ZeRO: Memory Optimizations Toward Training Trillion Parameter Models

Samyam Rajbhandari, Je Rasley, Olatunji Ruwase, Yuxiong He

Presented by: Hunter Richards

January 31, 2025

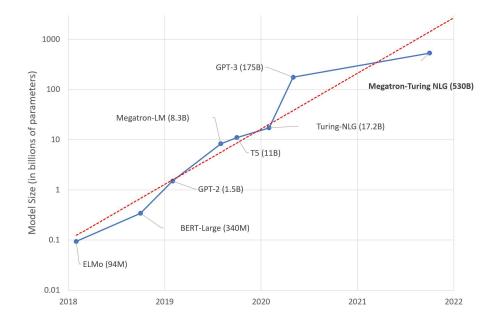
What is Zero Redundancy Optimizer (ZeRO)?

From the **DeepSpeed tutorial**:

ZeRO is a powerful set of memory optimization techniques that enable effective training of large models with trillions of parameters, . . . Compared to the alternative model parallelism approaches for training large models, a key appeal of ZeRO is that no model code modifications are required.

Motivation

Scaling laws dictate that bigger models consistently improve performance:



Motivation

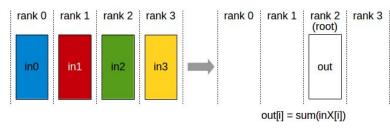
Many factors contribute to the memory footprint occupied during training:

- Parameters
- Gradients
- Optimizer states (e.g., first and second moment estimates in Adam)
- Activations
- Temporary buffers
- Memory fragmentation

Trillion-parameters + Adam + FP16 requires ~16TB for parameters, gradients and optimizer states:

- What do we do when we reach the physical limits of a single GPU/TPU?
- We scale to many GPUs/TPUs

Preliminaries: Collective Operations



All Reduce

rank 0

in0

rank 1

in1

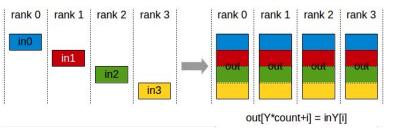
rank 2 rank 3

in3

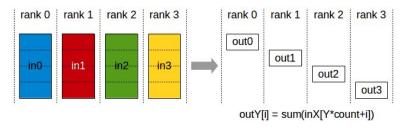
in2

Reduce

All Gather



Ree



Reduce Scatter

https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/usage/collectives.html

rank 0

out

rank 1

out

rank 2

out

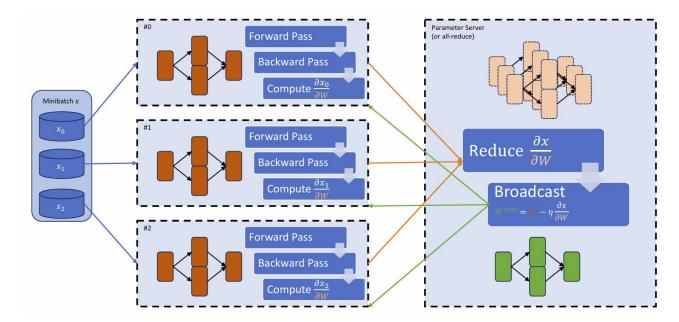
out[i] = sum(inX[i])

rank 3

out

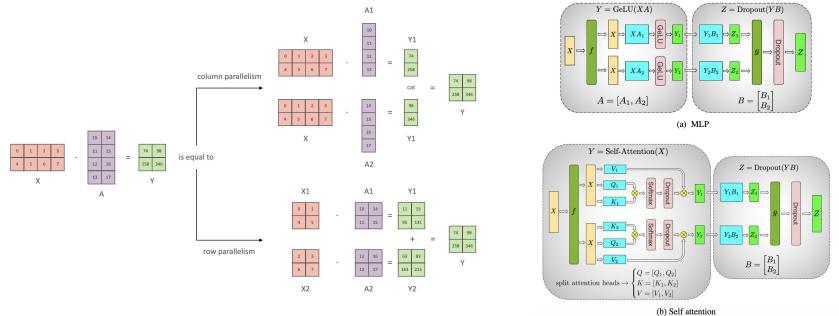
Preliminaries: Data Parallelism (DP)

Most simple form of parallelism:



Preliminaries: Model Parallelism (MP)

Also known as horizontal model parallelism, or tensor parallelism:

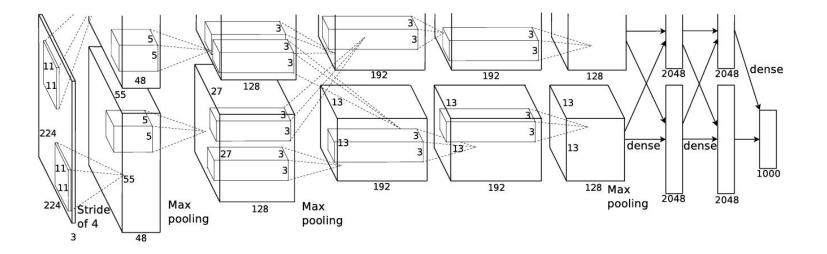


https://huggingface.co/docs/transformers/v4.48.1/perf_train_gpu_many

Mohammad Shoeybi et al. Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism. arXiv, 2019.

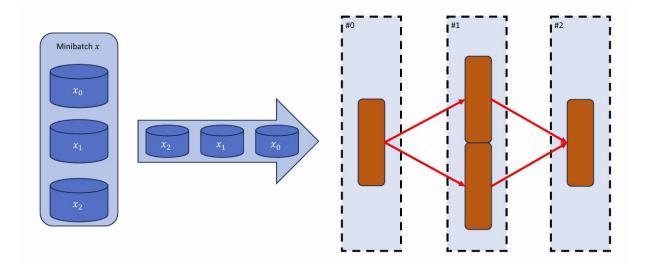
Preliminaries: Model Parallelism (MP)

Original architecture of AlexNet, a historical example of MP:



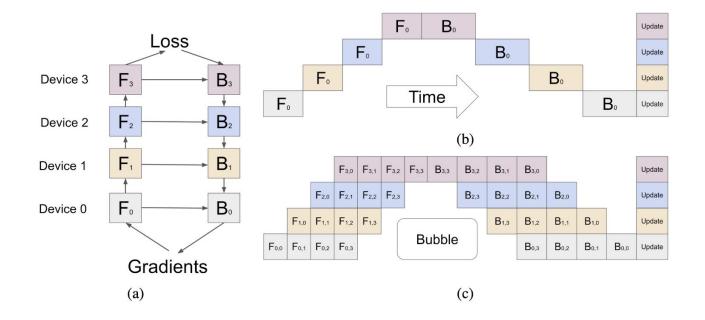
Preliminaries: Pipeline Parallelism (PP)

Also known as vertical model parallelism:



Preliminaries: Pipeline Parallelism (PP)

Mini-batches reduce the time idle, but still result in a pipeline bubble:



Yanping Huang et al. GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism. NeurIPS, 2019.

Limitations of DP, MP and PP

Data parallelism (DP):

- Doesn't actually solve the memory issue
- Model parameters and all state are **replicated**

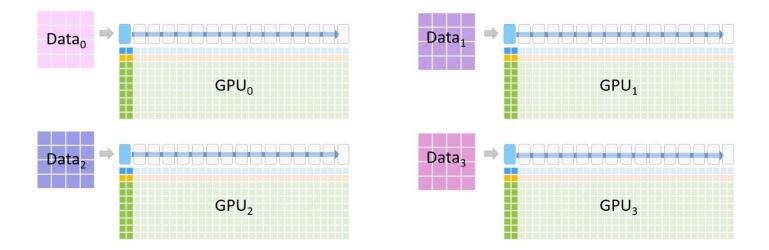
Model parallelism (MP):

- Certain layers force a **collective operation** (e.g., batch norm.)
- Requires extra care when designing the model architecture for the hardware and network

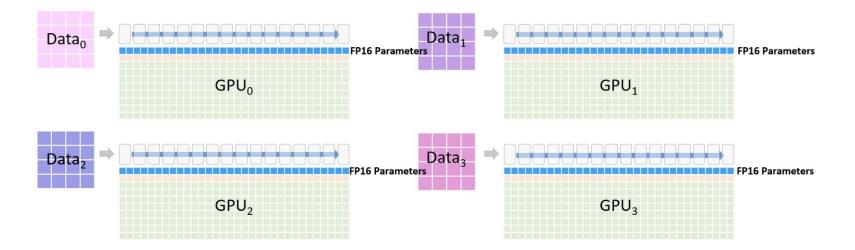
Pipeline parallelism (PP):

- Pipeline bubble results in idle resources
- Load imbalance caused by non-uniform execution time on each model partition

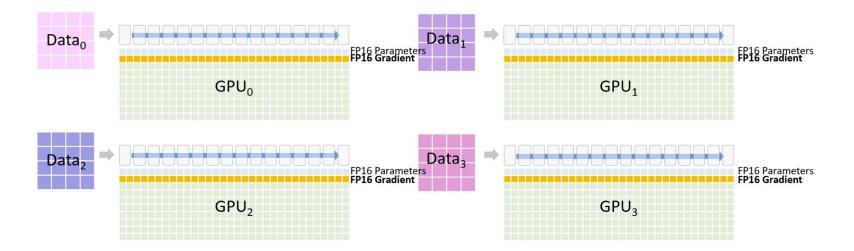
Cells under a transformer layer represent its GPU memory:



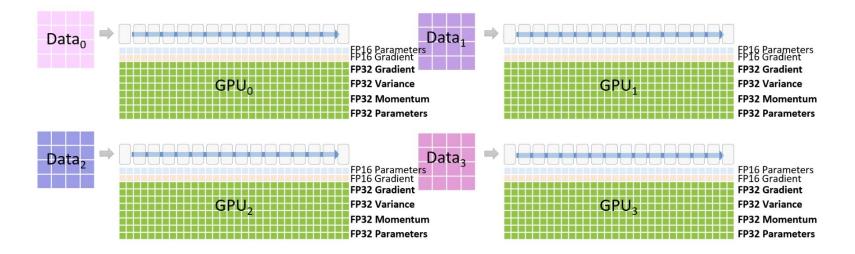
Blue cells represent model parameters:



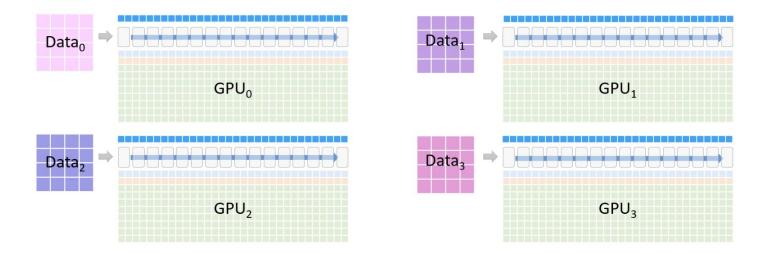
Orange cells represent gradients:



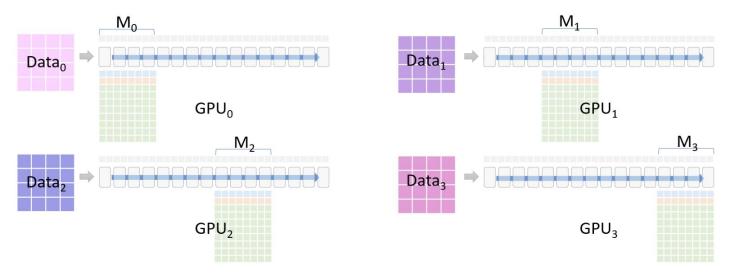
Green cells represent optimizer state (including temp. space for updated parameters):



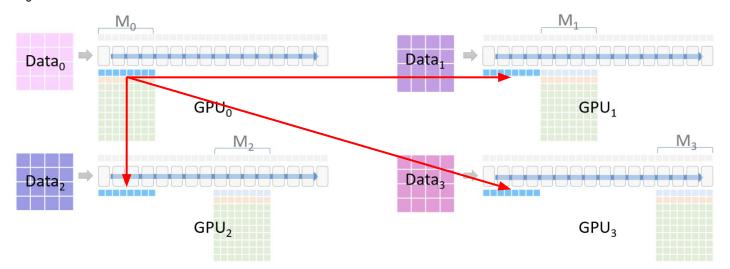
Blue cells along the top represent activations:



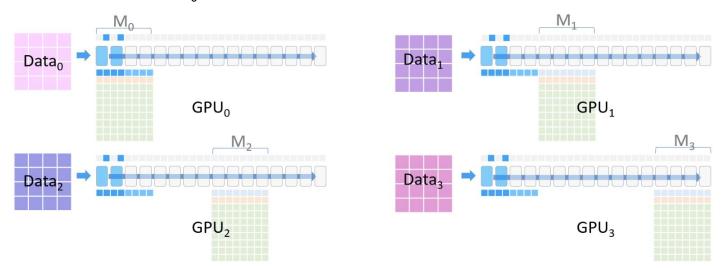
Model is vertically partitioned across each device:



GPU_{o} **broadcasts** its model partition:

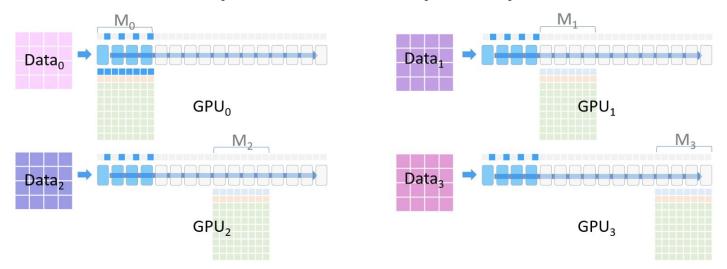


Each device evaluates M_0 on its own data:

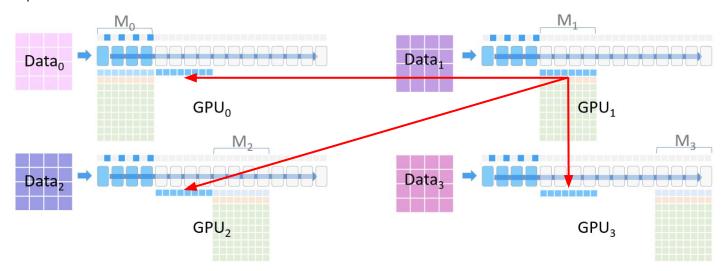


Each device evaluates M_0 on its own data:

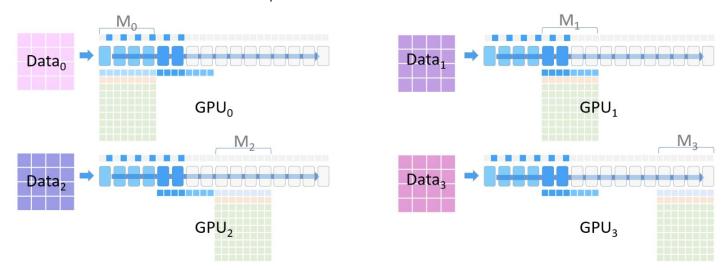
After the forward pass on M_0 , all devices except GPU_0 delete M_0 :



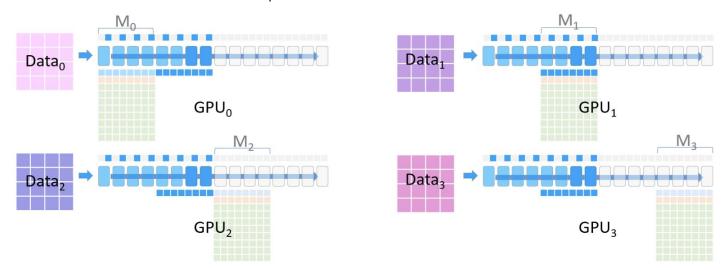
GPU₁ **broadcasts** its model partition:



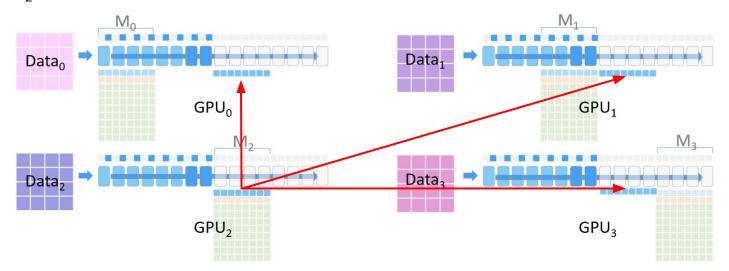
The forward pass continues on M₁:



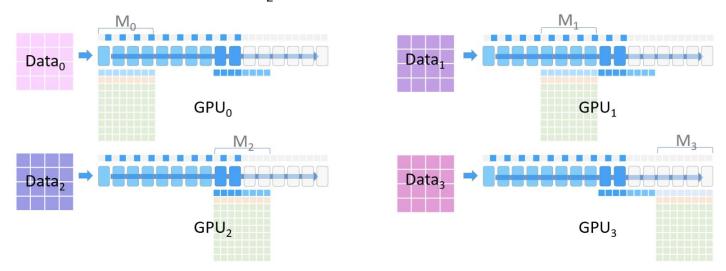
The forward pass continues on M₁:



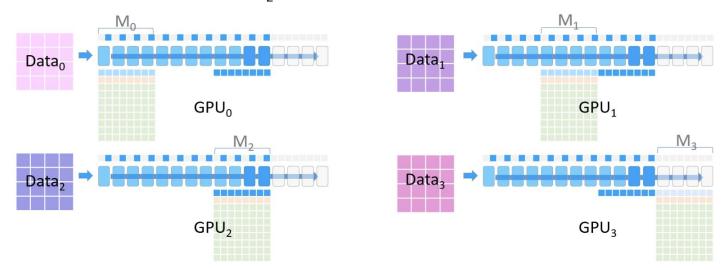
GPU₂ broadcasts its model partition:



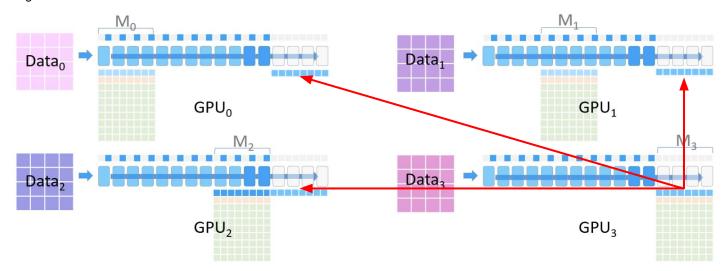
The forward pass continues on M₂:



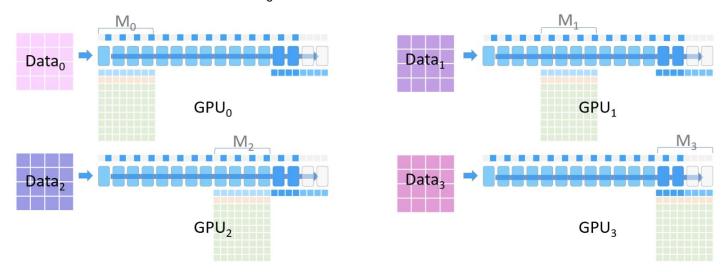
The forward pass continues on M₂:



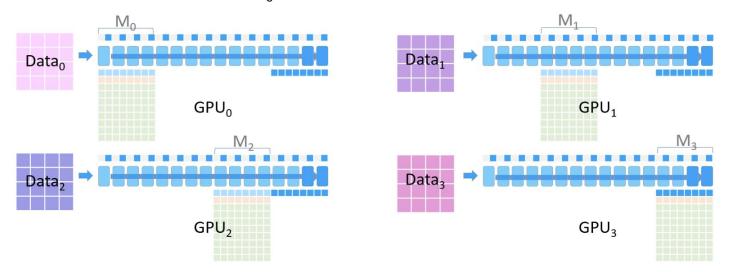
GPU₃ broadcasts its model partition:



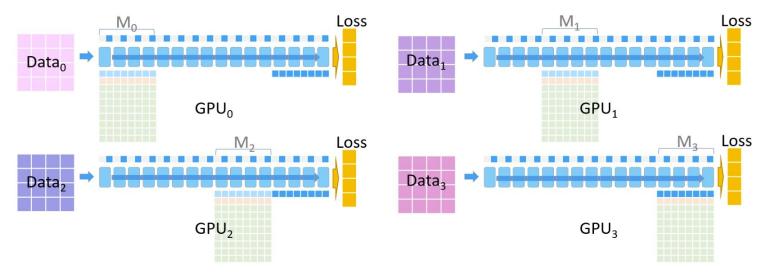
The forward pass continues on M₃:



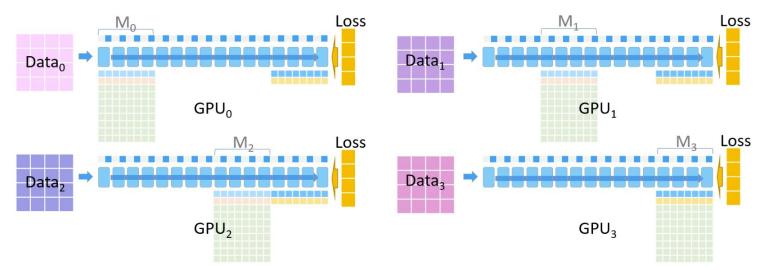
The forward pass continues on M₃:



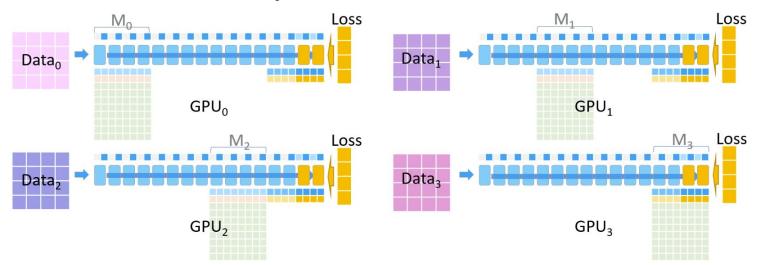
The forward pass is complete. In parallel, each device calculates the loss for its data:



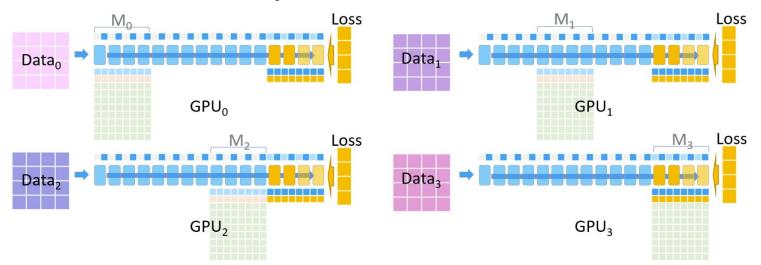
The backward pass starts. All devices allocate space for gradients (shown in pale yellow):



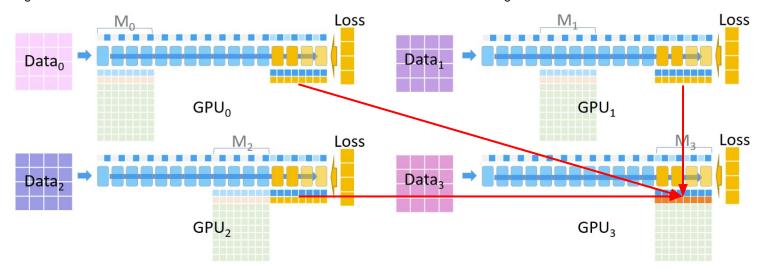
The backward pass proceeds on M₃:



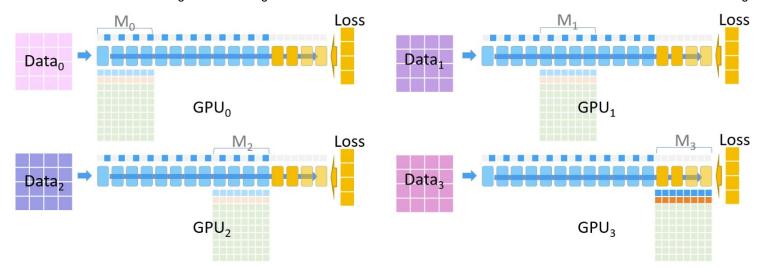
The backward pass proceeds on M₃:



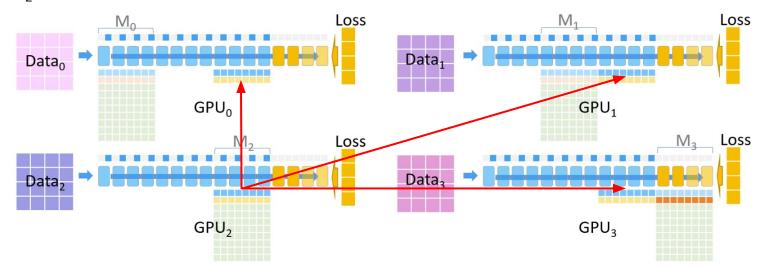
 GPU_3 performs a **reduce** operation, holding the gradients for M_3 across all data:



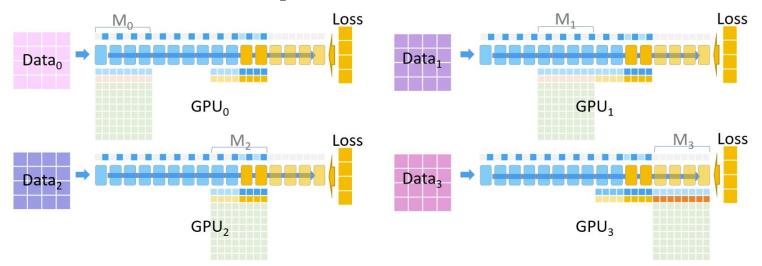
All devices except GPU₃ delete M_3 and its gradients, and all devices delete activations for M_3 :



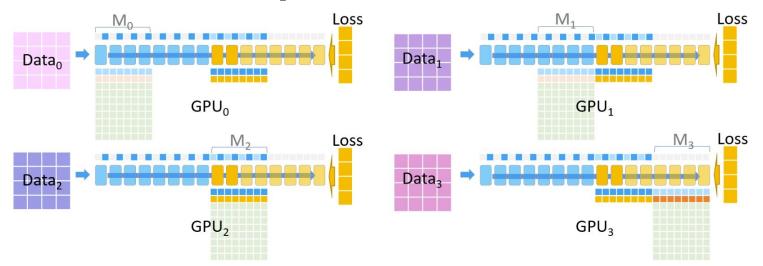
GPU₂ broadcasts its model partition:



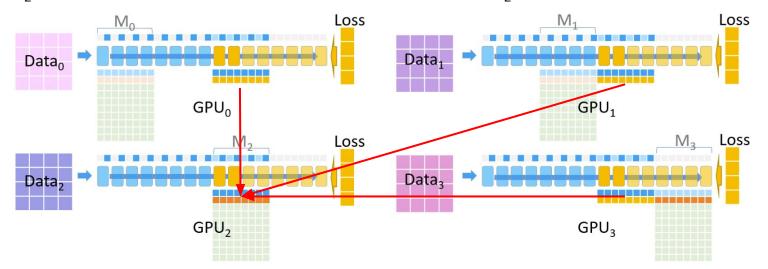
The backward pass continues on M_2 :



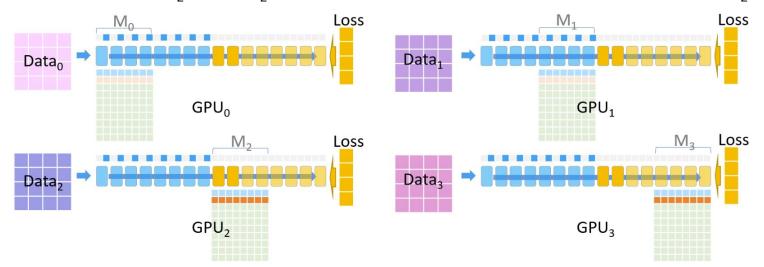
The backward pass continues on M_2 :



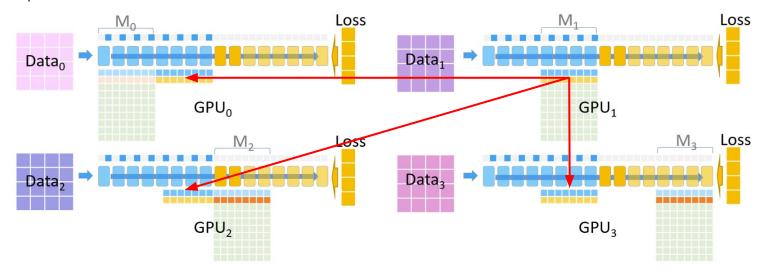
 ${\rm GPU}_2$ performs a **reduce** operation, holding the gradients for ${\rm M}_2$ across all data:



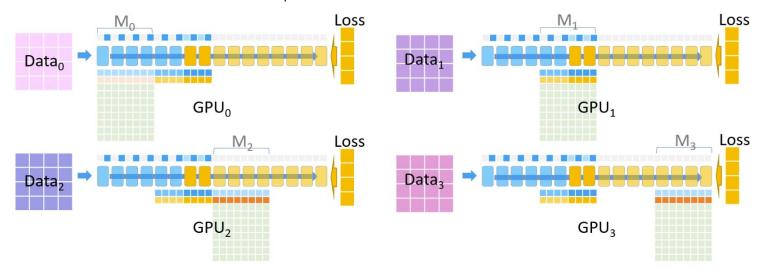
All devices except GPU_2 delete M_2 and its gradients, and all devices delete activations for M_2 :



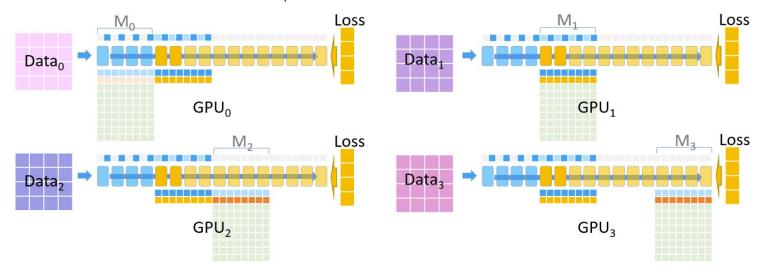
GPU₁ **broadcasts** its model partition:



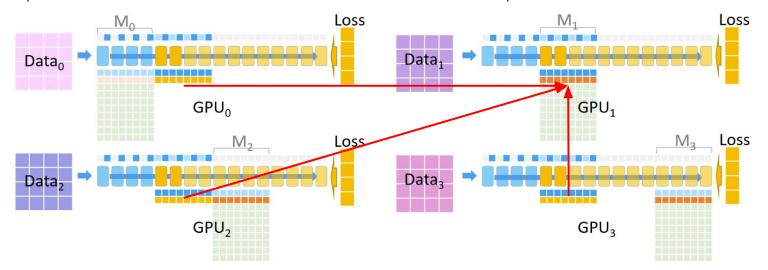
The backward pass continues on M_1 :



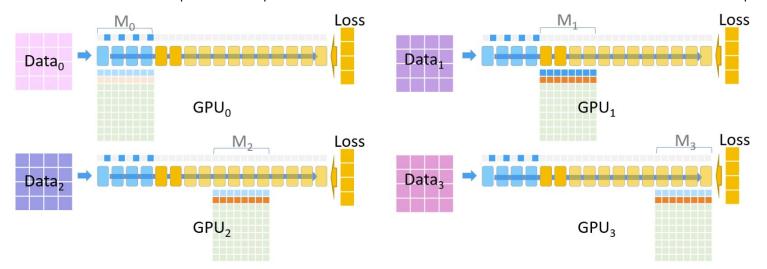
The backward pass continues on M_1 :



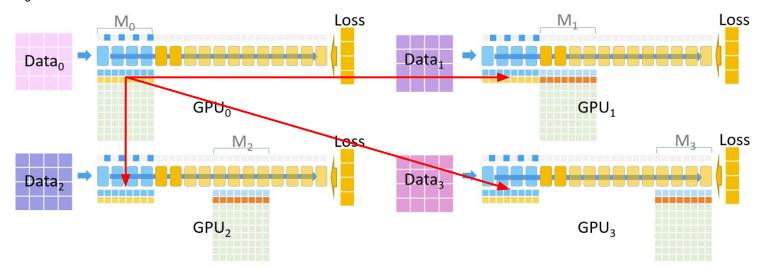
 GPU_1 performs a **reduce** operation, holding the gradients for M_1 across all data:



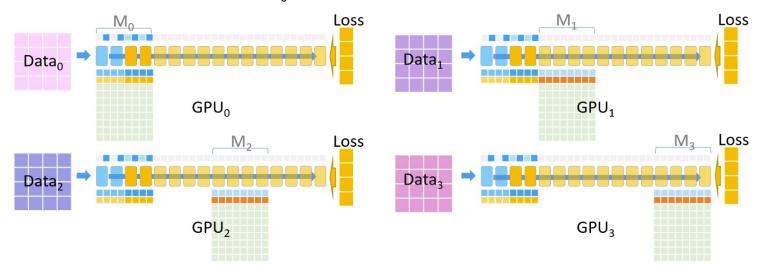
All devices except GPU₁ delete M₁ and its gradients, and all devices delete activations for M₁:



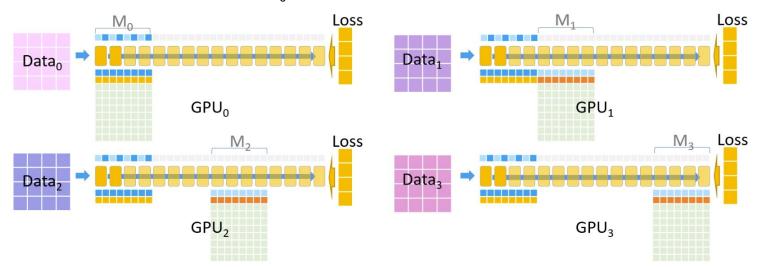
GPU_{o} **broadcasts** its model partition:



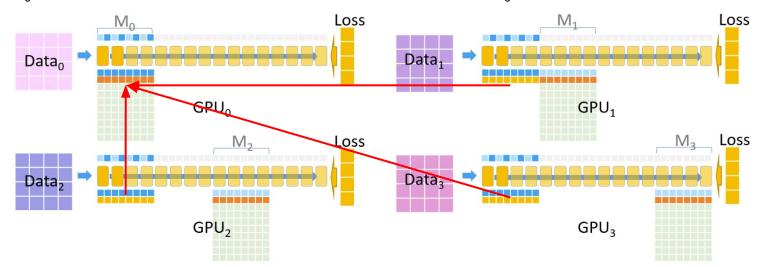
The backward pass continues on M₀:



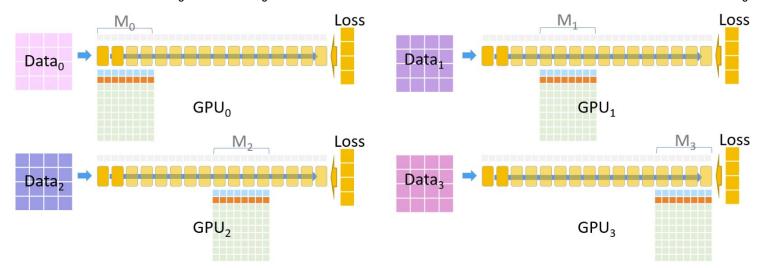
The backward pass continues on M₀:



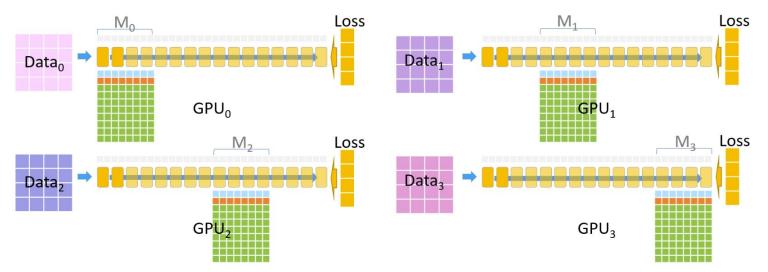
 GPU_0 performs a **reduce** operation, holding the gradients for M_0 across all data:



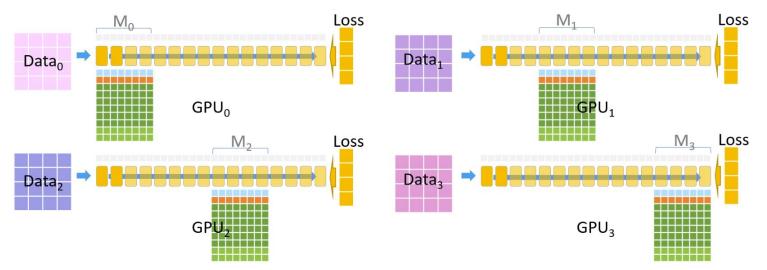
All devices except GPU₀ delete M₀ and its gradients, and all devices delete activations for M₀:



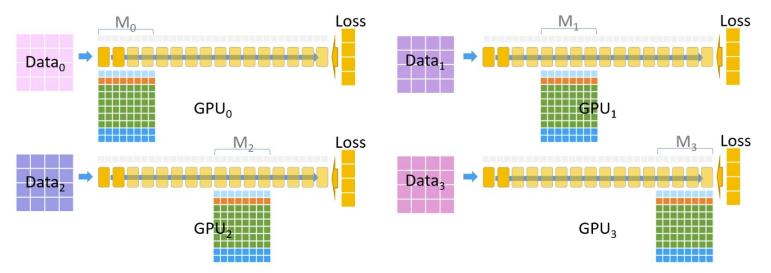
The backwards pass is complete. In parallel, each device performs the optimization step:



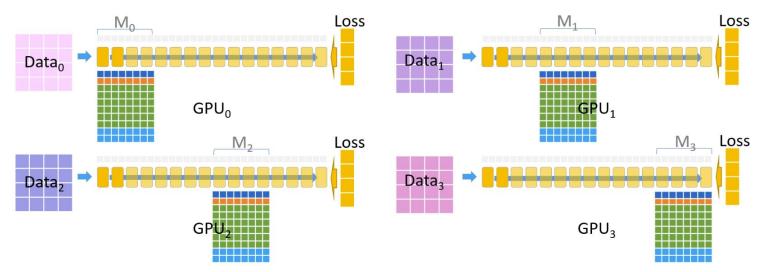
The optimizer runs:



The updated model parameters are output as FP32:



The updated model parameters are converted to FP16 and replace the old parameters:

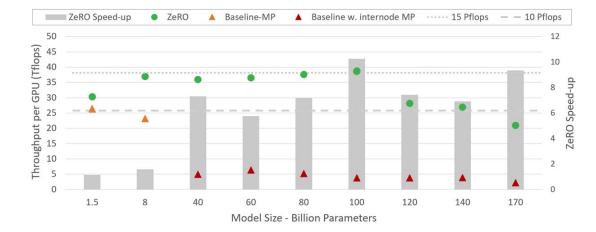


This method vertically partitions the model. Won't this cause the same issues as PP?

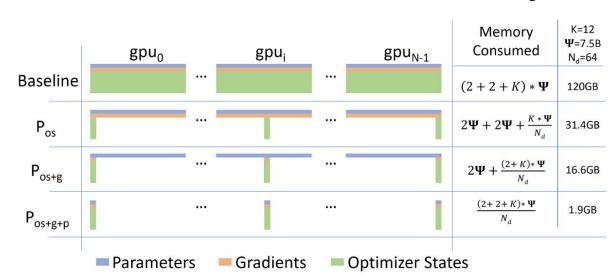
- Model partitions are broadcasted between devices
- Each device actually evaluates the entire model over the course of a forward/backward pass

That seems like a lot of communication. Won't this cause the same issues as MP?

- It is a lot of communication, but...
- MP communicates **activations**
- ZeRO communicates parameters
- Sending parameters can be done async. with forward/backward pass calculations



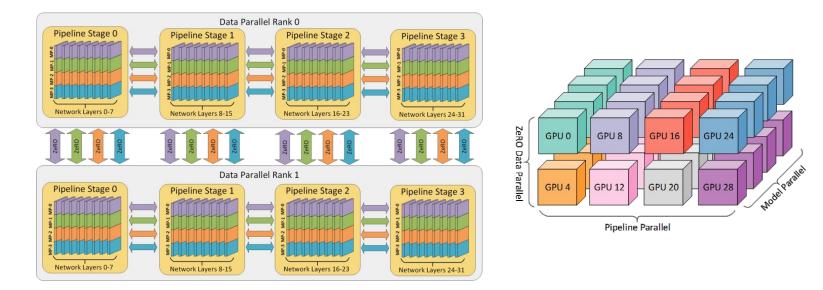
Communication cost can greatly exceed the cost of calculations, reducing the effectiveness of ZeRO. ZeRO defines three stages of operation, with various degrees of partitioning:



 Ψ – model size K – optimizer memory multiplier N_d – DP degree

DeepSpeed: ZeRO + MP + PP

Combines ZeRO stages with other parallelization methods to optimize hardware/network performance:



https://microsoft.com/research/blog/deepspeed-extreme-scale-model-training-for-everyone/

https://github.com/microsoft/DeepSpeed

DeepSpeed: ZeRO + MP + PP

Enabled the development of Turing-NLG and Megatron-Turing NLG:



https://microsoft.com/research/blog/turing-nlg-a-17-billion-parameter-language-model-by-microsoft/

Shaden Smith et al. Using DeepSpeed and Megatron to Train Megatron-Turing NLG 530B, A Large-Scale Generative Language Model. arXiv, 2022. 60

Optimization states can be computed in parallel:

• ZeRO stage 1 is almost always a win

ZeRO-1 used in combination with MP and PP to develop many models:

- GPT-NeoX-20B
- Falcon
- DeepSeek-V3

Sid Black et al. GPT-NeoX-20B: An Open-Source Autoregressive Language Model. Association for Computational Linguistics, 2022.

Ebtesam Almazrouei et al. The Falcon Series of Open Language Models. arXiv, 2023.

DeepSeek-AI, Aixin Liu et al. DeepSeek-V3 Technical Report. arXiv, 2024.

Conclusion

Zero Redundancy Optimizer (ZeRO):

- Partitions optimizer states (stage 1), gradients (stage 2) and model parameters (stage 3)
- Communicates parameters and gradients only when they are needed
- Calculates optimizer states without communication
- Effectiveness of ZeRO-2 and ZeRO-3 is reduced by slow device interconnects
- Requires no code changes to model architecture

Thank You!