
STA314 Fall 2021 Homework 2

Homework 2 - V2 Oct. 3

Deadline: Thursday, Oct. 14, at 11:59pm.

Submission: You need to submit one or two files through Quercus with our answers to Ques-
tions 1, 2, and 3 as well as code requested for Question 2. You can submit a single PDF titled
hw2_writeup.pdf with screenshots of your code. You may also upload PDF titled hw2_writeup.pdf

and a Python file title q2.py. You can produce the PDF file however you like (e.g. LATEX, Microsoft
Word, scanner), as long as it is readable.

Neatness Point: One point will be given for neatness. You will receive this point as long as we
don’t have a hard time reading your solutions or understanding the structure of your code.

Late Submission: 10% of the total possible marks will be deducted for each day late, up to a
maximum of 3 days. After that, no submissions will be accepted.

Computing: To install Python and required libraries, see the instructions on the course web page.

Homeworks are to be done alone or in pairs. See the Course Information handout1 for detailed
policies.

1. [2pts] Linear Models. Recall that a function f : RD → R is linear if both of the following
conditions hold.

• For all x,y ∈ RD, f(x + y) = f(x) + f(y).

• For all x ∈ RD and a ∈ R, f(ax) = af(x).

Consider the hypothesis class of linear regression. That is, any predictor

y(x) = w>x with w ∈ RD. (0.1)

Prove that every linear regression predictor is a linear function. You may use the definition
of w>x =

∑
j wjxj as well as any basic fact about arithmetic without proof.

2. [8pts] Robust Regression. One problem with linear regression using squared error loss is
that it can be sensitive to outliers. This can be a problem if the training set does not have
the same distribution as the validation or testing sets. We will explore this scenario in this
question.

We can use different loss functions to make training robust to outliers. Recall that an outlier
is a data point that differs significantly from other observations. In our context, we will
consider a few targets t(i) that are outliers in the sense they are drawn from a conditional
p(t|x) that is distinct from one used in the validation set and potentially with much larger
variance. To cope with this, we will use the Huber loss, parameterized by a hyperparameter
δ > 0:

Lδ(y, t) = Hδ(y − t)

Hδ(a) =

{
1
2a

2 if |a| ≤ δ
δ(|a| − 1

2δ) if |a| > δ
1https://www.cs.toronto.edu/~cmaddis/courses/sta314_f21/sta314_f21_syllabus.pdf
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(a) [1pt] Sketch the Huber loss Lδ(y, t) and squared error loss LSE(y, t) = 1
2(y − t)2 for

t = 0, either by hand or using a plotting library. Based on your sketch, why would you
expect the Huber loss to be more robust to a label t(i) that is an outlier?

(b) [2pt] Just as with linear regression, assume a linear model without a bias:

y(x) = x>w.

As usual, the cost is the average loss over the training set:

R̂ =
1

N

N∑
i=1

Lδ(y
(i), t(i)).

Derive a sequence of vectorized mathematical expressions for the gradients of the cost
(averaged over a training set) with respect to w. Recall that the inputs are organized
into a design matrix

X =


x(1)>

...

x(N)>


with one row per training example and recall there is no bias term. The expressions
should be something you can translate into a Python program without requiring a for-
loop. Your answer should look like:

y = · · ·
∂R̂
∂y

= · · ·

∂R̂
∂w

= · · ·

We recommend you find a formula for the derivative H ′
δ(a). Then give your answers in

terms of H ′
δ(y − t), where we assume that H ′

δ is applied point-wise to the vector y − t.

Remember that ∂R̂/∂w denotes the gradient vector,

∂R̂
∂w

=


∂R̂
∂w1

...
∂R̂
∂wD


(c) [2pt] We have provided Python starter code to perform gradient descent on this model

and you need to write two functions. Complete the function robust_regression_grad,
which computes the gradients of the robust regression model for a weight vector w. You
should be able to read the expected parameters and return values from the docstring.
You will want find the functions np.where, np.abs, np.dot, np.shape, and np.sign.
You may submit your code as a screenshot or the completed script q2.py.

(d) [2pt] Complete the function optimization. This function initializes a weight vec-
tor at 0 and runs gradient descent for num_iterations. There is no need to modify
num_iterations nor the initialization of w. You should use your function robust_regression_grad

in this function. You may submit your code as a screenshot or the completed script
q2.py.
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(e) [1pt] We provided a script that tries 5 different δ values of the Huber loss for training
and reports validation losses. For this experiment, we generated a dataset in which the
training set has target values t(i) that are outliers, i.e., some small subset of training
points are not i.i.d. with the validation set and the noise that we add these is much
larger. You can see how we generated the data in q2_data.py.

Run the script q2.py (or the equivalent notebook). The model in the script is trained
on the Huber loss using the training set, which is robust to these outliers, but we report
the standard squared error loss on the validation and training sets. In sum we report:

i. the average squared error on the validation set of a linear regression model

ii. for each δ, the average squared error on the validation set of a robust regression
model trained with the Huber loss

iii. for each δ, the average squared error on the training set of a robust regression model
trained with the Huber loss

If you implemented your functions correctly, you should see that the training squared
error of the robust model goes down as δ increases and approaches the loss of the linear
regression (not robust) model. On the other hand, you should see that there is an
optimal δ value for the validation squared error. Why do you think this is? Answer this
question briefly in a few sentences.

3. [4pts] Feature Maps. A 1-D binary classification training set {(x(i), t(i))}Ni=1 with x(i) ∈ R
and t(i) ∈ {0, 1} is linear separable if there exists a threshold a ∈ R such that

x(i) < a for all t(i) = 0

x(i) ≥ a for all t(i) = 1

(a) [2pts] Suppose we have the following 1-D dataset for binary classification:

x(i) t(i)

-1 1
1 0
3 1

Argue briefly (at most a few sentences) that this dataset is not linearly separable. Hint:
Consider any threshold a that correctly classifies both t(i) = 1 examples and derive a
contradiction. Your argument can resemble the one we used in lecture to prove XOR is
not linearly separable.

(b) [2pts] Now suppose we apply the feature map

ψ(x) =

(
ψ1(x)
ψ2(x)

)
=

(
x
x2

)
.

Assume we have no bias term, so that the parameters are w1 and w2. Write down the
constraint on w1 and w2 corresponding to each training example, and then find a pair
of values (w1, w2) that correctly classify all the examples. Remember that there is no
bias term.
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