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Serving LLMs is Expensive

● A ton of GPUs are required for 
production scale LLM services

● Nevertheless, each GPU only serve a 
handful of requests per second

○ For LLaMA-13B and moderate-size inputs, 
1 A100 can process < 1 requests per 
second



Related work: KV Cache
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Memory layout when serving an LLM

● Efficient management of KV cache is crucial for high-throughput LLM serving



Motivation: Memory waste in KV Cache
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Motivation: Memory waste in KV Cache

● Internal fragmentation: memory reserved for a request but left unused because the final 
output length is shorter than expected

● Reservation: memory currently unused but reserved for future use by the same request
● External fragmentation: small unused memory gaps between allocations caused by 

varying sequence lengths across different requests



Motivation: Memory waste in KV Cache
● Only 20-40% of KV cache is used to store the actual token states



vLLM: Efficient memory management 
using PagedAttention

● PagedAttention algorithm 
allows for storing attention 
key and values vectors in 
non-contiguous blocks in the 
memory

● Each KV block is a 
fixed-size contiguous chunk 
of memory that can store KV 
cache from left to right

● Attention for each new token 
is computed across all 
tokens in the 
non-contiguous KV blocks

block size = 4



Block Table For Managing KV Cache Blocks



Memory Efficiency of PagedAttention

● Minimal internal fragmentation
○ # of wasted tokens per sequence < block size

● No external fragmentation

Internal 
fragmentation



Memory Efficiency of PagedAttention

● Minimal internal fragmentation
○ # of wasted tokens per sequence < block size

● No external fragmentation

● With PagedAttention, wasted KV cache space 
is < 4% (3-5x improved memory utilization)

Internal 
fragmentation



vLLM performance with basic generation

● one sample per request on three models and two datasets



Handling multiple requests



Application to Other Decoding Scenarios

Eg.

- Parallel sampling
- Beam search



Parallel Sampling



Parallel Sampling with PagedAttention
● Dynamic block mapping enables sharing of KV blocks
● Reference count keeps track of the number of logical KV blocks that are mapped to 

each physical KV block



Parallel Sampling with PagedAttention
● At the generation phase, copy-on-write copies info to a newly allocated physical KV 

block when reference count > 1 
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Beam Search



Beam Search with PagedAttention

● Efficiently supported by dynamic block mapping and copy-on-write mechanism



Beam Search with PagedAttention



Beam Search with PagedAttention



Limitations

● Choice of block size can have a substantial impact on the performance
● Increased kernel complexity and overhead
● Limited effectiveness in short-sequenced workloads
● Doesn’t natively support various models/GPU architectures



Main Takeaways

● Reduces memory fragmentation with paging
● Reduces memory usage with KV block sharing
● Enables batching of more requests, increasing the throughput of LLM 

inference



Colab

https://colab.research.google.com/drive/1j2N09IpVgZgSIS5KVBp-IwjlGMb_ADgf?
usp=sharing

https://colab.research.google.com/drive/1j2N09IpVgZgSIS5KVBp-IwjlGMb_ADgf?usp=sharing
https://colab.research.google.com/drive/1j2N09IpVgZgSIS5KVBp-IwjlGMb_ADgf?usp=sharing
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