Efficient Memory Management for Large Language Model Serving with *PagedAttention*

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E. Gonzalez, Hao Zhang, Ion Stoica

Presenters: Bailey Ng, Paul Tang

Kwon, W., Li, Z., Zhuang, S., Sheng, Y., Zheng, L., Yu, C. H., Gonzalez, J., Zhang, H., & Stoica, I. (2023). Efficient Memory Management for Large Language Model Serving with PagedAttention. Proceedings of the 29th Symposium on Operating Systems Principles, 611–626. https://doi.org/10.1145/3600006.3613165

Serving LLMs is Expensive

- A ton of GPUs are required for production scale LLM services
- Nevertheless, each GPU only serve a handful of requests per second
 - For LLaMA-13B and moderate-size inputs, 1 A100 can process < 1 requests per second

Zuckerberg's Meta Is Spending Billions to Buy 350,000 Nvidia H100 GPUs

In total, Meta will have the compute power equivalent to 600,000 Nvidia H100 GPUs to help it develop next-generation AI, says CEO Mark Zuckerberg.

Related work: KV Cache

Self-Attention

Self-Attention

Output

Output

T: Sequence length

d : Model embedding size

Memory layout when serving an LLM

• Efficient management of KV cache is crucial for high-throughput LLM serving

NVIDIA A100 40GB

• Internal fragmentation: memory reserved for a request but left unused because the final output length is shorter than expected

- Internal fragmentation: memory reserved for a request but left unused because the final output length is shorter than expected
- **Reservation:** memory currently unused but reserved for future use by the same request

- Internal fragmentation: memory reserved for a request but left unused because the final output length is shorter than expected
- **Reservation:** memory currently unused but reserved for future use by the same request
- External fragmentation: small unused memory gaps between allocations caused by varying sequence lengths across different requests

• Only 20-40% of KV cache is used to store the actual token states

vLLM: Efficient memory management using PagedAttention

- PagedAttention algorithm allows for storing attention key and values vectors in non-contiguous blocks in the memory
- Each KV block is a fixed-size contiguous chunk of memory that can store KV cache from left to right
- Attention for each new token is computed across all tokens in the non-contiguous KV blocks

Block Table For Managing KV Cache Blocks

Memory Efficiency of PagedAttention

- Minimal internal fragmentation
 - # of wasted tokens per sequence < block size
- No external fragmentation

Memory Efficiency of PagedAttention

- Minimal internal fragmentation
 - # of wasted tokens per sequence < block size
- No external fragmentation

 With PagedAttention, wasted KV cache space is < 4% (3-5x improved memory utilization)

vLLM performance with basic generation

• one sample per request on three models and two datasets

Handling multiple requests

Physical KV blocks

Application to Other Decoding Scenarios

Eg.

- Parallel sampling
- Beam search

Parallel Sampling

- Dynamic block mapping enables sharing of KV blocks
- Reference count keeps track of the number of logical KV blocks that are mapped to each physical KV block

• At the generation phase, copy-on-write copies info to a newly allocated physical KV block when reference count > 1

• At the generation phase, copy-on-write copies info to a newly allocated physical KV block when reference count > 1

Beam Search

Beam Search with PagedAttention

• Efficiently supported by dynamic block mapping and copy-on-write mechanism

Beam Search with PagedAttention

Beam Search with PagedAttention

Limitations

- Choice of block size can have a substantial impact on the performance
- Increased kernel complexity and overhead
- Limited effectiveness in short-sequenced workloads
- Doesn't natively support various models/GPU architectures

Main Takeaways

- Reduces memory fragmentation with paging
- Reduces memory usage with KV block sharing
- Enables batching of more requests, increasing the throughput of LLM inference

https://colab.research.google.com/drive/1j2N09IpVgZgSIS5KVBp-IwjIGMb_ADgf? usp=sharing

References

- Alammar, J. (2018, June 27). *The Illustrated Transformer*. Jay Alammar Visualizing machine learning one concept at a time. https://jalammar.github.io/illustrated-transformer/
- Crider, M. (2025, February 28). OpenAl is still gobbling up GPUs by the thousands for ChatGPT. PCWorld. https://www.pcworld.com/article/2623332/openai-is-still-gobbling-up-gpus-by-the-thousands-for-chatgpt.html
- Hu, X., Li, G., Xia, X., Lo, D., & Jin, Z. (2019). Deep code comment generation with hybrid lexical and syntactical information. *Empirical Software Engineering*, 25(3), 2179–2217. https://doi.org/10.1007/s10664-019-09730-9
- Kan, M. (2024, January 18). Zuckerberg's Meta Is Spending Billions to Buy 350,000 Nvidia H100 GPUs. PCMAG. https://www.pcmag.com/news/zuckerbergs-meta-is-spending-billions-to-buy-350000-nvidia-h100-gpus
- Kwon, W., & Li, Z. (2023, October 12). *Fast LLM Serving with vLLM and PagedAttention*. YouTube. https://www.youtube.com/watch?v=5ZlavKF_98U&t=1636s&ab_channel=Anyscale
- Kwon, W., Li, Z., Zhuang, S., Sheng, Y., Zheng, L., Yu, C. H., Gonzalez, J., Zhang, H., & Stoica, I. (2023). Efficient Memory Management for Large Language Model Serving with PagedAttention. *Proceedings of the 29th Symposium on Operating Systems Principles*, 611–626. https://doi.org/10.1145/3600006.3613165

Lages, J. (2023, October 8). Transformers KV Caching Explained. Medium. https://medium.com/@joaolages/kv-caching-explained-276520203249