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Overall Idea

R. Rafailov, K. Lee, J. Ba, and M. Zhao, “Direct Preference Optimization: Your Language Model is Secretly a Reward Model,” arXiv preprint 
arXiv:2305.18290, 2023. Available: https://arxiv.org/abs/2305.18290.

Optimizing for human preferences while avoiding reinforcement learning.

https://arxiv.org/abs/2305.18290


3

Preliminaries - RLHF - Reward Modeling

Question(Prompt) Answer(Text generated by the language 
model)

Reward(0.0 ~ 1.0)

Where is Toronto Tronto is a city in Canada ???

Explain gradient like I’m 5 Gradient is the direction towards which 
the function increase steepestly.

???

What is 2 + 2? 4 ???

Score based

Humans are not experts of scoring the preference

Can be learned by using regression model
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Preliminaries - RLHF - Reward Modeling

Question(Prompt) Answer 1 Answer 2 Chosen

Where is Toronto Tronto is a city in Canada In Canada 1

Explain gradient like I’m 5 I have no knowledge about 
gradient.

Gradient is the direction 
towards which the function 
increase steepestly.

2

What is 2 + 2? 4 2 + 2 is a very complicated 
problem……. So, the 
answer is 4.

1

Selection based

But they can at least choose one!
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Preliminaries - RLHF - The Bradley-Terry model

Question(Prompt x) Winning Answer(yw) Lossing answer(yl)

Where is Toronto Tronto is a city in Canada In Canada

Explain gradient like I’m 5 I have no knowledge about 
gradient.

Gradient is the direction 
towards which the function 
increase steepestly.

What is 2 + 2? 4 2 + 2 is a very complicated 
problem……. So, the 
answer is 4.

Let’s convert the preference into scores
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Preliminaries - RLHF - Reward Model Estimation

MLE

Equation (2) in paper

Cool, so how to mimic the human preference exactly?
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Preliminaries - The RLHF objective
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Preliminaries - The RLHF objective

Can we directly optimize the RLHF objective?

Unfortunately, no

Why?

 Because the variable 𝑦 is sampled from the language model itself using various strategies (greedy, beam search, top-k, and 
similar).  
This sampling process is not differentiable. This is the reason we were forced to use RL algorithms like PPO.
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DPO Derivation

Main Goal:  
1. Find the optimal policy’s function, optimize toward it. 
2. Get rid of reward model.
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DPO Derivation - Get the policy first

Devided by

(1)

(2)

(3)

(4)
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Why Z(x)?

Not a probability distribution!

Where

(3)

(4)
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DPO Derivation - Get the policy first

Fantastic! We got the optimal policy’s equation! Is it over?
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Journey is not finished

Not really. Evaluating the 𝑍 𝑥 term is not tractable computationally, because it means we would 
have to generate all possible answers 𝑦 that can be generated by our language model for every 
given prompt 𝑥.

V size = 3000 
Window size = 200 3000^200 possibilities!!
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What now?

Let’s try to rearrange what we have.
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Reward function is still there
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A possible way to remove Z(x)
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Lend me a hand, Bradley-Terry model!
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Final equation.  DPO Loss
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What does the DPO update do?

16
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The Derivative of Loss Function 

17
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The Derivative of Loss Function 

18
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Code implementation
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Code implementation - First trial
Let’s post-train
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Code implementation - First trial
Let’s post-train
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Code implementation - First trial
Fine-tuning the whole model:



26

Code implementation - First trial
Fine-tuning the whole model:
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Code implementation - First trial

Overfitting!

Dropout X 
Small Learning Rate X 
Large Batch Size X 
Large Beta X
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Code implementation - First trial

1. Maintain the overall knowledge 
2. Change the tone only

Requires small number of parameters

Lora
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Code implementation - Origional Design: LoRA

Fine-tuning with Lora:
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Code implementation - Origional Design: LoRA

Fine-tuning with Lora:
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Code implementation
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Evaluations

Figure Source: R. Rafailov, K. Lee, J. Ba, and M. Zhao, “Direct Preference Optimization: Your Language Model is Secretly a Reward Model,” 
arXiv preprint arXiv:2305.18290, 2023. Available: https://arxiv.org/abs/2305.18290.

https://arxiv.org/abs/2305.18290
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Evaluations

Table Source: R. Rafailov, K. Lee, J. Ba, and M. Zhao, “Direct Preference Optimization: Your Language Model is Secretly a Reward Model,” 
arXiv preprint arXiv:2305.18290, 2023. Available: https://arxiv.org/abs/2305.18290.

https://arxiv.org/abs/2305.18290
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Evaluation

Figure Source: R. Rafailov, K. Lee, J. Ba, and M. Zhao, “Direct Preference Optimization: Your Language Model is Secretly a Reward Model,” 
arXiv preprint arXiv:2305.18290, 2023. Available: https://arxiv.org/abs/2305.18290.

https://arxiv.org/abs/2305.18290
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Limitation

The limitation of model size 

GPT-4 proxy could be affected by prompt 

How Over-optimization happens 

How DPO makes it without reward function


