STA 314: Statistical Methods for Machine Learning I Lecture 2 - Decision Trees

Chris J. Maddison

University of Toronto

arg min & arg max

Given a function f : ℝ^d → ℝ, we may want its minimum point, i.e., the point x^{*} ∈ ℝ^d such that for all x ∈ ℝ^d

$$f(x^{\star}) \leq f(x)$$

• arg min returns the minimum point,

 $x^{\star} = \arg\min_{x \in \mathbb{R}^d} f(x)$

arg max returns the maximum point.

- arg min_{$x \in \mathbb{R}$} $(x a)^2 = a$.
- If there is more than one minimum or maximum point, then the arg min or arg max are sets.

Decision Trees

- Simple but powerful learning algorithm
- Used widely in Kaggle competitions
- Lets us motivate concepts from information theory (entropy, mutual information, etc.)
- Loss functions and the question of generalization
 - We've been dancing around this question, let's formalize it a bit.

• Make predictions by splitting on attributes according to a tree structure.

Decision Trees

• Make predictions by splitting on attributes according to a tree structure.

Decision Trees—Discrete attributes

First, what if attributes are discrete?

Example	Input Attributes								Goal		
r	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
\mathbf{x}_1	Yes	No	No	Yes	Some	\$\$\$	No	Yes	French	0–10	$y_1 = Yes$
\mathbf{x}_2	Yes	No	No	Yes	Full	\$	No	No	Thai	30–60	$y_2 = No$
\mathbf{x}_3	No	Yes	No	No	Some	\$	No	No	Burger	0–10	$y_3 = Yes$
\mathbf{x}_4	Yes	No	Yes	Yes	Full	\$	Yes	No	Thai	10–30	$y_4 = Yes$
\mathbf{x}_5	Yes	No	Yes	No	Full	\$\$\$	No	Yes	French	>60	$y_5 = No$
\mathbf{x}_6	No	Yes	No	Yes	Some	\$\$	Yes	Yes	Italian	0–10	$y_6 = Yes$
\mathbf{x}_7	No	Yes	No	No	None	\$	Yes	No	Burger	0–10	$y_7 = No$
\mathbf{x}_8	No	No	No	Yes	Some	\$\$	Yes	Yes	Thai	0–10	$y_8 = Yes$
\mathbf{x}_9	No	Yes	Yes	No	Full	\$	Yes	No	Burger	>60	$y_9 = No$
\mathbf{x}_{10}	Yes	Yes	Yes	Yes	Full	\$\$\$	No	Yes	Italian	10–30	$y_{10} = No$
\mathbf{x}_{11}	No	No	No	No	None	\$	No	No	Thai	0–10	$y_{11} = No$
\mathbf{x}_{12}	Yes	Yes	Yes	Yes	Full	\$	No	No	Burger	30–60	$y_{12} = Y_{es}$

1.	Alternate: whether there is a suitable alternative restaurant nearby.
2.	Bar: whether the restaurant has a comfortable bar area to wait in.
3.	Fri/Sat: true on Fridays and Saturdays.
4.	Hungry: whether we are hungry.
5.	Patrons: how many people are in the restaurant (values are None, Some, and Full).
6.	Price: the restaurant's price range (\$, \$\$, \$\$\$).
7.	Raining: whether it is raining outside.
8.	Reservation: whether we made a reservation.
9.	Type: the kind of restaurant (French, Italian, Thai or Burger).
10.	WaitEstimate: the wait estimated by the host (0-10 minutes, 10-30, 30-60, >60).

attributes:

Intro ML (UofT)

Decision Trees—Discrete attributes

• Split *discrete attributes* into a partition of possible values.

Decision Trees—Continuous attributes

- For *continuous attributes*, we partition the range by checking whether that attribute is greater than or less than some threshold.
- Decision boundary is made up of axis-aligned planes.

- Internal nodes test a attribute, i.e., a dimension of the representation.
- Branching is determined by the attribute value.
- Children of a node partition the range of the attribute from the parent.
- Leaf nodes are outputs (predictions).

Decision Trees—Classification and Regression

- Each path from root to a leaf defines a region R_m of input space
- Let { $(x^{(m_1)}, t^{(m_1)}), \dots, (x^{(m_k)}, t^{(m_k)})$ } be the training examples that fall into R_m
- Classification tree (we will focus on this):
 - discrete output
 - ▶ leaf value y^m typically set to the most common value in $\{t^{(m_1)}, \ldots, t^{(m_k)}\}$
- Regression tree:
 - continuous output
 - leaf value y^m typically set to the mean value in $\{t^{(m_1)}, \ldots, t^{(m_k)}\}$

- For any training set we can construct a decision tree that has exactly the one leaf for every training point, but it probably won't generalize.
 - Decision trees are universal function approximators.
- But, finding the smallest decision tree that correctly classifies a training set is computationally challenging.
 - If you are interested, check: Hyafil & Rivest'76.
- So, how do we construct a useful decision tree?

• Resort to a greedy heuristic:

- Start with the whole training set and an empty decision tree.
- Pick a attribute and candidate split that would most reduce the loss.
- Split on that attribute and recurse on subpartitions.
- Which loss should we use?
 - Let's see if misclassification rate is a good loss.

• Consider the following data. Let's split on width.

Choosing a Good Split

• Recall: classify by majority.

• A and B have the same misclassification rate, so which is the best split? Vote!

• A feels like a better split, because the left-hand region is very certain about whether the fruit is an orange.

• Can we quantify this?

- How can we quantify uncertainty in prediction for a given leaf node?
 - If all examples in leaf have same class: good, low uncertainty
 - If each class has same amount of examples in leaf: bad, high uncertainty
- Idea: Use counts at leaves to define probability distributions; use a probabilistic notion of uncertainty to decide splits.
- A brief detour through information theory...

- The entropy of a discrete random variable is a number that quantifies the uncertainty inherent in its possible outcomes.
- The mathematical definition of entropy that we give in a few slides may seem arbitrary, but it can be motivated axiomatically.
 - ▶ If you're interested, check: *Information Theory* by Robert Ash.
- To explain entropy, consider flipping two different coins...

Sequence 1: 000100000000000100...? Sequence 2: 010101110100110101...? 16 10 8 versus 2

0

1

0

1

Quantifying Uncertainty

• The entropy of a loaded coin with probability p of heads is given by

$$-p \log_2(p) - (1-p) \log_2(1-p)$$

Notice: the coin whose outcomes are more certain has a lower entropy.

In the extreme case p = 0 or p = 1, we were certain of the outcome before observing. So, we gained no certainty by observing it, i.e., entropy is 0.

Quantifying Uncertainty

- Claude Shannon showed: you cannot store the outcome of a random draw using fewer expected bits than the entropy without losing information.
- So units of entropy are bits; a fair coin flip has 1 bit of entropy.
 - So, entropy can be seen as the expected information content of a random variable.

Intro ML (UofT)

STA314-Lec1

Entropy

• More generally, the entropy of a discrete random variable Y is given by

$$H(Y) = -\sum_{y \in Y} p(y) \log_2 p(y)$$

Interpret $p(y) \log_2 p(y) = 0$ if p(y) = 0.

- "High Entropy":
 - Variable has a uniform like distribution over many outcomes
 - Flat histogram
 - Values sampled from it are less predictable

"Low Entropy"

- Distribution is concentrated on only a few outcomes
- Histogram is concentrated in a few areas
- Values sampled from it are more predictable

- Suppose we observe partial information X about a random variable Y
 - For example, $X = \operatorname{sign}(Y)$.
- We want to work towards a definition of the expected amount of information that will be conveyed about Y by observing X.
 - Or equivalently, the expected reduction in our uncertainty about Y after observing X.

•	Example:	Cloudy	Not Cloudy	
	$X = \{ \text{Raining, Not raining} \},\$	Raining	24/100	1/100
	$Y = \{$ Cloudy, Not cloudy $\}$	Not Raining	25/100	50/100

$$H(X, Y) = -\sum_{x \in X} \sum_{y \in Y} p(x, y) \log_2 p(x, y)$$

= $-\frac{24}{100} \log_2 \frac{24}{100} - \frac{1}{100} \log_2 \frac{1}{100} - \frac{25}{100} \log_2 \frac{25}{100} - \frac{50}{100} \log_2 \frac{50}{100}$
 ≈ 1.56 bits

Specific Conditional Entropy

Example:
 X = {Raining, Not raining},
 Y = {Cloudy, Not cloudy}

	Cloudy	Not Cloudy
Raining	24/100	1/100
Not Raining	25/100	50/100

• What is the entropy of cloudiness Y, given that it is raining?

$$H(Y|X = x) = -\sum_{y \in Y} p(y|x) \log_2 p(y|x)$$

= $-\frac{24}{25} \log_2 \frac{24}{25} - \frac{1}{25} \log_2 \frac{1}{25} \approx 0.24$ bits

• We used: $p(y|x) = \frac{p(x,y)}{p(x)}$, and $p(x) = \sum_{y} p(x,y)$ (sum in a row)

•	Exampl	e:
---	--------	----

 $X = \{$ Raining, Not raining $\}$, $Y = \{$ Cloudy $\}$, Not cloudy $\}$

	Cloudy	Not Cloudy
Raining	24/100	1/100
Not Raining	25/100	50/100

• The expected conditional entropy:

$$H(Y|X) = \sum_{x \in X} p(x)H(Y|X = x)$$
$$= -\sum_{x \in X} \sum_{y \in Y} p(x,y) \log_2 p(y|x)$$

۲	Example:
	$X = \{ \text{Raining, Not raining} \},\$
	$Y = \{$ Cloudy, Not cloudy $\}$

	Cloudy	Not Cloudy
Raining	24/100	1/100
Not Raining	25/100	50/100

• Entropy of cloudiness given the knowledge of whether or not it is raining?

$$H(Y|X) = \sum_{x \in X} p(x)H(Y|X = x)$$

= $\frac{1}{4}H(Y|\text{is raining}) + \frac{3}{4}H(Y|\text{not raining})$
 $\approx 0.75 \text{ bits}$

- Some useful properties:
 - Non-negative: $H(X) \ge 0$
 - Chain rule: H(X, Y) = H(X|Y) + H(Y) = H(Y|X) + H(X)
 - ► Independence: If X and Y independent, then X does not affect our uncertainty about Y: H(Y|X) = H(Y)
 - Knowing Y makes our knowledge of Y certain: H(Y|Y) = 0
 - ▶ Knowing X can only decrease uncertainty about Y: $H(Y|X) \le H(Y)$

	Cloudy	Not Cloudy
Raining	24/100	1/100
Not Raining	25/100	50/100

- How much *more* certain am I about whether it's cloudy if I'm told whether it is raining?
 - ► My uncertainty in Y minus my expected uncertainty that would remain in Y after seeing X.
- This is the information gain IG(Y, X) in Y due to X, or the mutual information of Y and X

$$IG(Y,X) = H(Y) - H(Y|X)$$
(1)

- If X is completely uninformative about Y: IG(Y, X) = 0
- If X is completely informative about Y: IG(Y, X) = H(Y)

Intro ML (UofT)

- Information gain measures the informativeness of a variable, which is exactly what we desire in a decision tree split!
- The information gain of a split: how much information (over the training set) about the class label, $Y = \{red, blue\}$, is gained by knowing that you are considering data on one side of the split, $X = \{left, right\}$.

Revisiting Our Original Example

Let's compute IG(Y, X) for example.

Revisiting Our Original Example

• What is the information gain of split B? Not terribly informative...

- Root entropy of class outcome: $H(Y) = -\frac{2}{7}\log_2(\frac{2}{7}) \frac{5}{7}\log_2(\frac{5}{7}) \approx 0.86$
- Leaf conditional entropy of class outcome: $H(Y|X = left) \approx 0.81$, $H(Y|X = right) \approx 0.92$
- $IG(Y, X) \approx 0.86 (\frac{4}{7} \cdot 0.81 + \frac{3}{7} \cdot 0.92) \approx 0.006$

Revisiting Our Original Example

• What is the information gain of split A? Very informative!

- Root entropy of class outcome: $H(Y) = -\frac{2}{7}\log_2(\frac{2}{7}) \frac{5}{7}\log_2(\frac{5}{7}) \approx 0.86$
- Leaf conditional entropy of class outcome: H(Y|X = left) = 0, $H(Y|X = right) \approx 0.97$
- $IG(Y, X) \approx 0.86 (\frac{2}{7} \cdot 0 + \frac{5}{7} \cdot 0.97) \approx 0.17!!$

Constructing Decision Trees

- At each level, one must choose:
 - 1. Which attribute to split.
 - 2. Possibly where to split it.
- Choose them based on how much information we would gain from the decision! (choose attribute that gives the highest gain)

- Simple, greedy, recursive approach, builds up tree node-by-node
 - 1. pick a attribute to split at a non-terminal node
 - 2. split examples into groups based on attribute value
 - 3. for each group:
 - if no examples return majority from parent
 - else if all examples in same class return class
 - else loop to step 1
- Terminates when all leaves contain only examples in the same class or are empty.

Back to Our Example

Example	Input Attributes								Goal		
Litampie	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
\mathbf{x}_1	Yes	No	No	Yes	Some	\$\$\$	No	Yes	French	0–10	$y_1 = Yes$
\mathbf{x}_2	Yes	No	No	Yes	Full	\$	No	No	Thai	30–60	$y_2 = No$
\mathbf{x}_3	No	Yes	No	No	Some	\$	No	No	Burger	0–10	$y_3 = Yes$
\mathbf{x}_4	Yes	No	Yes	Yes	Full	\$	Yes	No	Thai	10–30	$y_4 = Yes$
\mathbf{x}_5	Yes	No	Yes	No	Full	\$\$\$	No	Yes	French	>60	$y_5 = No$
\mathbf{x}_6	No	Yes	No	Yes	Some	\$\$	Yes	Yes	Italian	0–10	$y_6 = Yes$
\mathbf{x}_7	No	Yes	No	No	None	\$	Yes	No	Burger	0–10	$y_7 = No$
\mathbf{x}_8	No	No	No	Yes	Some	\$\$	Yes	Yes	Thai	0–10	$y_8 = Yes$
\mathbf{x}_9	No	Yes	Yes	No	Full	\$	Yes	No	Burger	>60	$y_9 = No$
\mathbf{x}_{10}	Yes	Yes	Yes	Yes	Full	\$\$\$	No	Yes	Italian	10–30	$y_{10} = No$
\mathbf{x}_{11}	No	No	No	No	None	\$	No	No	Thai	0–10	$y_{11} = No$
\mathbf{x}_{12}	Yes	Yes	Yes	Yes	Full	\$	No	No	Burger	30–60	$y_{12} = Yes$

 1.
 Alternate: whether there is a suitable alternative restaurant nearby.

 2.
 Bar: whether the restaurant has a confortable bar area to wait in.

 3.
 Fri/Sat: true on Fridays and Saturdays.

 4.
 Hungry: whether we are hungry.

 5.
 Patrons: how many people are in the restaurant (values are None, Some, and Full).

 6.
 Price: the restaurant's price range (\$, \$\$, \$\$\$).

 7.
 Raining: whether it is raining outside.

 8.
 Reservation: whether we made a reservation.

 9.
 Type: the kind of restaurant (Irain, Thai or Burger).

 10.
 WaitEstimate: the wait estimated by the host (0-10 minutes, 10-30, 30-60, >60).

attributes:

[from: Russell & Norvig]

attribute Selection

$$IG(Type, Y) = 1 - \left[\frac{2}{12}H(Y|Fr.) + \frac{2}{12}H(Y|It.) + \frac{4}{12}H(Y|Thai) + \frac{4}{12}H(Y|Bur.)\right]$$

= 0
$$IG(Patron, Y) = 1 - \left[\frac{2}{12}H(0, 1) + \frac{4}{12}H(1, 0) + \frac{6}{12}H(\frac{2}{6}, \frac{4}{6})\right] \approx 0.541$$

Intro ML (UofT)
STA314-Lec1

Which Tree is Better? Vote!

- Not too small: need to handle important but possibly subtle distinctions in data
- Not too big:
 - Computational efficiency (avoid redundant, spurious attributes)
 - Avoid over-fitting training examples
 - Human interpretability
- "Occam's Razor": find the simplest hypothesis that fits the observations
 - Useful principle, but hard to formalize (how to define simplicity?)
 - See Domingos, 1999, "The role of Occam's razor in knowledge discovery"
- We desire small trees with informative nodes near the root

Problems:

- You have exponentially less data at lower levels
- Too big of a tree can overfit the data
- Greedy algorithms don't necessarily yield the global optimum
- Handling continuous attributes
 - Split based on a threshold, chosen to maximize information gain
- Decision trees can also be used for regression on real-valued outputs. Choose splits to minimize squared error, rather than maximize information gain.

Comparison to *k*-NN

Advantages of decision trees over k-NN

- Good when there are lots of attributes, but only a few are important
- Good with discrete attributes
- Easily deals with missing values (just treat as another value)
- Robust to scale of inputs
- Fast at test time
- More interpretable

Advantages of k-NN over decision trees

- Few hyperparameters
- Able to handle attributes/features that interact in complex ways (e.g. pixels)
- Can incorporate interesting distance measures (e.g. shape contexts)
- Typically make better predictions in practice
 Intro ML (UofT) STA314-Lec1

- Today, we deepen our understanding of generalization.
 - This will help us understand how to combine classifiers to get better performance (ensembling methods).

• Recall that we said that overly simple learning algorithms underfit the data, and overly complex ones overfit.

• Today we will be a bit more precise about what this means and what the goal of supervised learning is in general.

Loss Functions

- Given an input-label pair (x, t), a loss function L(y, t) defines how bad it is if the algorithm predicts y.
- Example: 0-1 loss for classification

$$L_{0-1}(y,t) = egin{cases} 0 & ext{if } y = t \ 1 & ext{if } y
eq t \end{cases}$$

- Average 0-1 loss gives the error rate.
- Example: squared error loss for regression

$$L_{\rm SE}(y,t)=\frac{1}{2}(y-t)^2$$

- The average squared error loss is called mean squared error (MSE).
- Let's focus on 0-1 loss with inputs $\mathbf{x} \in \mathbb{R}^d$ and labels $t \in \{0, 1\}$.

Intro ML (UofT)

- Both k-NN and decision trees make predictions for all queries x.
- We can think of the predictions of our learning algorithm forming a mapping y : ℝ^d → {0, 1} that we call a predictor.
- For a random data point drawn (x, t) ~ p_{data} from some data generating distribution, we can measure the expected error for the predictor y:

$$\mathcal{R}[y] := \sum_{t \in \{0,1\}} \int L_{0-1}(y(\mathbf{x}), t) p_{\text{data}}(\mathbf{x}, t) \; d\mathbf{x}$$

• For a finite data set $\mathcal{D} = \{(\mathbf{x}^{(i)}, t^{(i)})\}_{i=1}^N$, we can measure the average error:

$$\hat{\mathcal{R}}[y,\mathcal{D}] := rac{1}{N} \sum_{i=1}^{N} L_{0-1}(y(\mathbf{x}^{(i)}),t^{(i)})$$

• Find a predictor y that achieves the lowest expected loss.

$$y^* = \arg\min_{y:\mathbb{R}^d o \{0,1\}} \mathcal{R}[y]$$

If we're performing regression, we will optimize over y : ℝ^d → ℝ.
If we're performing classification, we will optimize over y : ℝ^d → {1,..., C}.

 $x \sim \text{uniform}[0, 1]$ $t(x) = \begin{cases} 0 & \text{if } x < 0.5\\ 1 & \text{if } x \ge 0.5 \end{cases}$

$$x \sim \text{uniform}[0, 1]$$
$$t(x) = \begin{cases} 0 & \text{if } x < 0.5\\ 1 & \text{if } x \ge 0.5 \end{cases}$$

What is the expected error?

$$y(x) = \begin{cases} 0 & \text{if } x < 0.75 \\ 1 & \text{if } x \ge 0.75 \end{cases}$$
(2)

n

$$\begin{aligned} x &\sim \mathrm{uniform}[0,1]\\ t(x) &= \begin{cases} 0 & \mathrm{if} \; x < 0.5\\ 1 & \mathrm{if} \; x \geq 0.5 \end{cases}\\ y^{\star}(x) &= t(x) \end{aligned}$$

Opt. predictor is $y^* = t$.

- y is taken from a more restricted set of functions H ⊂ {y : ℝ^d → {0,1}} called a hypothesis space.
 - ➤ H may correspond to the set of all decisions boundaries that can be representation by a k-NN algorithm.
 - ► *H* may correspond to the set of all decisions boundaries that can be representation by a decision tree.
- We have a training set \$\mathcal{D}_{train} = \{(x^{(i)}, t^{(i)})\}_{i=1}^{N}\$, which we assume to be independent and identically distributed (i.i.d.) draws from \$p_{data}\$.

• Pick y by minimizing the loss on the training set

$$\min_{y\in\mathcal{H}}\hat{\mathcal{R}}[y,\mathcal{D}_{\mathrm{train}}]\to\hat{y}^{\star}$$

- But we really care about performance of \hat{y}^* in terms of expected loss.
- So, we measure its average error on an unseen test set $\mathcal{D}_{\text{test}} = \{(\mathbf{x}^{(i)}, t^{(i)})\}_{i=1}^{M} \text{ i.i.d. } p_{\text{data}} \text{ to approximate how well it does on the true data generating distribution,}$

$$\hat{\mathcal{R}}[\hat{\mathbf{y}}^{\star}, \mathcal{D}_{\text{test}}] \approx \mathcal{R}[\hat{\mathbf{y}}^{\star}]$$

• We say that we want \hat{y}^* to generalize from the training set to the test set.

Underfitting & Overfitting

- This is the essence of supervised learning.
 - many open questions, depending on the choice of \mathcal{H} .
 - can study this problem as $N \to \infty$ or as \mathcal{H} changes.
- Let's study this as \mathcal{H} changes and return to underfitting and overfitting.

Source: Francis Bach. Learning Theory from First Principles.

Intro ML (UofT)

STA314-Lec1

Let's consider a simple hypothesis class.

 $\mathcal{H} = \{y \text{ with vertical decision boundaries}\}.$

2D Example

Best predictor on training set does poorly on both the training set and test set.

This is underfitting.

Let's consider a more complex hypothesis class.

 $\mathcal{H} = \{y \text{ with linear decision boundaries}\}.$

Best predictor on training set does well on both the training set and test set.

Train Set

Test Set

This is well fit.

Let's consider a very complex hypothesis class.

 $\mathcal{H} = \{y \text{ with curved decision boundaries}\}.$

Best predictor on training set does poorly on test set, but well on training set.

Test Set

This is overfitting.

Summary

- We have now talked about two hypothesis classes: k-NN and decision trees.
- We can understand supervised learning through the complexity of the hypothesis class.

Intro ML (UofT)

STA314-Lec1

Source: Francis Bach. Learning Theory from First Principles.