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1. True/False. For each statement below, say whether it is true or false, and give a one or
two sentence justification of your answer.

a) Adding more training data always reduces overfitting.

b) For small k, the k-means algorithm is equivalent to the k-nearest neighbors algorithm.

c) An ensemble of models always has more capacity than a single model.

d) A linear SVM will find the same decision boundary as logistic regression.
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2. Reinforcement Learning.
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Consider the familiar robot navigation task within the gridworld shown above. You can move in
any of the four directions (left/right/up/down) unless blocked by one of the gray obstacles at B2
and B3. The rewards are +10 for state C4, and -10 for state B4. A4 and B4 are both absorbing
states. The reward for every other state is 0.

a) Assume that the state transitions are deterministic. Recall that under the simple Q-learning
algorithm, the estimate Q values are update using the following rule:

Q̂(s, a) = r(s′) + γmax
a′

Q̂(s′, a′)

Consider applying this algorithm when all the Q̂ values are initialized to zero and γ = 0.8. Write
the Q estimates on the figure as labeled arrows after the robot has executed the following state
sequences:

• B1 → A2 → A2 → A3 → B3 → B4
• A2 → A3 → A4
• C1 → C2 → C3 → B3 → A3 → A4
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.

b) Assume the robot will now use the policy of always performing the action having the greatest
Q value. Is this the optimal policy? Why or why not?

c) Suppose state A3 also has a reward of -10. How can we ensure that our agent is still able to
find the optimal policy in this new environment?
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3. Backpropagation. Consider a L2 regularized single layer neural network model that pre-
dicts continuous 1d targets y = σ(z) ∈ R where z = wh + b and h = σ(w′x + b′), and σ is an
activation function. To train, we use mean squared error from the targets with L2 penalty on
t ∈ R : L = (y − t)2/2 + w2 + b′2

a) Write the loss as a function of the parameters w, b and compute directly ∂L
∂w ,

∂L
∂b′ .

b) Now compute ∂L
∂w ,

∂L
∂b′ using the backprogation algorithm.

c) What are the disadvantages of doing a) versus backpropagation? Why do we use backpropa-
gation in machine learning as opposed to direct differentiation?
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4. Principal Component Analysis. Recall that the optimal PCA subspace can be deter-
mined from the eigendecomposition of the empirical covariance matrix Σ̂. Also recall that the
eigendecomposition can be expressed in terms of the following spectral decomposition of Σ̂:

Σ̂ = QΛQ>,

where Q is an orthogonal matrix and Λ is a diagonal matrix. Assume the eigenvalues are sorted
from largest to smallest. You may assume all of the eigenvalues are distinct.

1. If you’ve already computed the eigendecomposition (i.e. Q and Λ), how do you obtain the
orthogonal basis U for the optimal PCA subspace? (You do not need to justify your answer.)

2. The PCA code vector for a data point x is given by z = U>(x − µ̂) where µ̂ is the data
mean. Show that the entries of z are uncorrelated.
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5. Support Vector Machines.
Support vector machines learn a decision boundary leading to the largest margin from both classes.
You are training SVM on a tiny dataset with 4 points shown below. This dataset consists of two
examples with class label -1 (denoted with plus), and two examples with class label +1 (denoted
with triangles).

a) Write down the SVM loss function for this data and state how to find the weight vector w and
bias b.

b) Draw the (approximate) decision boundary.
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6. Probabilistic Models .
The Laplace distribution, parameterized by µ and β, is defined as follows:

Laplace(w;µ, β) =
1

2β
exp

(
−|w − µ|

β

)
.

Consider a variant of the homework2 question where we assume that the prior over the weights
w consists of an independent zero-centered Laplace distribution for each dimension, with shared
parameter β:

wj ∼ Laplace(0, β)

t |w ∼ N (t; w>x, σ2)

For reference, the Gaussian PDF is:

N (x;µ, σ) =
1√
2πσ

exp

(
−(x− µ)2

2σ2

)
.

1. Suppose you have a labeled training set {(x(i), t(i))}Ni=1. Give the cost function you would
minimize to find the MAP estimate of w.

2. Based on your answer to part (a), how might the MAP solution for a Laplace prior differ
from the MAP solution if you use a Gaussian prior (which is exactly homework2)?
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7. EM Algorithm.

1. Is EM algorithm a supervised or an unsupervised learning method? Explain your answer.

2. How does EM algorithm and k-means compare? Write 3 similarities and 3 differences.

3. Explain why we call these steps expectation and maximization steps. What is it that we
take expectation of and what is it that we maximize?
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