothesis class.
H = {y with curved decision s\ j-\

boundaries}. Q\f

o0y ™.
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2D Example

Best predictor on training set does poorly on test set, but well on training set.

D) e u,0

(o0} (o0}

Train Set Test Set

This is overfitting.
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@ We have now talked about two hypothesis classes: k-NN and decision trees.

@ We can understand supervised learning through the complexity of the
hypothesis class.

Errors
A

underfitting — <— overfitting

> “Size” of H

Source: Francis Bach. Learning Theory from First Principles.
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