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Background: What is Quantization?

Lower the bit-width and increase the efficiency
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Background: What is Quantization?
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Lower the bit-width and increase the efficiency
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Background: What is Quantization?

Lower the bit-width and increase the efficiency
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Smaller Storage (16 bit to 8 bit)
& Compute faster
(integer kernels INT8 GEMM)

Traditional Method for CNN: W8AS8



Background: Type of Quantization

Lower the bit-width and increase the efficiency

e Post-Training Quantization (PTQ): quantization during inference
m static quantization (precomputed scaling factors)
m dynamic quantization (scaling factors computed at runtime).
e Quantization-Aware Training (QAT): Simulates quantization effects
during training.



Lower the bit-width and increase the efficiency
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(a) per-tensor quantization
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per-token quant. per-channel quant.

(b) per-token + per-channel quantization

Per-tensor

Per-token (typically for
activation)

Per-channel (typically for
weight)



Background: Quantization for LLM

So... How about Quantization in LLM?



Background: Quantization for LLM
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Traditional W8AS8 in LLM X WHY?

= systematic outliers with large magnitude will emerge in activations when LLM > 6.7B
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Background: Quantization for LLM &

Smoothing activation to reduce quantization error

5
3 70f ‘ ’|
s 10
> 1 4
838 3
= N
5 6 : |
172 | '
< ‘i 1 3 ' 2000
0 w0 0" /15000,
' O 1000 w-' > > moo(;\@\\\‘
; & 2000 :
3000 100 & by 3000 o0 3000 W©
&) 4000 _ - "Wy s000 0
W/ 5000 0
i igi
Weight (Original

Activation (Original)
Hard to quantize

Very easy to quantize

Weight are easy to quanize, but activation is hard due to outliers
Luckily, outliers persist in fixed channels



Related Work
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How other research address with this issue?

e LLM.int8: a mixed-precision decomposition (outliers in FP16 and INT8 for other)
X large latency overhead, which can be even slower than FP16 inference

e ZeroQuant: dynamic per-token activation quantization and group-wise weight quantization
X requires customized CUDA kernels and not maintain the accuracy for the large model

e Outlier Suppression: non-scaling LayerNorm and token-wise clipping to deal with the
activation Outliers

X only succeeds on small language models

e Whatelse...?
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Background: Quantization for LLM &

Smoothing activation to reduce quantization error
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Migrate the quantization difficulty from activation to weights, so both
are easy to quantize
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Motivation
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Key Idea: weights are easy to quantize while activations are
hard.
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Y = (Xdiag(s)™!) - (diag(s)W) = XW

Objective: Find a diagonal matrix s to migrate difficulty
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Methods: Migration Matrix Selection

Observation: Variance in one activation channel is small

Absolute Value
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Idea: Convert each channel of activations into similar distribution
s;, = max(|X;|),7 =1,2,...,C;

Good Enough?
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Methods: Difficulty Migration

Y = (Xdiag(s)™!) - (diag(s)W) = XW

Difficulty are migrated from activations to weights!



Methods: Difficulty Migration

S; = ma,X(|Xj ),] — ].,2, ,Cz
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s; = max(|X;|)*/ max(|W,|)'

Idea: migrate difficulty “smoothly” so both activation and
weights are easy to quantize. (a is a hyper parameter from 0 to 1)
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Methods: Difficulty Migration
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Idea: migrate difficulty “smoothly” so both activation and

weights are easy to quantize.
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Methods: Migration Strength
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Suitable migration strength has good performance
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SmoothQuant Example

Original: e SmoothQuant:
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Example of SmoothQuant when a is 0.5
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SmoothQuant in Transformers
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SmoothQuant is applied in the attention and linear calculation
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Experiments: Experiments Setups

Baselines Evaluation Dataset
e \WB8AS8 Naive Quantization e LAMBADA

e ZeroQuant e HellaSwag

e LLM.int8() e PIQA

e QOutlier Suppression o ...

Models Migration Strength
o OPT e OPT a=0.5

e BLOOM e BLOOM a=0.5

e GLM e GLM a=0.75
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Experiments: Quantization Setups

Method Weight Activation

WSAS per-tensor  per-tensor dynamic
ZeroQuant group-wise per-token dynamic
LLM.int8 () per-channel per-token dynamic+FP16

Outlier Suppression per-tensor per-tensor static

SmoothQuant-O1  per-tensor per-token dynamic
SmoothQuant-O2  per-tensor per-tensor dynamic
SmoothQuant-O3  per-tensor per-tensor static

Quantization setting of baselines and SmoothQuant
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Experiments: Accuracy Evaluation

OPT-175B LAMBADA HellaSwag PIQA WinoGrande OpenBookQA RTE COPA Averaget WikiText|
FP16 74.7% 593% 79.7%  72.6% 34.0% 59.9% 88.0% 66.9% 10.99
W8AS 0.0% 25.6% 53.4%  50.3% 14.0% 49.5% 56.0% 35.5% 93080
ZeroQuant 0.0%* 260% 51.7%  49.3% 17.8% 50.9% 55.0% 35.8% 84648
LLM.int8 () 74.7% 592% 79.7%  72.1% 34.2% 60.3% 87.0% 66.7% 11.10
Outlier Suppression  0.00% 258% 52.5%  48.6% 16.6% 53.4% 55.0% 36.0% 96151
SmoothQuant-O1 74.7% 592% 79.7%  71.2% 33.4% 58.1% 89.0% 66.5% 1111
SmoothQuant-O2 75.0% 59.0% 792%  71.2% 33.0% 59.6% 88.0% 66.4% 11.14
SmoothQuant-O3 74.6% 589% 79.7%  71.2% 33.4% 59.9% 90.0% 66.8% 11.17

Accuracy of OPT-175B using different quantization methods
on different dataset
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Experiments: Accuracy Evaluation

N

Method OPT-175B BLOOM-176B GLM-130B*
FP16 71.6% 68.2% 73.8%
WSAS 32.3% 64.2% 26.9%
ZeroQuant 31.7% 67.4% 26.7%
LLM.int8 () 71.4% 68.0% 73.8%
Outlier Suppression 31.7% 54.1% 63.5%
SmoothQuant-O1 71.2% 68.3% 73.7%
SmoothQuant-O2 71.1% 68.4% 72.5%
SmoothQuant-O3 71.1% 67.4% 72.8%

Average accuracy of OPT, BLOOM, GLM on different dataset
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Experiments: Speedup and Memory Save
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Limitation

e Extra resources are required to find optimal hyperparameter.

e Migrate difficulty, but not decrease overall difficulty.

e Focus on WB8AS8 quantization, which is not efficient enough for
LLMs now.
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Conclusion

e SmoothQuant balances quantization difficulty between
activations and weights.

e SmoothQuant enables almost lossless 8-bit weight and
activation quantization for different LLMs up to 530B.

e \With comparable accuracy, SmoothQuant gets up to 1.51x

inference acceleration and 1.91x memory saving.
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