
Efficient Memory Management 
for Large Language Model 

Serving with PagedAttention
Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, 

Joseph E. Gonzalez, Hao Zhang, Ion Stoica

Presenters: Bailey Ng, Paul Tang

Kwon, W., Li, Z., Zhuang, S., Sheng, Y., Zheng, L., Yu, C. H., Gonzalez, J., Zhang, H., & Stoica, I. (2023). Efficient Memory Management for Large
Language Model Serving with PagedAttention. Proceedings of the 29th Symposium on Operating Systems Principles, 611–626.
https://doi.org/10.1145/3600006.3613165



Serving LLMs is Expensive

● A ton of GPUs are required for 
production scale LLM services

● Nevertheless, each GPU only serve a 
handful of requests per second

○ For LLaMA-13B and moderate-size inputs, 
1 A100 can process < 1 requests per 
second



Related work: KV Cache



Self-Attention



Self-Attention



Naive Self-Attention



Naive Self-Attention



Naive Self-Attention



Naive Self-Attention



Self-Attention with KV Cache



Self-Attention with KV Cache



Self-Attention with KV Cache



Self-Attention with KV Cache



Self-Attention with KV Cache

Time

Space

Time

Sequence length

Model embedding size



Memory layout when serving an LLM

● Efficient management of KV cache is crucial for high-throughput LLM serving



Motivation: Memory waste in KV Cache



Motivation: Memory waste in KV Cache

● Internal fragmentation: memory reserved for a request but left unused because the final 
output length is shorter than expected



Motivation: Memory waste in KV Cache

● Internal fragmentation: memory reserved for a request but left unused because the final 
output length is shorter than expected

● Reservation: memory currently unused but reserved for future use by the same request



Motivation: Memory waste in KV Cache

● Internal fragmentation: memory reserved for a request but left unused because the final 
output length is shorter than expected

● Reservation: memory currently unused but reserved for future use by the same request
● External fragmentation: small unused memory gaps between allocations caused by 

varying sequence lengths across different requests



Motivation: Memory waste in KV Cache
● Only 20-40% of KV cache is used to store the actual token states



vLLM: Efficient memory management 
using PagedAttention

● PagedAttention algorithm 
allows for storing attention 
key and values vectors in 
non-contiguous blocks in the 
memory

● Each KV block is a 
fixed-size contiguous chunk 
of memory that can store KV 
cache from left to right

● Attention for each new token 
is computed across all 
tokens in the 
non-contiguous KV blocks

block size = 4



Block Table For Managing KV Cache Blocks



Memory Efficiency of PagedAttention

● Minimal internal fragmentation
○ # of wasted tokens per sequence < block size

● No external fragmentation

Internal 
fragmentation



Memory Efficiency of PagedAttention

● Minimal internal fragmentation
○ # of wasted tokens per sequence < block size

● No external fragmentation

● With PagedAttention, wasted KV cache space 
is < 4% (3-5x improved memory utilization)

Internal 
fragmentation



vLLM performance with basic generation

● one sample per request on three models and two datasets



Handling multiple requests



Application to Other Decoding Scenarios

Eg.

- Parallel sampling
- Beam search



Parallel Sampling



Parallel Sampling with PagedAttention
● Dynamic block mapping enables sharing of KV blocks
● Reference count keeps track of the number of logical KV blocks that are mapped to 

each physical KV block



Parallel Sampling with PagedAttention
● At the generation phase, copy-on-write copies info to a newly allocated physical KV 

block when reference count > 1 



Parallel Sampling with PagedAttention
● At the generation phase, copy-on-write copies info to a newly allocated physical KV 

block when reference count > 1 



Parallel Sampling with PagedAttention



Parallel Sampling with PagedAttention



Beam Search



Beam Search with PagedAttention

● Efficiently supported by dynamic block mapping and copy-on-write mechanism



Beam Search with PagedAttention



Beam Search with PagedAttention



Limitations

● Choice of block size can have a substantial impact on the performance
● Increased kernel complexity and overhead
● Limited effectiveness in short-sequenced workloads
● Doesn’t natively support various models/GPU architectures



Main Takeaways

● Reduces memory fragmentation with paging
● Reduces memory usage with KV block sharing
● Enables batching of more requests, increasing the throughput of LLM 

inference



Colab

https://colab.research.google.com/drive/1j2N09IpVgZgSIS5KVBp-IwjlGMb_ADgf?
usp=sharing

https://colab.research.google.com/drive/1j2N09IpVgZgSIS5KVBp-IwjlGMb_ADgf?usp=sharing
https://colab.research.google.com/drive/1j2N09IpVgZgSIS5KVBp-IwjlGMb_ADgf?usp=sharing


References
Alammar, J. (2018, June 27). The Illustrated Transformer. Jay Alammar – Visualizing machine learning one concept at a time.

https://jalammar.github.io/illustrated-transformer/

Crider, M. (2025, February 28). OpenAI is still gobbling up GPUs by the thousands for ChatGPT. PCWorld.
https://www.pcworld.com/article/2623332/openai-is-still-gobbling-up-gpus-by-the-thousands-for-chatgpt.html

Hu, X., Li, G., Xia, X., Lo, D., & Jin, Z. (2019). Deep code comment generation with hybrid lexical and syntactical information. Empirical Software Engineering,
25(3), 2179–2217. https://doi.org/10.1007/s10664-019-09730-9

Kan, M. (2024, January 18). Zuckerberg’s Meta Is Spending Billions to Buy 350,000 Nvidia H100 GPUs. PCMAG.
https://www.pcmag.com/news/zuckerbergs-meta-is-spending-billions-to-buy-350000-nvidia-h100-gpus

Kwon, W., & Li, Z. (2023, October 12). Fast LLM Serving with vLLM and PagedAttention. YouTube.
https://www.youtube.com/watch?v=5ZlavKF_98U&t=1636s&ab_channel=Anyscale

Kwon, W., Li, Z., Zhuang, S., Sheng, Y., Zheng, L., Yu, C. H., Gonzalez, J., Zhang, H., & Stoica, I. (2023). Efficient Memory Management for Large Language
Model Serving with PagedAttention. Proceedings of the 29th Symposium on Operating Systems Principles, 611–626.
https://doi.org/10.1145/3600006.3613165

Lages, J. (2023, October 8). Transformers KV Caching Explained. Medium. https://medium.com/@joaolages/kv-caching-explained-276520203249 


