
FlashAttention: Fast and Memory-Efficient Exact Attention
with IO-Awareness (2022)

Presented by:

Raghav Sharma & Daniel Hocevar

March 21, 2025

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré

Flash-Decoding for long content inference (2023)
Tri Dao, Daniel Haziza, Fracisco Massa, Grigory Sizov

1

Why do we need flash attention?

2

On long sequences, trans​formers
are slow and require significant
memory

Motivation

The problem

Self attention's quadratic complexity can be

visualized using a fully connected graph

Self attention has quadratic
time/memory complexity

Image adapted from: Dubey, A. (2021, March 25). Constructing Transformers For Longer Sequences with

Sparse Attention Methods. Deep Mind. https://research.google/blog/constructing-
transformers-for-longer-sequences-with-sparse-attention-methods/

Making Attention More Efficient - Existing Approaches

3

Reformer (2020) groups similar queries/keys into buckets, and only attends within a bucket.

Sparse approximation

Observe that the softmax in self-attention is dominated by the most similar query-key pairs:

Apply linear projection to compute low-rank
representations for K and V to reduce computational
requirements.

Low rank approximation

Linformer (2020) proved that components of soft-attention
computation are low-rank.

https://arxiv.org/pdf/2001.04451
https://arxiv.org/pdf/2006.04768

Making Attention IO-Aware: Drawing inspiration from other fields

4

IO-Aware Computing

Optimizing algorithms to run on specific types of hardware, accounting for their unique IO setup
- GPUs: accounting for read/writes to SRAM and HBM and accounting for their respective speeds

Examples

Database joins
 - Optimizing communication between CPU registers, cache and disk storage

Image processing
 - Halide (compiler for image processing) leverages IO-aware compute extensively

Linear algebra
 - Limiting communications between slow and fast memory for matrix factorization

Preliminary: Different Types of Bounded Computation

5

1

Most of the time spent waiting for
data to be read to/written from
memory

Ex: Matrix multiplication for very
large matrices

Memory Bound Computation

1
Most time spent waiting for
calculations to be processed

Ex: Fibonacci calculation

Attention computation is

memory bounded

Compute Bound Computation

Preliminary: The Memory Wall Problem

6

1Unlikely anytime soon due to the

memory wall problem

Faster memory as a solution?

1
Rate of improvement in processor
performance is outpacing the rate of
improvement in memory
performance

Memory bounded computations will likely

remain memory bounded

Memory Wall Problem

AI Hardware and Memory Wall Problem

Figure from: Ghloami et al. (2024, March 21). AI and Memory Wall.

Goal: Reduce Memory Accesses in Attention Computation

7

1
Reorganize the Attention

computation to access the slow

memory as little as possible

FlashAttention Approach

1
In the GPU memory hierarchy, the
HBM memory is the slow memory
we want to avoid accessing as
much as possible

FlashAttention avoids this slow by memory by using

two common optimization techniques:

1) Tiling

2) Recomputation

Memory Hierarchy

FlashAttention Optimization 1: Tiling

8

1

Once the sequence length, N, is large, the

corresponding Q, K, V matrices cannot fit into the

small SRAM. Thus, you must constantly write/read

them from the large HBM (quadratic accesses).

Challenge 1

1
Break the Q, K, V matrices into blocks that fit into
the small SRAM, so that each value in the
matrices is read only once from the HBM (linear
accesses).

Tiling is a commonly used technique for matrix

multiplication, so why hasn't this been done

before?

Solution

Tiling for matrix multiplication

FlashAttention Optimization 1: Tiling Continued

9

1Softmax must be applied row-wise and depends on the entire row. Can we still break up this
computation into tiles?

Challenge 2

1You can compute the softmax for each block, and when adding it to the accumulated results of
other blocks, scale it using additionally computed statistics (max and normalizer).

Solution

Attention Computation

FlashAttention Optimization 1: Tiling Extra Details

10

Typical softmax computation with numerical stability

Decomposing the softmax on a block

level requires computing two extra

statistics m and l per block

FlashAttention Optimization 2: Recomputation

11

1

Avoid storing large N by N matrices, S and P, as

intermediate values required for the backwards

pass to compute gradients with respect to Q, K, V

Challenge

1
Instead, by just storing the N by d matrices, Q,
K, V, O, and the N extra block statistics (m, l), we
can recompute the necessary intermediate
values required for the gradient, with less space

Fewer HBM accesses once again. But at the cost

of more compute.

Solution

Size visualization of intermediate

values computed during attention

FlashAttention Optimization 2: Recomputation Extra Details

12

Derivative of the jth column of matrix

V can be computed by recomputing

parts of the intermediate matrix P

using the block statistics (m, l)

Attention Computation

FlashAttention Benefit 1: Faster Attention

13

Training time with different attention implementations.

Training performed on 8 x A100 GPUs

FLOPs versus HBM accesses of FlashAttention and the

default PyTorch implementation at the time. Performance on
an A100 GPU (seq. length 1024, head dim. 64, 16 heads, batch

size 64)

FlashAttention Benefit 2: Supports Longer Sequences

14

Training GPT-3 with leading exact

Attention implementations with

sequence length 2K and 8K

FlashAttention Limitations

15

1Each GPU has optimal different optimal

block sizes based on its memory sizes

GPU Specific CUDA Kernels

1
Need to account for an even slow layer of
memory transfer – GPU to GPU data transfer,
which makes Multi-GPU training not
straightforward

No support for Multi-GPU FlashAttention yet

1
During inference time, the user query batch size
is commonly 1, so typically one only streaming
multiprocessor can be used (A100 has 108)

FlashAttention is only helpful during training

FlashDecoding: Speeding up inference

16

1
Bottlenecks during inference are
different than training (only one
query during inference)

Problem

1

Parallelize across key/value
sequence length:
- Split keys and values into smaller

chunks
- For each split, compute attention

using Flash Attention
- Compute output by reducing over

all splits

Solution

FlashDecoding: Performance Analysis

17

1
Flash decoding significantly
improves the speed of generation
– especially for longer sequences

Result

Colab Notebook Walkthrough

18

• Implemented Python GPU memory simulator

• Uses this simulator to profile the hbm accesses of 3 different matrix multiplication algorithms

Demonstration of Tiling on Matrix Multiplication

Colab Link

https://colab.research.google.com/drive/1QqOxHTElhGDoSmyBJ7_rWKmGmsDrTlCb?usp=sharing

Recap

19

• Attention in Transformers is memory bounded

• To speed it up, FlashAttention uses tiling and recomputation to reduce hbm accesses

• Tiling performs Attention computation in a block wise manner

• Recomputation avoids storing large intermediate matrices in the hbm during the backwards pass

• FlashAttention does not straightforwardly extend during inference time, due to a query batch size of 1

• FlashDecoding fixes this issue by parallelizing across the Key and Value matrices

Takeaways

Thank You!

20

	Slide 1: FlashAttention: Fast and Memory-Eﬃcient Exact Attention with IO-Awareness (2022)
	Slide 2: Why do we need flash attention?
	Slide 3: Making Attention More Efficient - Existing Approaches
	Slide 4: Making Attention IO-Aware: Drawing inspiration from other fields
	Slide 5: Preliminary: Different Types of Bounded Computation
	Slide 6: Preliminary: The Memory Wall Problem
	Slide 7: Goal: Reduce Memory Accesses in Attention Computation
	Slide 8: FlashAttention Optimization 1: Tiling
	Slide 9: FlashAttention Optimization 1: Tiling Continued
	Slide 10: FlashAttention Optimization 1: Tiling Extra Details
	Slide 11: FlashAttention Optimization 2: Recomputation
	Slide 12: FlashAttention Optimization 2: Recomputation Extra Details
	Slide 13: FlashAttention Benefit 1: Faster Attention
	Slide 14: FlashAttention Benefit 2: Supports Longer Sequences
	Slide 15: FlashAttention Limitations
	Slide 16: FlashDecoding: Speeding up inference
	Slide 17: FlashDecoding: Performance Analysis
	Slide 18: Colab Notebook Walkthrough
	Slide 19: Recap
	Slide 20: Thank You!

