GPipe: Easy Scaling with Micro-Batch Pipeline Parallelism

Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, et. al, NIPS 2019

CSC2541: Large Models

Presented by:

Yi (Tom) Lu, Keyu (Roy) Bai

January 31st, 2025

Research Background

Increasing Model Size:

Larger and deeper networks provide better performance

Demand for scaling neural networks are increasing

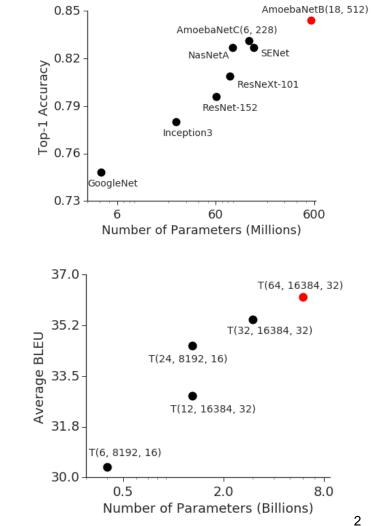
Difficulty in Training Large Models:

Hardware Constraints force users to explore model parallelism methods

Existing methods: model and architecture specific

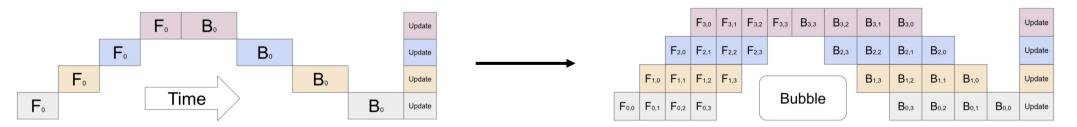
Motivation:

Develop novel approach enabling training larger models



TL;DR:

- 1. Scalable Model Parallel Library developed by Google, implemented in various major Deep Learning Libraries including Tensorflow and PyTorch
- 2. Optimize GPU resource usage via Data Parallelism



3. Optimize vRAM Usage via Gradient Checkpointing

$$O\left(N \cdot \frac{L}{K} \cdot d\right) \longrightarrow O\left(N + \frac{L}{K} \cdot \frac{N}{M}\right)$$
 (Quadratic to nearly Linear)

4. High efficiency, Highly flexible and reliable model parallelism solution

Motivation:

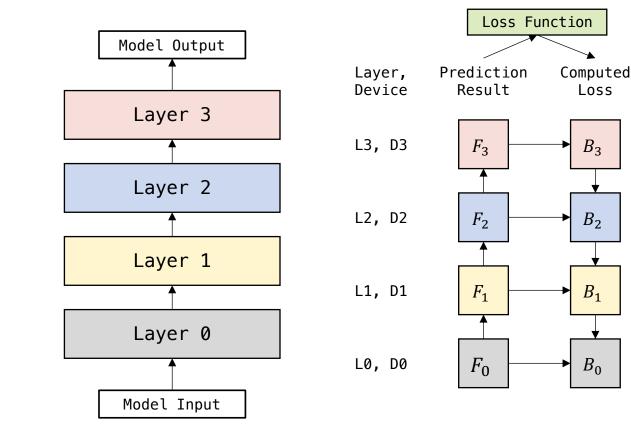
Separately a large model by layers then load them to multiple GPUs

Computations:

Sequentially perform Forward Pass and Backpropagation

Model Parallelism:

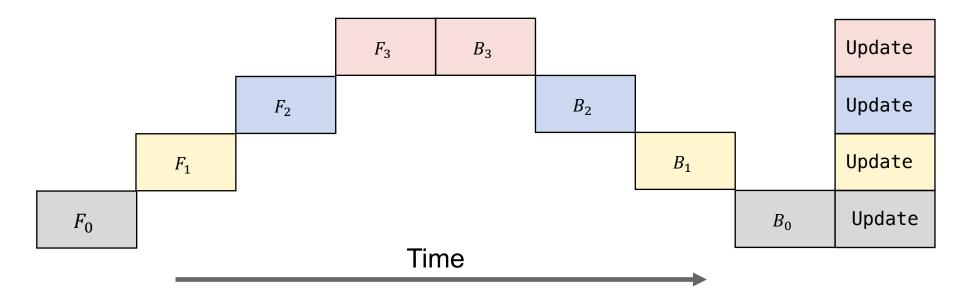
Distribute model layers to devices



Forward Back Pass Prop

Computation:

Perform forward and backward pass for each layer on each GPU sequentially, Then update the gradients for each layer

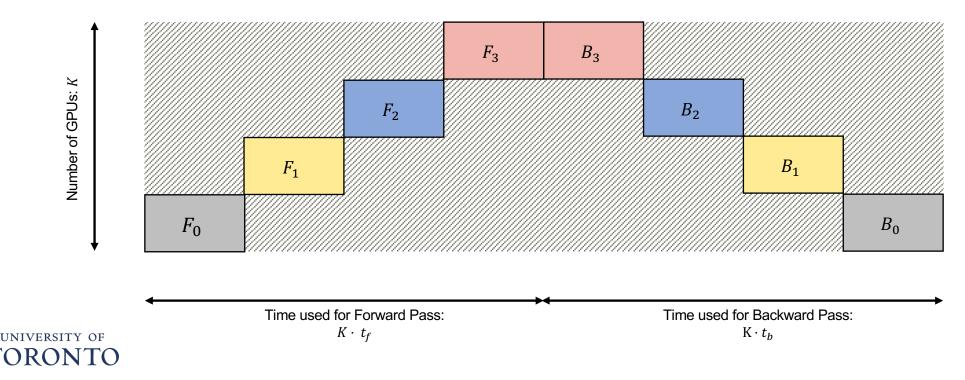


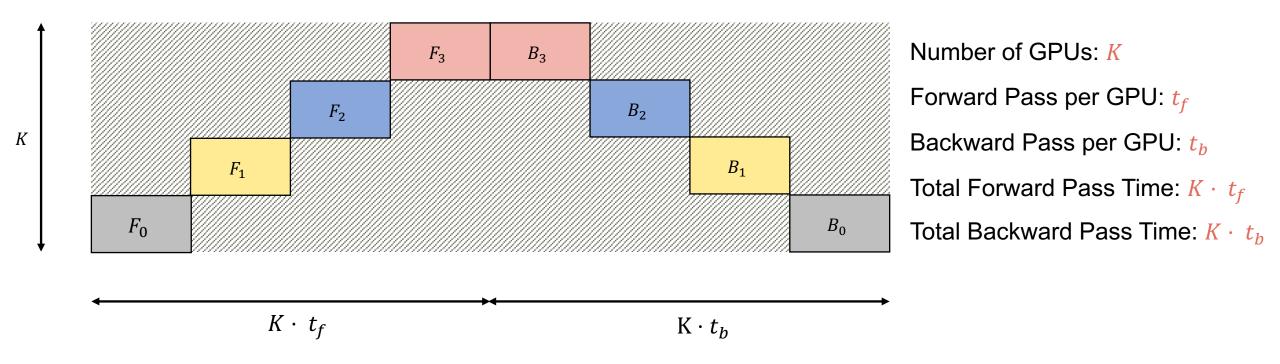
Problems:

1. Low GPU Utilization:

All grayscale areas represent unused GPU times!

How bad it is? $O\left(\frac{K-1}{K}\right)$ for number of GPUs: K





Total Time Spent:

$$K^2 \cdot (t_f + t_b)$$

Time used for computation:

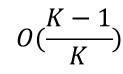
 $K \cdot (t_f + t_b)$

Proportion of Wasted GPU time:

$$1 - \frac{K \cdot (t_f + t_b)}{K^2 \cdot (t_f + t_b)} = \frac{K - 1}{K}$$

Time complexity of Bubble Area:

UNIVERSITY OF TORONTO



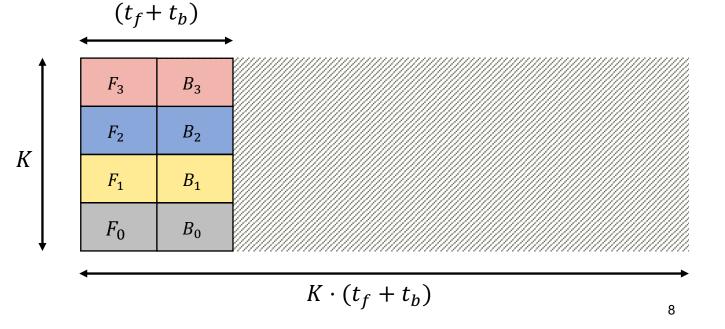
Number of GPUs: K

Forward Pass per GPU: t_f

Backward Pass per GPU: t_b

Total Forward Pass Time: $K \cdot t_f$

Total Backward Pass Time: $K \cdot t_b$



Total Time Spent:

$$K^2 \cdot (t_f + t_b)$$

Time used for computation:

$$K \cdot (t_f + t_b)$$

Proportion of Wasted GPU time:

$$1 - \frac{K \cdot (t_f + t_b)}{K^2 \cdot (t_f + t_b)} = \frac{K - 1}{K}$$

Time complexity of Bubble Area:

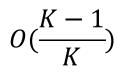
$$K \downarrow \begin{array}{c} (t_{f} + t_{b}) \\ \hline F_{3} & B_{3} \\ \hline F_{2} & B_{2} \\ \hline F_{1} & B_{1} \\ \hline F_{0} & B_{0} \end{array}$$

$$K \cdot (t_{f} + t_{b})$$

What can be observed:

$$\lim_{K \to \infty} \left(\frac{K-1}{K} \right) = 1$$

More GPUs are utilized, more resources will be wasted

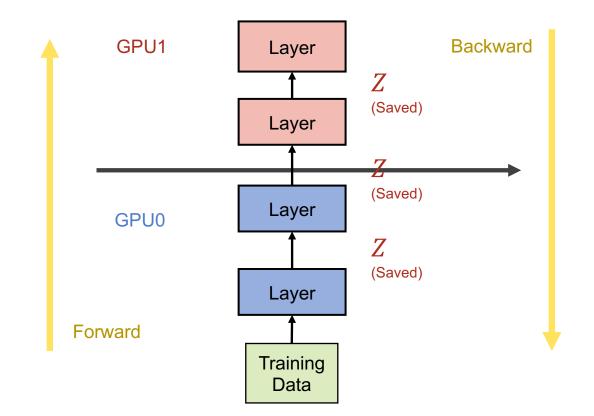


Problems:

Store excessive intermediate results.
 How bad it is?

$$O\left(N\cdot\frac{L}{K}\cdot d\right)$$

GPU Number: *K* Batch Size: *N* Intermediate Result: *Z* Model Layer number: *L* Width of each layer: *d*



With Model width or Depth increasing, the advantages brought by increasing *K* might be cancelled out

Conclusion of Vanilla Model Parallelism

Problems:

1. Low GPU utilization efficiency

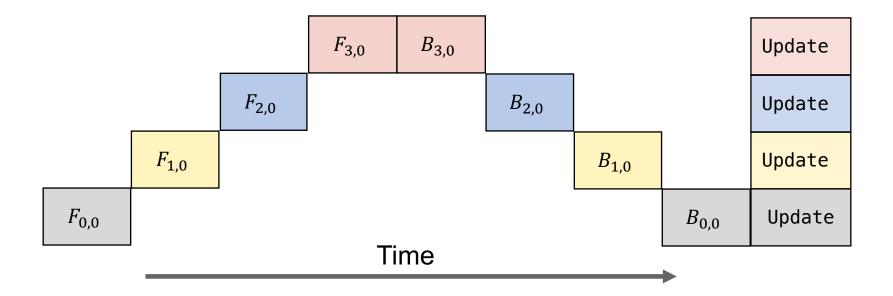
More GPUs are utilized, more resources will be wasted

Intermediate activations taken up large amount of vRAM
 With Model width or Depth increasing, the advantages brought by increasing
 K might be cancelled out

Solution: GPipe

Observation:

If Divide a minibatch into micro-batches, we can observe...



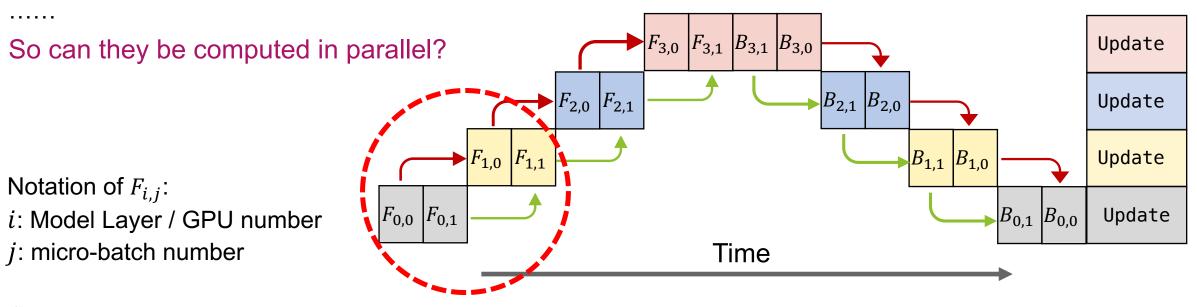
GPipe

Observation:

If Divide a minibatch into micro-batches, we can observe...

Computing $F_{0,1}$ has nothing to do with computing computing $F_{1,0}$

Computing $F_{1,1}$ has nothing to do with computing computing $F_{2,0}$



GPipe

Observation:

If Divide a minibatch into micro-batches, we can observe...

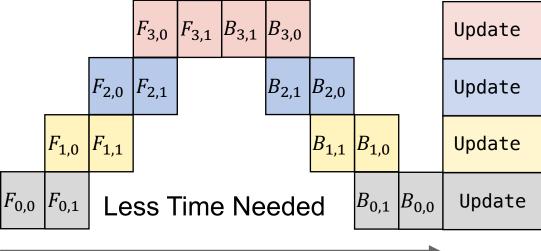
Computing Forward/Backward Pass $F_{i,j}$ ($B_{i,j}$) for *i* th layer on *i* th GPU

Has nothing to do with

Computing Forward/Backward Pass $F_{i+1,j-1}$ ($B_{i+1,j-1}$) for i + 1 th layer on i + 1 th GPU

So they can be parallelized!

Notation of *F*_{*i*,*j*}: *i*: Model Layer / GPU number *j*: micro-batch number



GPipe

Batch Parallelism:

Parallelize training data by dividing them further into micro-batches

Greatly reduce bubble size and increased GPU resource utilization

			F _{3,0}	F _{3,1}	B _{3,1}	B _{3,0}				Update
		F _{2,0}	F _{2,1}			B _{2,1}	B _{2,0}			Update
	F _{1,0}	<i>F</i> _{1,1}					B _{1,1}	B _{1,0}		Update
<i>F</i> _{0,0}	<i>F</i> _{0,1}		Le	\$ \$	Bub	ble		B _{0,1}	B _{0,0}	Update

Time

Number of GPUs (Pipeline Depth): *K* Number of Micro batch: *M* Forward Pass time per GPU: t_f Backward Pass time per GPU: t_b Total Forward Pass Time: $K \cdot (M + K - 1) \cdot t_f$ Total Backward Pass Time: $K \cdot (M + K - 1) \cdot t_b$

GPipe:

Batch Parallelism:

Parallelize training data by dividing them further into micro-batches Greatly reduce bubble size and increased GPU resource utilization

Total Time Spent:

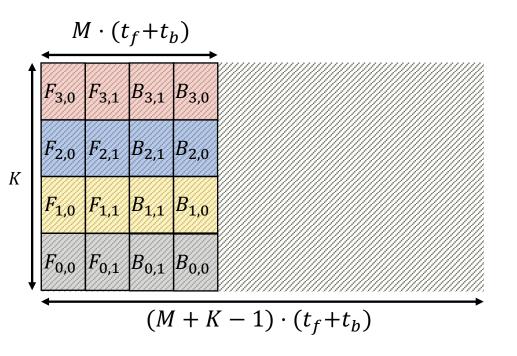
 $K \cdot (M + K - 1) \cdot (t_f + t_b)$

Time used for computation:

$$K \cdot M \cdot (t_f + t_b)$$

Proportion of Wasted GPU time:

$$1 - \frac{K \cdot M \cdot (t_f + t_b)}{K \cdot (M + K - 1) \cdot (t_f + t_b)} = \frac{K - 1}{(M + K - 1)}$$



Batch Parallelism:

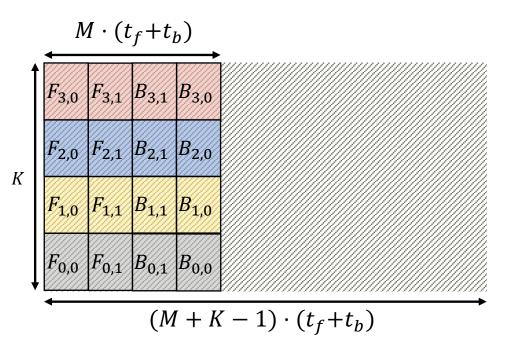
Parallelize training data by dividing them further into micro-batches Greatly reduce bubble size and increased GPU resource utilization

Bubble Area Time Complexity:

$$O(\frac{K-1}{M+K-1})$$

More minibatches == Smaller bubble area

=> Higher GPU utilization efficiency!



GPipe:

Gradient Checkpointing

To compute backpropagations, each layer's intermediate activations need to be stored.

Without Gradient Checkpointing, peak total GPU vRAM storage complexity :

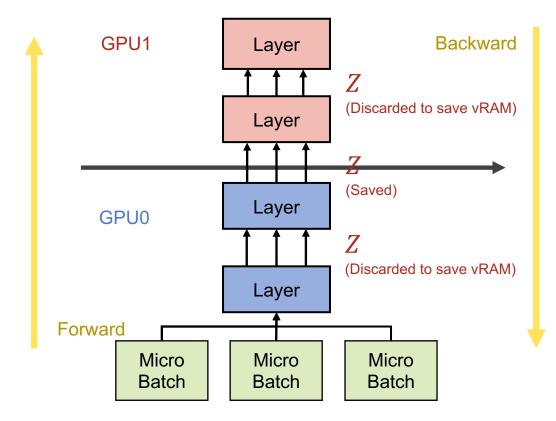
 $O(N \cdot L)$

Where *N*: Batch Size, *L*: Total number of Layers, Assume each layer's size are similar.

Idea of Gradient Checkpointing:

Only store activations at final layers for each partition.

Recompute intermediate activations within partitions during backpropagation.



Gradient Checkpointing

For Gradient Checkpointing, peak total GPU vRAM storage complexity:

$$O(N + \frac{L}{K} \cdot \frac{N}{M})$$

Where

<u>200</u>

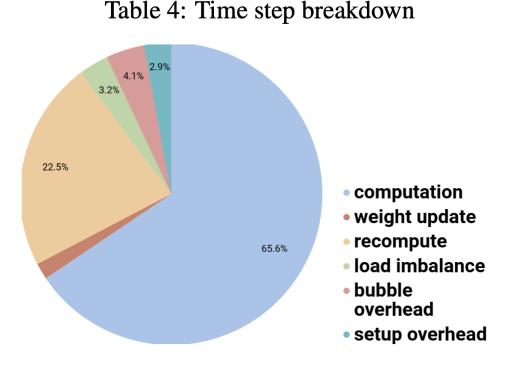
UNIVERSITY OF

RONTO

N: Batch Size, *L*: Total number of Layers, *K*: Number of Partitions, *M*: Micro batch Size

Effect of Gradient Checkpointing:

Significantly reduce peak vRAM usage, trade off computation time with less vRAM consumption



Tradeoff: took around 1/3 total running time to recompute activations

Evaluations

Research Questions:

Does GPipe efficient in reducing vRAM usage?

Does GPipe efficient in accelerating model training?

		Single Card GPipe + Gradient Checkpo				, 2, 4, 8 cards
-	NVIDIA GPUs (8GB each)	Naive-1	Pipeline-1	Pipeline-2	Pipeline-4	Pipeline-8
CNN: Image Classification	AmoebaNet-D (L, D) # of Model Parameters Total Model Parameter Memory Peak Activation Memory	(18, 208) 82M 1.05GB 6.26GB	(18, 416) 318M 3.8GB 3.46GB	(18, 544) 542M 6.45GB 8.11GB	(36, 544) 1.05B 12.53GB 15.21GB	(72, 512) 1.8B 24.62GB 26.24GB
	Cloud TPUv3 (16GB each)	Naive-1	Pipeline-1	Pipeline-8	Pipeline-32	Pipeline-128
Transformer: Language Translation	Transformer-L # of Model Parameters Total Model Parameter Memory Peak Activation Memory	3 282.2M 11.7G 3.15G	13 785.8M 8.8G 6.4G	103 5.3B 59.5G 50.9G	415 21.0B 235.1G 199.9G	1663 83.9B 937.9G 796.1G
UNIVERSITY OF						

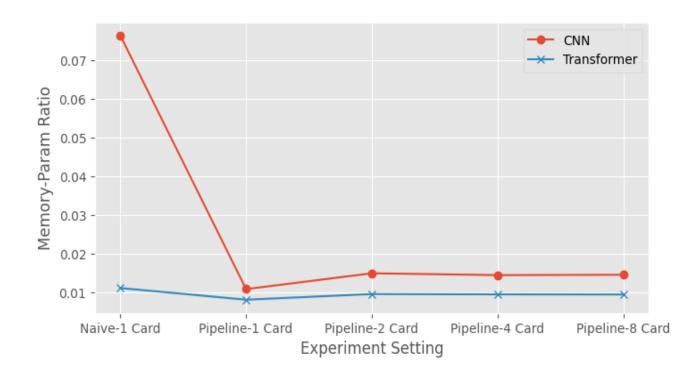
Dipolino 1 2 / 8 --

Evaluations

Research Question 1:

Does GPipe efficient in reducing vRAM Usage?

Define vRAM Usage Ratio: Peak Activation Memory divided by Model Parameter size



Yes. Application of GPipe yields to significantly better GPU memory utilization efficiency

Evaluations

Research Question 2:

Does GPipe efficient in accelerating model training?

Yes. Effectiveness depend on number of micro-batches and model architecture

Test GPipe's effect in accelerating model training with NVLink disabled:

GPU	Α	AmoebaNet			Transformer			
K =	2	4	8	2	4	8		
M = 32	1	1.7	2.7	1	1.8	3.3		

Acceleration rate (1.7 times, 2.7 times, etc.)

- K: Number of GPUs, M: Number of Micro-batches
- Even with NVLink disabled, training speed still increases as number of GPU increases.
- CNN performs worse than Transformer due to imbalance model splitting.

Test GPipe's effect in accelerating model training with NVLink enabled:

TPU	AmoebaNet ^å			Transformer			
K =	2	4	8	2	4	8	
M = 1	1	1.13	1.38	1	1.07	1.3	
M=4	1.07	1.26	1.72	1.7	3.2	4.8	
M = 32	1.21	1.84	3.48	1.8	3.4	6.3	

Acceleration rate (1.07 times, 1.21 times, etc.)

Performance depend on MicroBatch number: M.

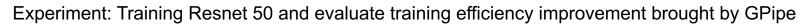
- M = 1: no linearity between number of GPUs and training speed
- M = 4: noticeable improvement
- M = 32: significantly better, observed linearity on Transformer.

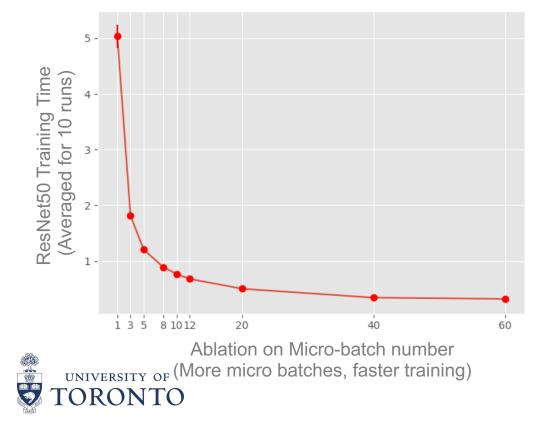
Jupyter Notebook Demo Result

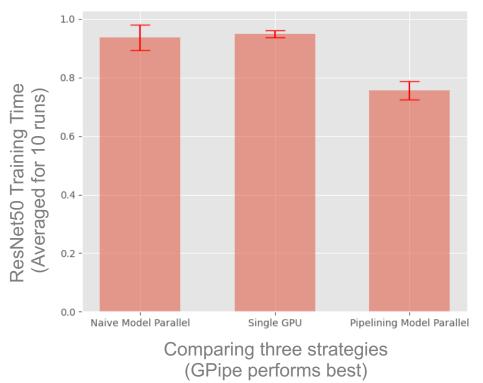
Experiment Objective:

Demonstrate GPipe's effectiveness in accelerating CNN model training via toy examples

Experiment Environment: Kaggle Dev Notebook (2* Nvidia T4, batch size=128 only)





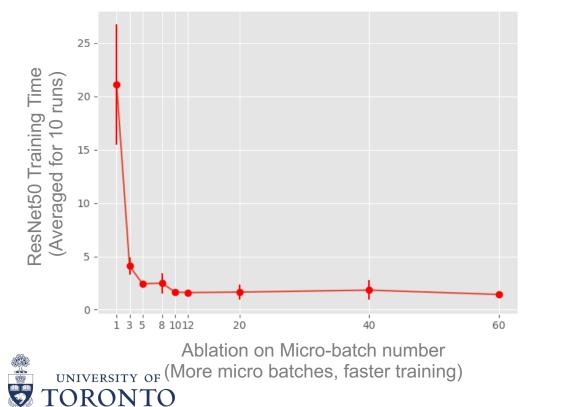


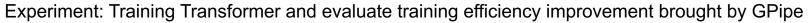
Jupyter Notebook Demo Result

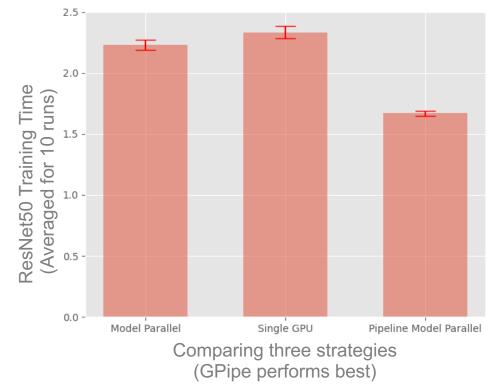
Experiment Objective:

Demonstrate GPipe's effectiveness in accelerating Transformer model training via toy examples

Experiment Environment: Kaggle Dev Notebook (2* Nvidia T4, batch size=128 only)







Scope and Limitations

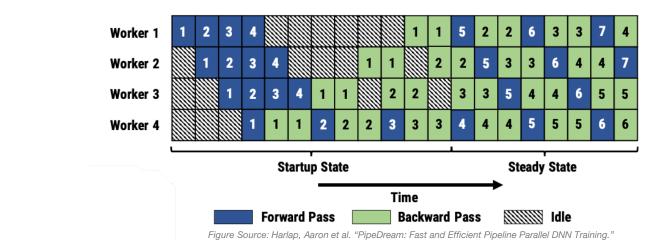
Scope is Limited to Pipeline Parallelism

Higher-level model parallelism, including data parallelism and tensor parallelism can be implemented to achieve better efficiency (Megatron LM, ZeRO, etc.)

GPU vRAM usage could be further optimized

PipeDream (Microsoft, SOSP 2019):

Immediately perform backpropagation once a micro batch has completed forward propagation, can abandon micro-batches' activations earlier



25

Scope and Limitations

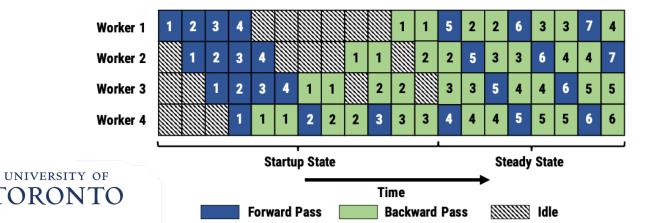
Scope is Limited to Pipeline Parallelism

Higher-level model parallelism, including data parallelism and tensor parallelism can be implemented to achieve better efficiency (Megatron LM, ZeRO, etc.)

GPU vRAM usage could be further optimized

PipeDream (Microsoft, SOSP 2019):

Immediately perform backpropagation once a micro batch has completed forward propagation, can abandon micro-batches' activations earlier



Why Google decide to made the trade-off?

- 1. Cannot reduce bubble size
- 2. Require maintaining multiple model weight versions for consistent gradient update
- 3. Further reduce memory usage but require complex implementation

Summary

1. Proposed novel pipeline-parallelism:

GPipe is achieved through batch-splitting mechanism

2. Performed intensive experiment:

Demonstrated strong empirical results and proved the efficiency of GPipe

3. Introduced GPipe:

Implemented as a scalable model-parallelism library enabling the training of giant neural networks on Tensorflow

Thanks

