
GPipe: Easy Scaling with Micro-Batch Pipeline
Parallelism
Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, et. al, NIPS 2019

CSC2541: Large Models

Presented by:

Yi (Tom) Lu, Keyu (Roy) Bai

January 31st, 2025

1

Research Background

2

Motivation:
Develop novel approach enabling training larger models

Increasing Model Size:
Larger and deeper networks provide better performance

Demand for scaling neural networks are increasing

Difficulty in Training Large Models:
Hardware Constraints force users to explore model
parallelism methods

Existing methods: model and architecture specific

Figure Source: Huang, Yanping et al. “GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism.”

1. Scalable Model Parallel Library developed by Google, implemented in
various major Deep Learning Libraries including Tensorflow and PyTorch

2. Optimize GPU resource usage via Data Parallelism

3. Optimize vRAM Usage via Gradient Checkpointing

4. High efficiency, Highly flexible and reliable model parallelism solution

3

TL;DR:

𝑂 𝑁 ⋅ !
"
⋅ 𝑑 𝑂(𝑁 + !

"
⋅ #
$
) (Quadratic to nearly Linear)

Vanilla Model Parallelism

𝐹!

𝐹!

𝐹"

𝐹#

L0, D0

L1, D1

L2, D2

L3, D3

Prediction
Result

𝐵$

𝐵!

𝐵"

𝐵#

Computed
Loss

Loss Function

Layer,
Device

Forward
Pass

Back
Prop

Motivation:
Separately a large model by layers
then load them to multiple GPUs

Computations:
Sequentially perform Forward Pass
and Backpropagation

Model Parallelism:
Distribute model layers to devices

Layer 0

Layer 2

Layer 3

Layer 1

Model Input

Model Output

4

Vanilla Model Parallelism

𝐵$

𝐵!

𝐵"

𝐵#

𝐹!

𝐹!

𝐹"

𝐹#

Update

Update

Update

Update

Time

Computation:
Perform forward and backward pass for each layer on each GPU sequentially,
Then update the gradients for each layer

5

Vanilla Model Parallelism

𝐵$

𝐵!

𝐵"

𝐵#

𝐹!

𝐹!

𝐹"

𝐹#

Problems:
1. Low GPU Utilization:

All grayscale areas represent unused GPU times!

How bad it is? 𝑂 "#$
"

for number of GPUs: 𝐾

Time used for Forward Pass:
𝐾 ⋅ 𝑡!

Time used for Backward Pass:
K ⋅ 𝑡"

N
um
be
ro
fG
PU
s:
𝐾

6

Vanilla Model Parallelism

𝐵$

𝐵!

𝐵"

𝐵#

𝐹!

𝐹!

𝐹"

𝐹#

𝐾 ⋅ 𝑡! K ⋅ 𝑡"

𝐾

Number of GPUs: 𝐾

Forward Pass per GPU: 𝑡!
Backward Pass per GPU: 𝑡"
Total Forward Pass Time: 𝐾 ⋅ 𝑡!
Total Backward Pass Time: 𝐾 ⋅ 𝑡"

7

Vanilla Model Parallelism

𝐵$

𝐵!

𝐵"

𝐵#

𝐹!

𝐹!

𝐹"

𝐹#
𝐾

Total Time Spent:

𝐾% ⋅ (𝑡 & + 𝑡')

Time used for computation:

𝐾 ⋅ (𝑡& + 𝑡')

Proportion of Wasted GPU time:

1 −
𝐾 ⋅ (𝑡& + 𝑡')
𝐾% ⋅ (𝑡& + 𝑡')

=
𝐾 − 1
𝐾

Time complexity of Bubble Area:

𝑂(
𝐾 − 1
𝐾

) 𝐾 ⋅ (𝑡! + 𝑡")

(𝑡!+ 𝑡")

Number of GPUs: 𝐾

Forward Pass per GPU: 𝑡!
Backward Pass per GPU: 𝑡"
Total Forward Pass Time: 𝐾 ⋅ 𝑡!
Total Backward Pass Time: 𝐾 ⋅ 𝑡"

8

Vanilla Model Parallelism

𝐵$

𝐵!

𝐵"

𝐵#

𝐹!

𝐹!

𝐹"

𝐹#

𝐾 ⋅ (𝑡! + 𝑡")

(𝑡!+ 𝑡")

𝐾

What can be observed:

lim
#→%

𝐾 − 1
𝐾 = 1

More GPUs are utilized, more resources will be wasted

Total Time Spent:

𝐾% ⋅ (𝑡 & + 𝑡')

Time used for computation:

𝐾 ⋅ (𝑡& + 𝑡')

Proportion of Wasted GPU time:

1 −
𝐾 ⋅ (𝑡& + 𝑡')
𝐾% ⋅ (𝑡& + 𝑡')

=
𝐾 − 1
𝐾

Time complexity of Bubble Area:

𝑂(
𝐾 − 1
𝐾

)
9

Vanilla Model Parallelism
Problems:
2. Store excessive intermediate results.

How bad it is?

𝑂 𝑁 ⋅
𝐿
𝐾 ⋅ 𝑑

GPU Number: 𝐾
Batch Size: 𝑁
Intermediate Result: 𝑍
Model Layer number: 𝐿
Width of each layer: 𝑑

Layer

Layer

Layer

Layer

Training
Data

GPU1

GPU0

Forward

Backward

With Model width or Depth increasing, the advantages brought
by increasing 𝐾 might be cancelled out

𝑍
(Saved)

𝑍
(Saved)

𝑍
(Saved)

10

Conclusion of Vanilla Model Parallelism

11

Problems:
1. Low GPU utilization efficiency

More GPUs are utilized, more resources will be wasted

2. Intermediate activations taken up large amount of vRAM
With Model width or Depth increasing, the advantages brought by increasing
𝐾 might be cancelled out

Solution: GPipe

GPipe

Update

Update

Update

Update

Time

Observation:
If Divide a minibatch into micro-batches, we can observe…

𝐹!,!

𝐹#,!

𝐹$,!

𝐹%,!

𝐵!,!

𝐵#,!

𝐵$,!

𝐵%,!

12

GPipe

Update

Update

Update

Update

Time

Observation:
If Divide a minibatch into micro-batches, we can observe…
Computing 𝐹&,(has nothing to do with computing computing 𝐹(,&
Computing 𝐹(,(has nothing to do with computing computing 𝐹),&
……
So can they be computed in parallel?

𝐹!,! 𝐹!,#

𝐹#,! 𝐹#,#

𝐹$,! 𝐹$,#

𝐹%,! 𝐹%,#

𝐵!,# 𝐵!,!

𝐵#,# 𝐵#,!

𝐵$,# 𝐵$,!

𝐵%,# 𝐵%,!

Notation of 𝐹*,+:
𝑖: Model Layer / GPU number
𝑗: micro-batch number

13

GPipe

Update

Update

Update

Update

Less Time Needed

Observation:
If Divide a minibatch into micro-batches, we can observe…

𝐹!,! 𝐹!,#

𝐹#,! 𝐹#,#

𝐹$,! 𝐹$,#

𝐹%,! 𝐹%,#

𝐵!,# 𝐵!,!

𝐵#,# 𝐵#,!

𝐵$,# 𝐵$,!

𝐵%,# 𝐵%,!

Computing Forward/Backward Pass 𝐹(,* (𝐵(,*) for 𝑖 th layer on 𝑖 th GPU

Has nothing to do with

Computing Forward/Backward Pass 𝐹(+,,*-, (𝐵(+,,*-,) for 𝑖 + 1 th layer on 𝑖 + 1 th GPU

So they can be parallelized!

Notation of 𝐹*,+:
𝑖: Model Layer / GPU number
𝑗: micro-batch number

14

GPipe

Update

Update

Update

Update

Time

Batch Parallelism:
Parallelize training data by dividing them further into micro-batches
Greatly reduce bubble size and increased GPU resource utilization

𝐹!,! 𝐹!,#

𝐹#,! 𝐹#,#

𝐹$,! 𝐹$,#

𝐹%,! 𝐹%,#

𝐵!,# 𝐵!,!

𝐵#,# 𝐵#,!

𝐵$,# 𝐵$,!

𝐵%,# 𝐵%,!
Number of GPUs (Pipeline Depth): 𝐾

Number of Micro batch: 𝑀

Forward Pass time per GPU: 𝑡!
Backward Pass time per GPU: 𝑡"
Total Forward Pass Time: 𝐾 ⋅ (M + 𝐾 − 1) ⋅ 𝑡!

Total Backward Pass Time: 𝐾 ⋅ (𝑀 + 𝐾 − 1) ⋅ 𝑡"
Less Bubble

15

GPipe:
Batch Parallelism:
Parallelize training data by dividing them further into micro-batches
Greatly reduce bubble size and increased GPU resource utilization

𝐹!,! 𝐹!,#

𝐹#,! 𝐹#,#

𝐹$,! 𝐹$,#

𝐹%,! 𝐹%,#

𝐵!,# 𝐵!,!

𝐵#,# 𝐵#,!

𝐵$,# 𝐵$,!

𝐵%,# 𝐵%,!

(𝑀 + 𝐾 − 1) ⋅ (𝑡!+𝑡")

𝑀 ⋅ (𝑡!+𝑡")

𝐾

Total Time Spent:
𝐾 ⋅ (𝑀 + 𝐾 − 1) ⋅ (𝑡&+𝑡')

Time used for computation:
𝐾 ⋅ 𝑀 ⋅ (𝑡& + 𝑡')

Proportion of Wasted GPU time:

1 −
𝐾 ⋅ 𝑀 ⋅ (𝑡& + 𝑡')

𝐾 ⋅ (𝑀 + 𝐾 − 1) ⋅ (𝑡& + 𝑡')
=

𝐾 − 1
(𝑀 + 𝐾 − 1)

16

GPipe:
Batch Parallelism:
Parallelize training data by dividing them further into micro-batches
Greatly reduce bubble size and increased GPU resource utilization

𝐹!,! 𝐹!,#

𝐹#,! 𝐹#,#

𝐹$,! 𝐹$,#

𝐹%,! 𝐹%,#

𝐵!,# 𝐵!,!

𝐵#,# 𝐵#,!

𝐵$,# 𝐵$,!

𝐵%,# 𝐵%,!

(𝑀 + 𝐾 − 1) ⋅ (𝑡!+𝑡")

𝑀 ⋅ (𝑡!+𝑡")

𝐾

Bubble Area Time Complexity:

𝑂(
𝐾 − 1

𝑀 + 𝐾 − 1)

More minibatches == Smaller bubble area

=> Higher GPU utilization efficiency!

17

GPipe:
Gradient Checkpointing

To compute backpropagations, each layer’s intermediate
activations need to be stored.

Without Gradient Checkpointing, peak total GPU vRAM
storage complexity :

𝑂(𝑁 ⋅ 𝐿)

Where 𝑁: Batch Size, 𝐿: Total number of Layers, Assume each

layer’s size are similar.

Idea of Gradient Checkpointing:

Only store activations at final layers for each partition.

Recompute intermediate activations within partitions during
backpropagation.

Layer

Layer

Layer

Layer

Micro
Batch

GPU1

GPU0

Forward

Backward

𝑍
(Discarded to save vRAM)

Micro
Batch

Micro
Batch

𝑍
(Discarded to save vRAM)

𝑍
(Saved)

18

GPipe:
Gradient Checkpointing

For Gradient Checkpointing, peak total GPU vRAM storage
complexity:

𝑂(𝑁 +
𝐿
𝐾
⋅
𝑁
𝑀
)

Where

𝑁: Batch Size, 𝐿: Total number of Layers, 𝐾: Number of Partitions,
𝑀: Micro batch Size

Effect of Gradient Checkpointing:

Significantly reduce peak vRAM usage, trade off computation time
with less vRAM consumption

Tradeoff: took around 1/3 total running time to
recompute activations

Figure Source: Huang, Yanping et al. “GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism.”

19

Evaluations

20

Research Questions:

Does GPipe efficient in reducing vRAM usage?

Does GPipe efficient in accelerating model training?

Single Card
Pipeline-1,2,4,8 ==

GPipe + Gradient Checkpointing with 1, 2, 4, 8 cards

CNN:
Image

Classification

Transformer:
Language
Translation

Table Source: Huang, Yanping et al. “GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism.”

Evaluations

21

Research Question 1:

Does GPipe efficient in reducing vRAM Usage?

Define vRAM Usage Ratio:
Peak Activation Memory divided by Model Parameter size

Yes. Application of GPipe yields to
significantly better GPU memory
utilization efficiency

Evaluations

22

Research Question 2:

Does GPipe efficient in accelerating model training?

Test GPipe’s effect in accelerating model training with NVLink disabled:
• K: Number of GPUs, M: Number of Micro-batches
• Even with NVLink disabled, training speed still increases as

number of GPU increases.
• CNN performs worse than Transformer due to imbalance

model splitting.
Acceleration rate (1.7 times, 2.7 times, etc.)

Test GPipe’s effect in accelerating model training with NVLink enabled:

Acceleration rate (1.07 times, 1.21 times, etc.)

Performance depend on MicroBatch number: M.
• M = 1: no linearity between number of GPUs and training speed
• M = 4: noticeable improvement
• M = 32: significantly better, observed linearity on Transformer.

Yes. Effectiveness depend on number of
micro-batches and model architecture

Table Source: Huang, Yanping et al. “GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism.”

Jupyter Notebook Demo Result

23

Experiment Objective:

Demonstrate GPipe’s effectiveness in accelerating CNN model training via toy examples

Experiment Environment: Kaggle Dev Notebook (2* Nvidia T4, batch size=128 only)

Experiment: Training Resnet 50 and evaluate training efficiency improvement brought by GPipe

R
es

N
et

50
Tr

ai
ni

ng
Ti

m
e

(A
ve

ra
ge

d
fo

r1
0

ru
ns

)

R
es

N
et

50
Tr

ai
ni

ng
Ti

m
e

(A
ve

ra
ge

d
fo

r1
0

ru
ns

)

Ablation on Micro-batch number
(More micro batches, faster training)

Comparing three strategies
(GPipe performs best)

Jupyter Notebook Demo Result

24

R
es

N
et

50
Tr

ai
ni

ng
Ti

m
e

(A
ve

ra
ge

d
fo

r1
0

ru
ns

)

R
es

N
et

50
Tr

ai
ni

ng
Ti

m
e

(A
ve

ra
ge

d
fo

r1
0

ru
ns

)

Ablation on Micro-batch number
(More micro batches, faster training)

Comparing three strategies
(GPipe performs best)

Experiment Objective:

Demonstrate GPipe’s effectiveness in accelerating Transformer model training via toy examples

Experiment Environment: Kaggle Dev Notebook (2* Nvidia T4, batch size=128 only)

Experiment: Training Transformer and evaluate training efficiency improvement brought by GPipe

Scope and Limitations
Scope is Limited to Pipeline Parallelism

Higher-level model parallelism, including data parallelism and tensor parallelism can be
implemented to achieve better efficiency (Megatron LM, ZeRO, etc.)

GPU vRAM usage could be further optimized

PipeDream (Microsoft, SOSP 2019):

Immediately perform backpropagation once a micro batch has completed forward propagation,
can abandon micro-batches’ activations earlier

Figure Source: Harlap, Aaron et al. “PipeDream: Fast and Efficient Pipeline Parallel DNN Training.”

25

Scope and Limitations
Scope is Limited to Pipeline Parallelism

Higher-level model parallelism, including data parallelism and tensor parallelism can be
implemented to achieve better efficiency (Megatron LM, ZeRO, etc.)

GPU vRAM usage could be further optimized

PipeDream (Microsoft, SOSP 2019):

Immediately perform backpropagation once a micro batch has completed forward propagation,
can abandon micro-batches’ activations earlier

Why Google decide to made the trade-off?
1. Cannot reduce bubble size
2. Require maintaining multiple model weight

versions for consistent gradient update
3. Further reduce memory usage but require

complex implementation

Figure Source: Harlap, Aaron et al. “PipeDream: Fast and Efficient Pipeline Parallel DNN Training.”

26

Summary

27

1. Proposed novel pipeline-parallelism:
GPipe is achieved through batch-splitting mechanism

2. Performed intensive experiment:

Demonstrated strong empirical results and proved the efficiency of GPipe

3. Introduced GPipe:
Implemented as a scalable model-parallelism library enabling the training
of giant neural networks on Tensorflow

28

Thanks

