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What is Zero Redundancy Optimizer (ZeRO)?

ZeRO is a powerful set of memory optimization techniques that enable effective training of 
large models with trillions of parameters, . . . . Compared to the alternative model parallelism 
approaches for training large models, a key appeal of ZeRO is that no model code 
modifications are required.

2

From the DeepSpeed tutorial:

https://www.deepspeed.ai/tutorials/zero/


Motivation
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Scaling laws dictate that bigger models consistently improve performance:

https://huggingface.co/blog/large-language-models



Motivation

Many factors contribute to the memory footprint occupied during training:

○ Parameters
○ Gradients
○ Optimizer states (e.g., first and second moment estimates in Adam)
○ Activations
○ Temporary buffers
○ Memory fragmentation

Trillion-parameters + Adam + FP16 requires ~16TB for parameters, gradients and optimizer states:

○ What do we do when we reach the physical limits of a single GPU/TPU?
○ We scale to many GPUs/TPUs
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Preliminaries: Collective Operations
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Reduce All Gather

All Reduce Reduce Scatter

https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/usage/collectives.html



Preliminaries: Data Parallelism (DP)
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Most simple form of parallelism:

https://cs.uwaterloo.ca/~wenhuche/teaching/cs886/L12.pptx



Preliminaries: Model Parallelism (MP)
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Also known as horizontal model parallelism, or tensor parallelism:

Mohammad Shoeybi et al. Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism. arXiv, 2019.

https://huggingface.co/docs/transformers/v4.48.1/perf_train_gpu_many



Preliminaries: Model Parallelism (MP)
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Original architecture of AlexNet, a historical example of MP:

Alex Krizhevsky, Ilya Sutskever and Geoffrey E. Hinton. ImageNet Classification with Deep Convolutional Neural Networks. NeurIPS, 2012.



Preliminaries: Pipeline Parallelism (PP)
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Also known as vertical model parallelism:

https://cs.uwaterloo.ca/~wenhuche/teaching/cs886/L12.pptx



Preliminaries: Pipeline Parallelism (PP)
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Mini-batches reduce the time idle, but still result in a pipeline bubble:

Yanping Huang et al. GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism. NeurIPS, 2019.



Limitations of DP, MP and PP
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Data parallelism (DP):

○ Doesn’t actually solve the memory issue
○ Model parameters and all state are replicated

Model parallelism (MP):

○ Certain layers force a collective operation (e.g., batch norm.)
○ Requires extra care when designing the model architecture for the hardware and network

Pipeline parallelism (PP):

○ Pipeline bubble results in idle resources
○ Load imbalance caused by non-uniform execution time on each model partition



ZeRO
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Cells under a transformer layer represent its GPU memory:

https://microsoft.com/research/blog/zero-deepspeed-new-system-optimizations-enable-training-models-with-over-100-billion-parameters/



ZeRO
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Blue cells represent model parameters: 

https://microsoft.com/research/blog/zero-deepspeed-new-system-optimizations-enable-training-models-with-over-100-billion-parameters/



ZeRO
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Orange cells represent gradients: 

https://microsoft.com/research/blog/zero-deepspeed-new-system-optimizations-enable-training-models-with-over-100-billion-parameters/



ZeRO
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Green cells represent optimizer state (including temp. space for updated parameters): 

https://microsoft.com/research/blog/zero-deepspeed-new-system-optimizations-enable-training-models-with-over-100-billion-parameters/



ZeRO
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Blue cells along the top represent activations: 

https://microsoft.com/research/blog/zero-deepspeed-new-system-optimizations-enable-training-models-with-over-100-billion-parameters/



ZeRO
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Model is vertically partitioned across each device:

https://microsoft.com/research/blog/zero-deepspeed-new-system-optimizations-enable-training-models-with-over-100-billion-parameters/



ZeRO
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GPU0 broadcasts its model partition:

https://microsoft.com/research/blog/zero-deepspeed-new-system-optimizations-enable-training-models-with-over-100-billion-parameters/



ZeRO
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Each device evaluates M0 on its own data:

https://microsoft.com/research/blog/zero-deepspeed-new-system-optimizations-enable-training-models-with-over-100-billion-parameters/



ZeRO
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Each device evaluates M0 on its own data:

https://microsoft.com/research/blog/zero-deepspeed-new-system-optimizations-enable-training-models-with-over-100-billion-parameters/



ZeRO
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After the forward pass on M0, all devices except GPU0 delete M0:

https://microsoft.com/research/blog/zero-deepspeed-new-system-optimizations-enable-training-models-with-over-100-billion-parameters/



ZeRO
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GPU1 broadcasts its model partition:

https://microsoft.com/research/blog/zero-deepspeed-new-system-optimizations-enable-training-models-with-over-100-billion-parameters/



ZeRO

23

The forward pass continues on M1:

https://microsoft.com/research/blog/zero-deepspeed-new-system-optimizations-enable-training-models-with-over-100-billion-parameters/



ZeRO
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The forward pass continues on M1:

https://microsoft.com/research/blog/zero-deepspeed-new-system-optimizations-enable-training-models-with-over-100-billion-parameters/



ZeRO
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GPU2 broadcasts its model partition:

https://microsoft.com/research/blog/zero-deepspeed-new-system-optimizations-enable-training-models-with-over-100-billion-parameters/



ZeRO
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The forward pass continues on M2:

https://microsoft.com/research/blog/zero-deepspeed-new-system-optimizations-enable-training-models-with-over-100-billion-parameters/



ZeRO
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The forward pass continues on M2:

https://microsoft.com/research/blog/zero-deepspeed-new-system-optimizations-enable-training-models-with-over-100-billion-parameters/



ZeRO
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GPU3 broadcasts its model partition:

https://microsoft.com/research/blog/zero-deepspeed-new-system-optimizations-enable-training-models-with-over-100-billion-parameters/



ZeRO
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The forward pass continues on M3:

https://microsoft.com/research/blog/zero-deepspeed-new-system-optimizations-enable-training-models-with-over-100-billion-parameters/



ZeRO
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The forward pass continues on M3:

https://microsoft.com/research/blog/zero-deepspeed-new-system-optimizations-enable-training-models-with-over-100-billion-parameters/



ZeRO
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The forward pass is complete. In parallel, each device calculates the loss for its data:

https://microsoft.com/research/blog/zero-deepspeed-new-system-optimizations-enable-training-models-with-over-100-billion-parameters/



ZeRO
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The backward pass starts. All devices allocate space for gradients (shown in pale yellow):

https://microsoft.com/research/blog/zero-deepspeed-new-system-optimizations-enable-training-models-with-over-100-billion-parameters/



ZeRO
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The backward pass proceeds on M3:

https://microsoft.com/research/blog/zero-deepspeed-new-system-optimizations-enable-training-models-with-over-100-billion-parameters/



ZeRO
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The backward pass proceeds on M3:

https://microsoft.com/research/blog/zero-deepspeed-new-system-optimizations-enable-training-models-with-over-100-billion-parameters/



ZeRO
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GPU3 performs a reduce operation, holding the gradients for M3 across all data:

https://microsoft.com/research/blog/zero-deepspeed-new-system-optimizations-enable-training-models-with-over-100-billion-parameters/



ZeRO
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All devices except GPU3 delete M3 and its gradients, and all devices delete activations for M3:

https://microsoft.com/research/blog/zero-deepspeed-new-system-optimizations-enable-training-models-with-over-100-billion-parameters/



ZeRO
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GPU2 broadcasts its model partition:

https://microsoft.com/research/blog/zero-deepspeed-new-system-optimizations-enable-training-models-with-over-100-billion-parameters/



ZeRO
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The backward pass continues on M2:

https://microsoft.com/research/blog/zero-deepspeed-new-system-optimizations-enable-training-models-with-over-100-billion-parameters/



ZeRO
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The backward pass continues on M2:

https://microsoft.com/research/blog/zero-deepspeed-new-system-optimizations-enable-training-models-with-over-100-billion-parameters/



ZeRO
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GPU2 performs a reduce operation, holding the gradients for M2 across all data:

https://microsoft.com/research/blog/zero-deepspeed-new-system-optimizations-enable-training-models-with-over-100-billion-parameters/



ZeRO
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All devices except GPU2 delete M2 and its gradients, and all devices delete activations for M2:

https://microsoft.com/research/blog/zero-deepspeed-new-system-optimizations-enable-training-models-with-over-100-billion-parameters/



ZeRO
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GPU1 broadcasts its model partition:

https://microsoft.com/research/blog/zero-deepspeed-new-system-optimizations-enable-training-models-with-over-100-billion-parameters/



ZeRO
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The backward pass continues on M1:

https://microsoft.com/research/blog/zero-deepspeed-new-system-optimizations-enable-training-models-with-over-100-billion-parameters/



ZeRO
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The backward pass continues on M1:

https://microsoft.com/research/blog/zero-deepspeed-new-system-optimizations-enable-training-models-with-over-100-billion-parameters/



ZeRO
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GPU1 performs a reduce operation, holding the gradients for M1 across all data:

https://microsoft.com/research/blog/zero-deepspeed-new-system-optimizations-enable-training-models-with-over-100-billion-parameters/



ZeRO
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All devices except GPU1 delete M1 and its gradients, and all devices delete activations for M1:

https://microsoft.com/research/blog/zero-deepspeed-new-system-optimizations-enable-training-models-with-over-100-billion-parameters/



ZeRO
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GPU0 broadcasts its model partition:

https://microsoft.com/research/blog/zero-deepspeed-new-system-optimizations-enable-training-models-with-over-100-billion-parameters/



ZeRO
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The backward pass continues on M0:

https://microsoft.com/research/blog/zero-deepspeed-new-system-optimizations-enable-training-models-with-over-100-billion-parameters/



ZeRO
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The backward pass continues on M0:

https://microsoft.com/research/blog/zero-deepspeed-new-system-optimizations-enable-training-models-with-over-100-billion-parameters/



ZeRO
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GPU0 performs a reduce operation, holding the gradients for M0 across all data:

https://microsoft.com/research/blog/zero-deepspeed-new-system-optimizations-enable-training-models-with-over-100-billion-parameters/



ZeRO
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All devices except GPU0 delete M0 and its gradients, and all devices delete activations for M0:

https://microsoft.com/research/blog/zero-deepspeed-new-system-optimizations-enable-training-models-with-over-100-billion-parameters/



ZeRO
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The backwards pass is complete. In parallel, each device performs the optimization step:

https://microsoft.com/research/blog/zero-deepspeed-new-system-optimizations-enable-training-models-with-over-100-billion-parameters/



ZeRO
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The optimizer runs:

https://microsoft.com/research/blog/zero-deepspeed-new-system-optimizations-enable-training-models-with-over-100-billion-parameters/



ZeRO
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The updated model parameters are output as FP32:

https://microsoft.com/research/blog/zero-deepspeed-new-system-optimizations-enable-training-models-with-over-100-billion-parameters/



ZeRO
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The updated model parameters are converted to FP16 and replace the old parameters:

https://microsoft.com/research/blog/zero-deepspeed-new-system-optimizations-enable-training-models-with-over-100-billion-parameters/



ZeRO
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This method vertically partitions the model. Won’t this cause the same issues as PP?

○ Model partitions are broadcasted between devices
○ Each device actually evaluates the entire model over the course of a forward/backward pass

That seems like a lot of communication. Won’t this cause the same issues as MP?

○ It is a lot of communication, but…
○ MP communicates activations
○ ZeRO communicates parameters
○ Sending parameters can be done async. with forward/backward pass calculations



ZeRO
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ZeRO
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Communication cost can greatly exceed the cost of calculations, reducing the effectiveness of ZeRO. 
ZeRO defines three stages of operation, with various degrees of partitioning:

Ψ – model size K – optimizer memory multiplier Nd – DP degree



DeepSpeed: ZeRO + MP + PP
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Combines ZeRO stages with other parallelization methods to optimize hardware/network performance:

https://github.com/microsoft/DeepSpeed

https://microsoft.com/research/blog/deepspeed-extreme-scale-model-training-for-everyone/



DeepSpeed: ZeRO + MP + PP
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Enabled the development of Turing-NLG and Megatron-Turing NLG:

Shaden Smith et al. Using DeepSpeed and Megatron to Train Megatron-Turing NLG 530B, A Large-Scale Generative Language Model. arXiv, 2022. 

https://microsoft.com/research/blog/turing-nlg-a-17-billion-parameter-language-model-by-microsoft/



ZeRO-1

61DeepSeek-AI, Aixin Liu et al. DeepSeek-V3 Technical Report. arXiv, 2024.

Ebtesam Almazrouei et al. The Falcon Series of Open Language Models. arXiv, 2023.

Optimization states can be computed in parallel:

○ ZeRO stage 1 is almost always a win

ZeRO-1 used in combination with MP and PP to develop many models:

○ GPT-NeoX-20B
○ Falcon
○ DeepSeek-V3

Sid Black et al. GPT-NeoX-20B: An Open-Source Autoregressive Language Model. Association for Computational Linguistics, 2022.



Conclusion
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Zero Redundancy Optimizer (ZeRO):

○ Partitions optimizer states (stage 1), gradients (stage 2) and model parameters (stage 3)

○ Communicates parameters and gradients only when they are needed

○ Calculates optimizer states without communication

○ Effectiveness of ZeRO-2 and ZeRO-3 is reduced by slow device interconnects

○ Requires no code changes to model architecture



Thank You!
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