STA314 Fall 2021 Homework 3

Homework 3

Deadline: Monday, Nov. 15, at 11:59pm.

Submission: You need to submit a single PDF file titled hw3_writeup.pdf through Quercus
with your answers to Questions 1, 2, and 3, and outputs requested for Question 1, 2 and 3 (e.g.
screenshots of your code). You can produce the file however you like (e.g. WTEX, Microsoft Word,
scanner), as long as it is readable.

Neatness Point: One point will be given for neatness. You will receive this point as long as we
don’t have a hard time reading your solutions or understanding the structure of your code.

Late Submission: 10% of the total possible marks will be deducted for each day late, up to a
maximum of 3 days. After that, no submissions will be accepted.

Computing: To install Python and required libraries, see the instructions on the course web page.

Homeworks are to be done alone or in pairs. See the Course Information handout® for detailed
policies.

1. [15 pts| Logistic Regression. In this problem, you will implement logistic regression by
completing the provided code in logistic_regression.py and experiment with the com-
pleted code.

Throughout this homework, you will be working with a subset of hand-written digits, 2’s and
3’s, represented as 16 x 16 pixel arrays. We show the example digits in Figure 1. The pixel
intensities are between 0 and 1, and were read into the vectors in a raster-scan manner. You
are given two training sets: digits_train which contains 300 examples of each class and
digits_train_small which contains 2 examples of each class. You can access these training
sets by using functions load_train and load_train_small in utils.py. You are also given
a validation set that you should use for model selection and a test set that you should use for
reporting the final performance. Optionally, the code for visualizing the dataset is located at
utils.py.

Carefully read the provided code in logistic_regression.py. You should understand the
code instead of using it as a black box. You need to implement the penalized logistic regression
model, where the cost is defined as:

1 & A
_ i) 4 2
= NZECE(Q() 1@) + 5”“’”

) A A
—Z(t1ogy — (1 —19) log(1 — y)) + S w1,

where NV is the total number of data points and w is the weight of logistic regression model.
Note that you should only penalize the weights and not the bias term.

(a) [4 pts] Implement the functions logistic_predict, evaluate, and logistic located
at logistic_regression.py. While implementing the functions, remember to vectorize

1https ://www.cs.toronto.edu/~cmaddis/courses/sta314_f21/sta314_£21_syllabus.pdf

https://www.cs.toronto.edu/~cmaddis/courses/sta314_f21/sta314_f21_syllabus.pdf

STA314 Fall 2021 Homework 3

22k
TNINALH >

Figure 1: Example digits. Top and bottom show digits of 2s and 3s, respectively.

the operations; you should not have have any for-loops in these functions. Include
your code in the report.

[5 pts] Complete the missing parts in a function run_logistic_regression. The func-
tion should train the logistic regression model using gradient descent on digits_train
training set. You may use the implemented functions from part (a). Experiment with
the hyperparameters for the learning rate and the number of iterations (if you have a
smaller learning rate, your model will take longer to converge). You will fix your /o
weight regularization to 0 for this part. If you get NaN/Inf errors, you may need to
reduce your learning rate. Include your code in the report.

Moreover, in the write-up, report which hyperparameter settings you found worked the
best and the final cross-entropy and classification accuracy on the training, validation,
and test sets. Note that you should only compute the test error once you have selected
your best hyperparameter settings using the validation set.

[2 pts] Examine how the cross-entropy changes as the training progresses. Generate and
report a plot that shows the training curve (iteration counter on x-axis and cross-entropy
on y-axis). The plot should have two curves: one for the training set and one for the
validation set. Run your code several times and observe if the results change. If they
do, how would you choose the best hyperparameter settings?

[2 pts] Using the same hyperparameter settings (for learning rate and number of it-
eration) that worked well in part (b), train the logistic regression model with different
values of weight regularization A € {0.,0.001,0.01,0.1,1.0}. Generate and report a plot
that shows how the validation cross-entropy changes as you train with different weight
regularization .

Repeat the same experiment and report an additional plot with digits_train_small
training set. You may need to additionally tune the hyperparameter settings (e.g. learn-
ing rate). You should have two plots in total that show the relationship between weight
regularization A and validation cross-entropy: one for each training set digits_train
and digits_train_small.

[2 pts] For each dataset (digits_train and digits_train_small), how does the train
and validation cross-entropy change when you increase A? Do they go up, down first up
and down, or down and then up? Explain why you think they behave this way. Which

STA314 Fall 2021 Homework 3

is the best value of A based on your experiment? Report the test cross-entropy and
classification accuracy for the best value of .

2. [10 pts] K-Means Clustering. In this question you will be reasoning about the set of
optima of the K-Means algorithm. An optimal configuration is a specific configuration of
cluster centers {my}X | C RP and one-hot assignment vectors {r®}¥, C {0,1}¥ for which
the K-Means objective with metric d

N K
min Z Z T](j)d(mk, X(i))2

does not change during the refitting my, and reassignment r(® steps of the K-means algorithm.
An optimal clustering is a partition of the training set {X(i) i]\il that corresponds to the
assignments in one of the optimal configurations of the K-Means algorithm. Taking into
account empty clusters, there may be many different configurations that correspond to each
optimal clustering.

Recall that the K-Means algorithm is initialized by randomly initializing the cluster centers
and assigning points to the closest center. One thing we did not discuss in class is what
happens if a cluster center is not assigned any points, i.e., an empty cluster. In this case,
we skip the refitting step for any empty cluster, and otherwise leave the K-Means algorithm
unchanged.

You will be asked to list the possible optimal clusterings of the K-means algorithm for a
specific choice of K and distance metric on the following dataset with 3 points:

.fL'(l) .’L'gz
0 1
0 -1
40

Your answers should be a list of partitions of the three data points above (not configura-
tions of the centers and assignments), although your justification can refer to an underlying
configuration. Do not forget the possibility of empty clusters!

(a) [2 pts] For the dataset above, list all of the optimal clusterings of the K-Means algorithm
with K = 1 and the Euclidean norm. Justify your answer.

(b) [4 pts] For the dataset above, list all of the optimal clusterings of the K-Means algorithm
with K = 2 and the Euclidean norm. Justify your answer.

(c) [4 pts] For the dataset above, list all of the optimal clusterings of the K-Means algorithm
with K = 2 and the following distance metric:

d(x.y) = \/<”C - y1)2 ¥ (22— o)

3. [10 pts] Principal Component Analysis. In this problem, you will gain intuition on how
PCA works by implementing the algorithm on the same digits dataset. You will complete

Justify your answer.

STA314 Fall 2021 Homework 3

the provided code in pca.py and experiment with the completed code. Carefully read the
provided code in pca.py. You should understand the code instead of using it as a black

box.

You will apply the PCA algorithm to the 600 x 256 digit images (computing all 256

eigenvalues and eigenvectors).

(a)

[3 pts] Implement the function pca located at pca.py. While implementing the function,
remember to vectorize the operations; you should not write any for-loops. Include your
code in the report. You may optionally visualize the eigenvectors with the provided
function show_eigenvectors.

[4 pts] For each image in the validation set, subtract the mean of training data and
project it into the low-dimensional space spanned by the first K principal components
of training data. After projection, use a 1-NN classifier on K dimensional features (the
code vectors) to classify the digit in the low-dimensional space.

You need to implement the classifier yourself in function pca_classify. You will do the
classification under different K values to see the effect of K. Choose K = {2, 5, 10, 20,30}
and, under each K, classify the validation digits using 1-NN. Plot and report results,
where the plot should show the curve of validation set classification accuracy versus
number of eigenvectors you keep, i.e., K. Include the code in your report as well.

[2 pts] If you wanted to choose a particular model from your experiment as the best,
which model (number of eigenvectors) would you select? Why?

[1 pts] Report the classification accuracy of your final classifier over the test data. How
does the model final performance compare to that of logistic regression?

