
STA 314: Statistical Methods for Machine Learning I
Lecture 2 - Decision Trees

Chris J. Maddison

University of Toronto

Intro ML (UofT) STA314-Lec1 1 / 60

arg min & arg max

Given a function f : Rd → R, we may want
its minimum point, i.e., the point x? ∈ Rd

such that for all x ∈ Rd

f (x?) ≤ f (x)

arg min returns the minimum point,

x? = arg min
x∈Rd

f (x)

arg max returns the maximum point.

arg minx∈R (x − a)2 = a.

If there is more than one minimum or
maximum point, then the arg min or
arg max are sets.

E l th Y
t 0

it at

Ht

Intro ML (UofT) STA314-Lec1 2 / 60

Today

Decision Trees

I Simple but powerful learning algorithm
I Used widely in Kaggle competitions
I Lets us motivate concepts from information theory (entropy, mutual

information, etc.)

Loss functions and the question of generalization

I We’ve been dancing around this question, let’s formalize it a bit.

Intro ML (UofT) STA314-Lec1 3 / 60

Decision Trees

Make predictions by splitting on attributes according to a tree structure.

Yes No

Yes No Yes No

Intro ML (UofT) STA314-Lec1 4 / 60

Decision Trees

Make predictions by splitting on attributes according to a tree structure.

Intro ML (UofT) STA314-Lec1 5 / 60

Decision Trees—Discrete attributes

First, what if attributes are discrete?

attributes:

Intro ML (UofT) STA314-Lec1 6 / 60

Decision Trees—Discrete attributes

Split discrete attributes into a partition of possible values.

Intro ML (UofT) STA314-Lec1 7 / 60

Decision Trees—Continuous attributes

For continuous attributes, we partition the range by checking whether that
attribute is greater than or less than some threshold.

Decision boundary is made up of axis-aligned planes.

Intro ML (UofT) STA314-Lec1 8 / 60

Decision Trees

Yes No

Yes No Yes No

Internal nodes test a attribute, i.e., a dimension of the representation.

Branching is determined by the attribute value.

Children of a node partition the range of the attribute from the parent.

Leaf nodes are outputs (predictions).

Intro ML (UofT) STA314-Lec1 9 / 60

Decision Trees—Classification and Regression

Each path from root to a leaf defines a region Rm

of input space

Let {(x (m1), t(m1)), . . . , (x (mk), t(mk))} be the
training examples that fall into Rm

Classification tree (we will focus on this):

I discrete output

I leaf value ym typically set to the most common value in
{t(m1), . . . , t(mk)}

Regression tree:

I continuous output

I leaf value ym typically set to the mean value in {t(m1), . . . , t(mk)}

Intro ML (UofT) STA314-Lec1 10 / 60

Learning Decision Trees

For any training set we can construct a decision tree that has exactly the
one leaf for every training point, but it probably won’t generalize.

I Decision trees are universal function approximators.

But, finding the smallest decision tree that correctly classifies a training set
is computationally challenging.

I If you are interested, check: Hyafil & Rivest’76.

So, how do we construct a useful decision tree?

Intro ML (UofT) STA314-Lec1 11 / 60

Learning Decision Trees

Resort to a greedy heuristic:

I Start with the whole training set and an empty decision tree.
I Pick a attribute and candidate split that would most reduce the loss.
I Split on that attribute and recurse on subpartitions.

Which loss should we use?

I Let’s see if misclassification rate is a good loss.

Intro ML (UofT) STA314-Lec1 12 / 60

Choosing a Good Split

Consider the following data. Let’s split on width.

Intro ML (UofT) STA314-Lec1 13 / 60

Choosing a Good Split

Recall: classify by majority.

A and B have the same misclassification rate, so which is the best split?
Vote!

Intro ML (UofT) STA314-Lec1 14 / 60

Choosing a Good Split

A feels like a better split, because the left-hand region is very certain about
whether the fruit is an orange.

Can we quantify this?

Intro ML (UofT) STA314-Lec1 15 / 60

Choosing a Good Split

How can we quantify uncertainty in prediction for a given leaf node?

I If all examples in leaf have same class: good, low uncertainty
I If each class has same amount of examples in leaf: bad, high

uncertainty

Idea: Use counts at leaves to define probability distributions; use a
probabilistic notion of uncertainty to decide splits.

A brief detour through information theory...

Intro ML (UofT) STA314-Lec1 16 / 60

Quantifying Uncertainty

The entropy of a discrete random variable is a number that quantifies the
uncertainty inherent in its possible outcomes.

The mathematical definition of entropy that we give in a few slides may
seem arbitrary, but it can be motivated axiomatically.

I If you’re interested, check: Information Theory by Robert Ash.

To explain entropy, consider flipping two different coins...

Intro ML (UofT) STA314-Lec1 17 / 60

We Flip Two Different Coins

Sequence 1:
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 ... ?	

Sequence 2:
0 1 0 1 0 1 1 1 0 1 0 0 1 1 0 1 0 1 ... ?	

16

2
8 10

0	 1	

versus

0	 1	

Intro ML (UofT) STA314-Lec1 18 / 60

Quantifying Uncertainty

The entropy of a loaded coin with probability p of heads is given by

−p log2(p)− (1− p) log2(1− p)

0	 1	

8/9

1/9

−8

9
log2

8

9
− 1

9
log2

1

9
≈ 1

2

0	 1	

4/9 5/9

−4

9
log2

4

9
− 5

9
log2

5

9
≈ 0.99

Notice: the coin whose outcomes are more certain has a lower entropy.

In the extreme case p = 0 or p = 1, we were certain of the outcome before
observing. So, we gained no certainty by observing it, i.e., entropy is 0.

Intro ML (UofT) STA314-Lec1 19 / 60

Quantifying Uncertainty

0.2 0.4 0.6 0.8 1.0
probability p of heads

0.2

0.4

0.6

0.8

1.0

entropy

Claude Shannon showed: you cannot store the outcome of a random draw
using fewer expected bits than the entropy without losing information.

So units of entropy are bits; a fair coin flip has 1 bit of entropy.

I So, entropy can be seen as the expected information content of a
random variable.

Intro ML (UofT) STA314-Lec1 20 / 60

Entropy

More generally, the entropy of a discrete random variable Y is given by

H(Y) = −
∑

y∈Y

p(y) log2 p(y)

Interpret p(y) log2 p(y) = 0 if p(y) = 0.

“High Entropy”:
I Variable has a uniform like distribution over many outcomes
I Flat histogram
I Values sampled from it are less predictable

“Low Entropy”
I Distribution is concentrated on only a few outcomes
I Histogram is concentrated in a few areas
I Values sampled from it are more predictable

[Slide credit: Vibhav Gogate]Intro ML (UofT) STA314-Lec1 21 / 60

Entropy

Suppose we observe partial information X about a random variable Y

I For example, X = sign(Y).

We want to work towards a definition of the expected amount of information
that will be conveyed about Y by observing X .

I Or equivalently, the expected reduction in our uncertainty about Y
after observing X .

Intro ML (UofT) STA314-Lec1 22 / 60

Entropy of a Joint Distribution

Example:
X = {Raining, Not raining},
Y = {Cloudy, Not cloudy}

Cloudy' Not'Cloudy'

Raining' 24/100' 1/100'

Not'Raining' 25/100' 50/100'

H(X ,Y) = −
∑

x∈X

∑

y∈Y

p(x , y) log2 p(x , y)

= − 24

100
log2

24

100
− 1

100
log2

1

100
− 25

100
log2

25

100
− 50

100
log2

50

100

≈ 1.56bits

Intro ML (UofT) STA314-Lec1 23 / 60

Specific Conditional Entropy

Example:
X = {Raining, Not raining},
Y = {Cloudy, Not cloudy}

Cloudy' Not'Cloudy'

Raining' 24/100' 1/100'

Not'Raining' 25/100' 50/100'

What is the entropy of cloudiness Y , given that it is raining?

H(Y |X = x) = −
∑

y∈Y

p(y |x) log2 p(y |x)

= −24

25
log2

24

25
− 1

25
log2

1

25
≈ 0.24bits

We used: p(y |x) = p(x,y)
p(x) , and p(x) =

∑
y p(x , y) (sum in a row)

Intro ML (UofT) STA314-Lec1 24 / 60

Conditional Entropy

Example:
X = {Raining, Not raining},
Y = {Cloudy, Not cloudy}

Cloudy' Not'Cloudy'

Raining' 24/100' 1/100'

Not'Raining' 25/100' 50/100'

The expected conditional entropy:

H(Y |X) =
∑

x∈X

p(x)H(Y |X = x)

= −
∑

x∈X

∑

y∈Y

p(x , y) log2 p(y |x)

Intro ML (UofT) STA314-Lec1 25 / 60

Conditional Entropy

Example:
X = {Raining, Not raining},
Y = {Cloudy, Not cloudy}

Cloudy' Not'Cloudy'

Raining' 24/100' 1/100'

Not'Raining' 25/100' 50/100'

Entropy of cloudiness given the knowledge of whether or not it is raining?

H(Y |X) =
∑

x∈X

p(x)H(Y |X = x)

=
1

4
H(Y |is raining) +

3

4
H(Y |not raining)

≈ 0.75 bits

Intro ML (UofT) STA314-Lec1 26 / 60

Conditional Entropy

Some useful properties:

I Non-negative: H(X) ≥ 0
I Chain rule: H(X ,Y) = H(X |Y) + H(Y) = H(Y |X) + H(X)
I Independence: If X and Y independent, then X does not affect our

uncertainty about Y : H(Y |X) = H(Y)
I Knowing Y makes our knowledge of Y certain: H(Y |Y) = 0
I Knowing X can only decrease uncertainty about Y : H(Y |X) ≤ H(Y)

Intro ML (UofT) STA314-Lec1 27 / 60

Information Gain

Cloudy' Not'Cloudy'

Raining' 24/100' 1/100'

Not'Raining' 25/100' 50/100'

How much more certain am I about whether it’s cloudy if I’m told whether it
is raining?

I My uncertainty in Y minus my expected uncertainty that would remain
in Y after seeing X .

This is the information gain IG (Y ,X) in Y due to X , or the mutual
information of Y and X

IG (Y ,X) = H(Y)− H(Y |X) (1)

If X is completely uninformative about Y : IG (Y ,X) = 0

If X is completely informative about Y : IG (Y ,X) = H(Y)

Intro ML (UofT) STA314-Lec1 28 / 60

Revisiting Our Original Example

Information gain measures the informativeness of a variable, which is exactly
what we desire in a decision tree split!

The information gain of a split: how much information (over the training
set) about the class label, Y = {red , blue}, is gained by knowing that you
are considering data on one side of the split, X = {left, right}.

Intro ML (UofT) STA314-Lec1 29 / 60

Revisiting Our Original Example

Let’s compute IG (Y ,X) for example.

Intro ML (UofT) STA314-Lec1 30 / 60

Revisiting Our Original Example

What is the information gain of split B? Not terribly informative...

Root entropy of class outcome: H(Y) = − 2
7 log2(2

7)− 5
7 log2(5

7) ≈ 0.86

Leaf conditional entropy of class outcome: H(Y |X = left) ≈ 0.81,
H(Y |X = right) ≈ 0.92

IG (Y ,X) ≈ 0.86− (4
7 · 0.81 + 3

7 · 0.92) ≈ 0.006

Intro ML (UofT) STA314-Lec1 31 / 60

Revisiting Our Original Example

What is the information gain of split A? Very informative!

Root entropy of class outcome: H(Y) = − 2
7 log2(2

7)− 5
7 log2(5

7) ≈ 0.86

Leaf conditional entropy of class outcome: H(Y |X = left) = 0,
H(Y |X = right) ≈ 0.97

IG (Y ,X) ≈ 0.86− (2
7 · 0 + 5

7 · 0.97) ≈ 0.17!!

Intro ML (UofT) STA314-Lec1 32 / 60

Constructing Decision Trees

Yes No

Yes No Yes No

At each level, one must choose:

1. Which attribute to split.
2. Possibly where to split it.

Choose them based on how much information we would gain from the
decision! (choose attribute that gives the highest gain)

Intro ML (UofT) STA314-Lec1 33 / 60

Decision Tree Construction Algorithm

Simple, greedy, recursive approach, builds up tree node-by-node

1. pick a attribute to split at a non-terminal node
2. split examples into groups based on attribute value
3. for each group:

I if no examples – return majority from parent
I else if all examples in same class – return class
I else loop to step 1

Terminates when all leaves contain only examples in the same class or are
empty.

Intro ML (UofT) STA314-Lec1 34 / 60

Back to Our Example

attributes:
[from: Russell & Norvig]

Intro ML (UofT) STA314-Lec1 35 / 60

attribute Selection

IG(Type,Y) = 1−
[
2

12
H(Y |Fr.) + 2

12
H(Y |It.) + 4

12
H(Y |Thai) +

4

12
H(Y |Bur.)

]
= 0

IG(Patron,Y) = 1−
[
2

12
H(0, 1) +

4

12
H(1, 0) +

6

12
H(

2

6
,
4

6
)

]
≈ 0.541

Intro ML (UofT) STA314-Lec1 36 / 60

Which Tree is Better? Vote!

Intro ML (UofT) STA314-Lec1 37 / 60

What Makes a Good Tree?

Not too small: need to handle important but possibly subtle distinctions in
data

Not too big:

I Computational efficiency (avoid redundant, spurious attributes)
I Avoid over-fitting training examples
I Human interpretability

“Occam’s Razor”: find the simplest hypothesis that fits the observations

I Useful principle, but hard to formalize (how to define simplicity?)
I See Domingos, 1999, “The role of Occam’s razor in knowledge

discovery”

We desire small trees with informative nodes near the root

Intro ML (UofT) STA314-Lec1 38 / 60

Decision Tree Miscellany

Problems:

I You have exponentially less data at lower levels
I Too big of a tree can overfit the data
I Greedy algorithms don’t necessarily yield the global optimum

Handling continuous attributes

I Split based on a threshold, chosen to maximize information gain

Decision trees can also be used for regression on real-valued outputs. Choose
splits to minimize squared error, rather than maximize information gain.

Intro ML (UofT) STA314-Lec1 39 / 60

Comparison to k-NN

Advantages of decision trees over k-NN

Good when there are lots of attributes, but only a few are important

Good with discrete attributes

Easily deals with missing values (just treat as another value)

Robust to scale of inputs

Fast at test time

More interpretable

Advantages of k-NN over decision trees

Few hyperparameters

Able to handle attributes/features that interact in complex ways (e.g. pixels)

Can incorporate interesting distance measures (e.g. shape contexts)

Typically make better predictions in practice
Intro ML (UofT) STA314-Lec1 40 / 60

Today, we deepen our understanding of generalization.
I This will help us understand how to combine classifiers to get better

performance (ensembling methods).

Intro ML (UofT) STA314-Lec1 41 / 60

Learning & Generalization

Recall that we said that overly simple learning algorithms underfit the data,
and overly complex ones overfit.

Today we will be a bit more precise about what this means and what the
goal of supervised learning is in general.

Intro ML (UofT) STA314-Lec1 42 / 60

Loss Functions

Given an input-label pair (x , t), a loss function L(y , t) defines how bad it is
if the algorithm predicts y .

Example: 0-1 loss for classification

L0−1(y , t) =

{
0 if y = t

1 if y 6= t

I Average 0-1 loss gives the error rate.

Example: squared error loss for regression

LSE(y , t) =
1

2
(y − t)2

I The average squared error loss is called mean squared error (MSE).

Let’s focus on 0-1 loss with inputs x ∈ Rd and labels t ∈ {0, 1}.

Intro ML (UofT) STA314-Lec1 43 / 60

Loss Functions

Both k-NN and decision trees make predictions for all queries x.

We can think of the predictions of our learning algorithm forming a mapping
y : Rd → {0, 1} that we call a predictor.

For a random data point drawn (x, t) ∼ pdata from some data generating
distribution, we can measure the expected error for the predictor y :

R[y] :=
∑

t∈{0,1}

∫
L0−1(y(x), t)pdata(x, t) dx

For a finite data set D = {(x(i), t(i))}Ni=1, we can measure the average error:

R̂[y ,D] :=
1

N

N∑

i=1

L0−1(y(x(i)), t(i))

Intro ML (UofT) STA314-Lec1 44 / 60

Goal of Supervised Learning

Find a predictor y that achieves the lowest expected loss.

y∗ = arg min
y :Rd→{0,1}

R[y]

I If we’re performing regression, we will optimize over y : Rd → R.
I If we’re performing classification, we will optimize over

y : Rd → {1, . . . ,C}.

Intro ML (UofT) STA314-Lec1 45 / 60

Example

x ∼ uniform[0, 1]

t(x) =

{
0 if x < 0.5

1 if x ≥ 0.5

E l th Y
t 0

it at

Ht

Intro ML (UofT) STA314-Lec1 46 / 60

Example

x ∼ uniform[0, 1]

t(x) =

{
0 if x < 0.5

1 if x ≥ 0.5

What is the expected error?

y(x) =

{
0 if x < 0.75

1 if x ≥ 0.75
(2)

InistakeY
t

t
it

0,0

Intro ML (UofT) STA314-Lec1 47 / 60

Example

x ∼ uniform[0, 1]

t(x) =

{
0 if x < 0.5

1 if x ≥ 0.5

y?(x) = t(x)

Opt. predictor is y? = t.

E l th Y
t 0

it at

Ht

Intro ML (UofT) STA314-Lec1 48 / 60

Supervised Learning in practice

y is taken from a more restricted set of functions H ⊂ {y : Rd → {0, 1}}
called a hypothesis space.

I H may correspond to the set of all decisions boundaries that can be
representation by a k-NN algorithm.

I H may correspond to the set of all decisions boundaries that can be
representation by a decision tree.

We have a training set Dtrain = {(x(i), t(i))}Ni=1, which we assume to be
independent and identically distributed (i.i.d.) draws from pdata.

Intro ML (UofT) STA314-Lec1 49 / 60

Supervised Learning in practice

Pick y by minimizing the loss on the training set

min
y∈H
R̂[y ,Dtrain]→ ŷ?

But we really care about performance of ŷ? in terms of expected loss.

So, we measure its average error on an unseen test set
Dtest = {(x(i), t(i))}Mi=1 i.i.d. pdata to approximate how well it does on the
true data generating distribution,

R̂[ŷ?,Dtest] ≈ R[ŷ?]

We say that we want ŷ? to generalize from the training set to the test set.

Intro ML (UofT) STA314-Lec1 50 / 60

Underfitting & Overfitting

This is the essence of supervised learning.
I many open questions, depending on the choice of H.
I can study this problem as N →∞ or as H changes.

Let’s study this as H changes and return to underfitting and overfitting.26 CHAPTER 2. INTRODUCTION TO SUPERVISED LEARNING

“size” of Θ

Errors

test

train

overfittingunderfitting

• Typically, we will see in later chapters that the estimation error is often decomposed
as, for θ′ a minimizer on Θ of the expected risk R(fθ′):

{
R(fθ̂)−R(fθ′)

}
=

{
R(fθ̂)− R̂(fθ̂)

}
+
{

R̂(fθ̂)− R̂(fθ′)
}

+
{

R̂(fθ′)− R(fθ′)
}

! 2 sup
θ∈Θ

∣∣∣R̂(fθ)−R(fθ)
∣∣∣ + empirical optimization error.

The uniform deviation grows with the “size” of Θ, and usually decays with n. See
more details in Chapter 4.

Capacity control. In order to avoid overfitting, we need to make sure that the set of
allowed functions is not too large, by typically reducing the number of parameters, or by
restricting the norm of predictors (thus by reducing the “size” of Θ): this typically leads to
constrained optimization, and allows for risk decompositions as done above.

Capacity control can also be done by regularization, that is, by minimizing

R̂(fθ) + λΩ(θ) =
1

n

n∑

i=1

#(yi, fθ(xi)) + λΩ(θ),

where Ω(θ) controls the complexity of fθ. The main example is ridge regression:

min
θ∈Rd

1

n

n∑

i=1

(yi − θ#ϕ(xi))
2 + λ‖θ‖22.

This is often easier for optimization, but harder to analyze (see Chapter 4 and Chapter 5).

#! There is a difference between parameters (e.g., θ) learned on the training data and
hyperparameters (e.g., λ) learned on the validation data.

How can we actually pick our predictor y(x)?

y is taken from a more restricted set of functions H ⇢ {y : Rd ! {0, 1}}
called a hypothesis space.

I H may correspond to the set of all decisions boundaries that can be
representation by a k-NN algorithm.

I H may correspond to the set of all decisions boundaries that can be
representation by a decision tree.

We have a training set Dtrain = {(x(i), t(i))}N
i=1, which we assume to be

independent and identically distributed (i.i.d.) draws from pdata.

Intro ML (UofT) STA314-Lec1 47 / 50

Source: Francis Bach. Learning Theory from First Principles.

Intro ML (UofT) STA314-Lec1 51 / 60

2D Example

x is uniform on the ellipses.

t ∈ {•, •} depends on
which ellipse x falls in

if

te

0,0

X E O I
1,1

D te

0,0

X E O I
1,1

i

te

0,0

Intro ML (UofT) STA314-Lec1 52 / 60

2D Example
if

te

0,0

X E O I
1,1

D te

0,0

X E O I
1,1

i

te

0,0

Train Set

if

te

0,0

X E O I
1,1

D te

0,0

X E O I
1,1

i

te

0,0

Test Set

Intro ML (UofT) STA314-Lec1 53 / 60

2D Example

Let’s consider a simple
hypothesis class.

H = {y with vertical decision
boundaries}.

mistakes

mistakes

0,0

0,0

Intro ML (UofT) STA314-Lec1 54 / 60

2D Example

Best predictor on training set does poorly on both the training set and test set.

mistakes

mistakes

0,0

0,0

Train Set

mistakes

mistakes

0,0

0,0

Test Set

This is underfitting.

Intro ML (UofT) STA314-Lec1 55 / 60

2D Example

Let’s consider a more complex
hypothesis class.

H = {y with linear decision
boundaries}.

4 D

I
0,0

i

I
g

D

0,0

Intro ML (UofT) STA314-Lec1 56 / 60

2D Example

Best predictor on training set does well on both the training set and test set.

4 D

I
0,0

i

I
g

D

0,0

Train Set

4 D

I
0,0

i

I
g

D

0,0

Test Set

This is well fit.

Intro ML (UofT) STA314-Lec1 57 / 60

2D Example

Let’s consider a very complex
hypothesis class.

H = {y with curved decision
boundaries}.

can

0,0

Intro ML (UofT) STA314-Lec1 58 / 60

2D Example

Best predictor on training set does poorly on test set, but well on training set.
can

0,0

Train Set

can

0,0

Test Set

This is overfitting.

Intro ML (UofT) STA314-Lec1 59 / 60

Summary

We have now talked about two hypothesis classes: k-NN and decision trees.

We can understand supervised learning through the complexity of the
hypothesis class.26 CHAPTER 2. INTRODUCTION TO SUPERVISED LEARNING

“size” of Θ

Errors

test

train

overfittingunderfitting

• Typically, we will see in later chapters that the estimation error is often decomposed
as, for θ′ a minimizer on Θ of the expected risk R(fθ′):

{
R(fθ̂)−R(fθ′)

}
=

{
R(fθ̂)− R̂(fθ̂)

}
+
{

R̂(fθ̂)− R̂(fθ′)
}

+
{

R̂(fθ′)− R(fθ′)
}

! 2 sup
θ∈Θ

∣∣∣R̂(fθ)−R(fθ)
∣∣∣ + empirical optimization error.

The uniform deviation grows with the “size” of Θ, and usually decays with n. See
more details in Chapter 4.

Capacity control. In order to avoid overfitting, we need to make sure that the set of
allowed functions is not too large, by typically reducing the number of parameters, or by
restricting the norm of predictors (thus by reducing the “size” of Θ): this typically leads to
constrained optimization, and allows for risk decompositions as done above.

Capacity control can also be done by regularization, that is, by minimizing

R̂(fθ) + λΩ(θ) =
1

n

n∑

i=1

#(yi, fθ(xi)) + λΩ(θ),

where Ω(θ) controls the complexity of fθ. The main example is ridge regression:

min
θ∈Rd

1

n

n∑

i=1

(yi − θ#ϕ(xi))
2 + λ‖θ‖22.

This is often easier for optimization, but harder to analyze (see Chapter 4 and Chapter 5).

#! There is a difference between parameters (e.g., θ) learned on the training data and
hyperparameters (e.g., λ) learned on the validation data.

How can we actually pick our predictor y(x)?

y is taken from a more restricted set of functions H ⇢ {y : Rd ! {0, 1}}
called a hypothesis space.

I H may correspond to the set of all decisions boundaries that can be
representation by a k-NN algorithm.

I H may correspond to the set of all decisions boundaries that can be
representation by a decision tree.

We have a training set Dtrain = {(x(i), t(i))}N
i=1, which we assume to be

independent and identically distributed (i.i.d.) draws from pdata.

Intro ML (UofT) STA314-Lec1 47 / 50

Source: Francis Bach. Learning Theory from First Principles.

Intro ML (UofT) STA314-Lec1 60 / 60

	Introduction

