S s

=2

=

=

Research Background

Increasing Model Size:

Figure

Source: Huang, Yanping et al. “GPipe: Efficient Training of Giant Neural Networks using Pipeline Par

allelism.”

0.85 + AmoebaNetB(18, 512)
Larger and deeper networks provide better performance Aok
- 0.82 - NasNetA SENet
% ¢ ResNeXt-101
Demand for scaling neural networks are increasing g o7 I
§_076 nception
Difficulty in Training Large Models: I
i ' 6 60 600
Hardware Constraints force users to explore model Number of Parameters (Millions)
parallelism methods 37.0 o8, 16984 52
®
Existing methods: model and architecture specific 5 32 . (32716384, 32
2\33-5 T(24, 8192, 16)
Motivation: T3, 16384, 32)
_ o < 31.8]
Develop novel approach enabling training larger models (6, 8192, 16
®
30.0 T T ,
T[glﬁglg%b Ng-niber of Paramzé?ers (BiIIions)8.0

TL;DR:

1. Scalable Model Parallel Library developed by Google, implemented in
various major Deep Learning Libraries including Tensorflow and PyTorch

2. Optimize GPU resource usage via Data Parallelism

F. ‘ B. Updale‘ Fa,a’ B Bs2 | Bs1 | Bao Update

Fo ‘ Bo Update‘ R B2s | B2z | B21 | B2o ‘ Update

Fo [B. Upd g Fi, 11 | F12 Bis | Biz | Bi1 | Bio Update

F | Time | B, e o le o Bubble o o | o | o o

3. Optimize vVRAM Usage via Gradient Checkpointing

o(N-<-a) » O(N +

x|
<=
-/

4. High efficiency, Highly flexible and reliable model parallelism solution

UNIVERSITY OF

% TORONTO

Vanilla Model Parallelism

Motivation: Loss Function
Model Output /'\
Separately a large model by layers Layer, Prediction Conputed
. Device Result Loss
then load them to multiple GPUs Layer 3
L3, D3 F, B,
Computations: Layer 2
_ L2, D2 F, B,
Sequentially perform Forward Pass
. Layer 1
and Backpropagation
L1, D1 F, B,
Layer 0
Model Parallelism: Lo, DO Fo B,
Distribute model layers to devices Model Input
Forward Back
Pass Prop

UNIVERSITY OF

TORONTO

.
i

Vanilla Model Parallelism

Computation:

Perform forward and backward pass for each layer on each GPU sequentially,
Then update the gradients for each layer

Update

F, B, Update

B; Update

By Update

Time

UNIVERSITY OF

¥/ TORONTO

Vanilla Model Parallelism
Problems:

1. Low GPU Utilization:

All grayscale areas represent unused GPU times!

How bad itis? O %

for number of GPUs: K

A ".-"_.-"-’-‘ ;".-"_.-"-’-‘ a".-" -’-‘ a".-" -’-‘ a".-" -’-‘ a".-" -’-‘ a".-" -’-‘ ;".-"_.-"-’-‘ ;".-"_.-"-’-‘ ;

T
.-'.-"".-"" .-".-""..-"'.:".-' .-".-""..-"'.:".-' .-".-""..-"'.:".-' f.{".-""..-"'.:".-' f.{".-""..-"'.:".-' sz

F3 Bs

o
o

ﬁfﬁfﬁfﬁfﬁfﬁé@f Z

@ﬁﬁﬁﬁﬁf

.-'.-'"'.-"" e -".'-’-'.-"'".-"'.-':".- -".'-’-'.-"'".-"'.-':".- e .-'"'.-".-':".- -".'-’-'.-"'".-"'.-':".- -".'-’-'.-"'".-"'.-':".-

Number of GPUs: K

y N

o azz:fa?z-’fa?z-’fa?z-’fa?z

T 7
xf:’:-;:& xffj; ;ﬁ;’? .-".-':".- z;’f?f?;f
) I @<
b
v T fiﬁ;f 7

e
Bwéwo

,-f:;;*.’}ff? m’fﬁwf

; ﬁﬁéﬁﬁwﬁwﬁwﬁw
T .-" A,

,a}’f;x_:-?f ,a}’f;x_:-?f ,a}’f;x_:-?f ,a}’f;x_:-?f ,a}’f;x_:-?f

PR

e

e

J i T

/ff,}f,-ff; s
i i,:;?:j;»’j’ﬁj;;ij’ﬁf’f’? fﬁ,
,' ,-{f’,»fff,» x?’

%?ifﬁ
%W%%ﬁf

aaaaa

Time used for Forward Pass:
K-t

UNIVERSITY OF
8 88

¥ TORONTO

Time used for Backward Pass:
K-t

v

Vanilla Model Parallelism

Q
L)
&S
NS
Q

R)
. D o E
58 EF
o O FE o
..resa
»w oo 9L © 0O
Up%Pd
| -
@&a.ma
o ® 0O 2
2l X
O T 25
L O S ©
2 5§ Lo
EE 35 IC

o
Z L o R 8

A

By

T, e

; o

B e

A
v

K-t,

UNIVERSITY OF

¥ TORONTO

A

Vanilla Model Parallelism

Total Time Spent:
Number of GPUs: K

K% (ty +tp) Forward Pass per GPU: ¢,
_ _ Backward Pass per GPU: ¢,
Time used for computation:
Total Forward Pass Time: K - i,

K-(tr +tp) Total Backward Pass Time: K - ¢,

(tr+ tp)

Proportion of Wasted GPU time:

A
v

K-(tp+tp) K-—1 s] B
K2-(tr+t,) K F, B,
K
. . F, B,
Time complexity of Bubble Area:
Fy B,
oK1 T
UNIVERSITY OF (K)

TORONTO

Vanilla Model Parallelism
Total Time Spent:

K% (ty +tp) 4
Time used for computation:
K
K-(tr +tp)
Proportion of Wasted GPU time:)
K-(tr+ty) K-1
K2. (tf + tp) T K What can be observed:
- /K-1
Time complexity of Bubble Area: Jim (——) =1
K-1 More GPUs are utilized, more resources will be wasted
UNIVERSITY OF O(T)

¥ TORONTO 9

Vanilla Model Parallelism
Problems:

2. Store excessive intermediate results.

How bad it is?

GPU Number: K

Batch Size: N
Intermediate Result: Z
Model Layer number: L
Width of each layer: d

GPU1 Layer Backward
Z
(Saved)
Layer
-= o>
(Saved)
GPUO Layer
Z
(Saved)
Layer
Forward
Training
Data

With Model width or Depth increasing, the advantages brought

UNIVERSITY OF

% TORONTO

by increasing K might be cancelled out

10

Conclusion of Vanilla Model Parallelism
Problems:
1. Low GPU utilization efficiency

More GPUs are utilized, more resources will be wasted

2. Intermediate activations taken up large amount of vRAM
With Model width or Depth increasing, the advantages brought by increasing
K might be cancelled out

Solution: GPipe

UNIVERSITY OF

% TORONTO

11

GPipe

Observation:

If Divide a minibatch into micro-batches, we can observe...

UNIVERSITY OF

X TORONTO

F3, B30 Update
F20 B, Update
Bio Update
Bo,o Update
Time

12

GPipe

Observation:
If Divide a minibatch into micro-batches, we can observe...

Computing F, ; has nothing to do with computing computing F; ,
Computing F; ; has nothing to do with computing computing F, ,

So can they be computed in parallel? (_’FB,O F31 |B3,1 B30 N Update
"—-~ FZO F21 BZl BZO Update
’ (P20 |f2 1 P20
,/
l (_>F1,0 Fl,lT‘ Bl,l Bl,O Update
Notation of F; ;: : - v
i: Model Layer / GPU number \lFo,o Fo1 ,l By, |Boo | Update
J: micro-batch number \ / Time
\\ ﬁ'{ >

UNIVERSITY OF

%/ TORONTO

GPipe

Observation:
If Divide a minibatch into micro-batches, we can observe...

Computing Forward/Backward Pass F; ; (B; ;) for i th layer on i th GPU
Has nothing to do with

Computing Forward/Backward Pass F; ;1 j_1 (Bj41,j-1) fori + 1 thlayeroni + 1 th GPU

So they can be parallelized!

F30 |F31 |B31 [B3o Update
Notation of Fi,j: F2,0 F2,1 32,1 leo Update
. Model Layer / GPU number
j: micro-batch number Fro (F1 B4 {B1o Update
Foo |Fo1 | Less Time Needed [Boz [Boo| Update
:‘Tf

5 TORONTO >

L]

§

GPipe

Batch Parallelism:

Parallelize training data by dividing them further into micro-batches

Greatly reduce bubble size and increased GPU resource utilization

Update

Update

Update

Update

UNIVERSITY OF

¥ TORONTO

Number of GPUs (Pipeline Depth): K

Number of Micro batch: M/

Forward Pass time per GPU: ¢,

Backward Pass time per GPU: ¢,

Total Forward Pass Time: K - (M + K — 1) - t;
Total Backward Pass Time: K - (M + K — 1) - ¢,

15

GPipe:

Batch Parallelism:

Parallelize training data by dividing them further into micro-batches

Greatly reduce bubble size and increased GPU resource utilization

Total Time Spent:
K-(M+K-1)(ts+tp) M- (tr+ty)

A\

Time used for computation:
K-M-(tf + tp)

Proportion of Wasted GPU time:

K-M-(tr +tp) k-1
K-M+K—-1)-(tr+ty) M+ K-1) <

1

A 4

(M +K—1)- (ts+t)

UNIVERSITY OF

TORONTO

L]
16

GPipe:

Batch Parallelism:

Parallelize training data by dividing them further into micro-batches

Greatly reduce bubble size and increased GPU resource utilization

Bubble Area Time Complexity:

K—-1
M+K—1)

O(
More minibatches == Smaller bubble area

=> Higher GPU utilization efficiency!

UNIVERSITY OF

TORONTO

M - (ty+tp)

(M +K—1)- (ts+t)

17

GPipe:
Gradient Checkpointing

To compute backpropagations, each layer’s intermediate
activations need to be stored.

Without Gradient Checkpointing, peak total GPU vRAM
storage complexity :

O(N - L)

Where N: Batch Size, L: Total number of Layers, Assume each

layer’s size are similar.

Idea of Gradient Checkpointing:

Only store activations at final layers for each partition.

Recompute intermediate activations within partitions during
backpropagation.

UNIVERSITY OF

% TORONTO

GPU1 Layer Backward
A A A Z
(Discarded to save VRAM)
Layer
- =
(Saved)
GPUO Layer
' N Z
(Discarded to save VRAM)
Layer
Forward | ‘ |
Micro Micro Micro
Batch Batch Batch

18

GPipe:

Gradient Checkpointing

For Gradient Checkpointing, peak total GPU vRAM storage Table 4: Time step breakdown
complexity:
41% =
O += \
K M

Where o]
computation

N: Batch Size, L: Total number of Layers, K: Number of Partitions, weight update

s e recompute

M: Micro batch Size load imbalance
bubble
overhead

t head
Effect of Gradient Checkpointing: setup overhea

Tradeoff: took around 1/3 total running time to

Significantly reduce peak vRAM usage, trade off computation time o
recompute activations

with less VRAM consumption

UNIVERSITY OF

% TORONTO 1

Figure Source: Huang, Yanping et al. “GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism.”

Evaluations
Research Questions:

Does GPipe efficient in reducing vRAM usage?

Does GPipe efficient in accelerating model training?

Pipeline-1,2,4,8 ==
Single Card GPipe + Gradient Checkpointing with 1, 2, 4, 8 cards
NVIDIA GPUs (8GB each) Naive-1 Pipeline-1 Pipeline-2 Pipeline-4 Pipeline-8
CNN: AmoebaNet-D (L, D) (18,208) (18,416) (18, 544) (36, 544) (12, 912)
Imagé # of Model Parameters 82M 318M 542M 1.05B 1.8B
Classification Total Model Parameter Memory 1.05GB 3.8GB 6.45GB 12.53GB 24.62GB
Peak Activation Memory 6.26GB 3.46GB 8.11GB 15.21GB 26.24GB
Cloud TPUv3 (16GB each) Naive-1 Pipeline-1 Pipeline-8 Pipeline-32 Pipeline-128
Transf ~ Transformer-L 3 13 103 415 1663
[aa”nsgﬁgmzr' # of Model Parameters 2822M 785.8M 5.3B 21.0B 83.9B
Trans| at?o 0 Total Model Parameter Memory 11.7G 8.8G 59.5G 235:1G 937.9G
Peak Activation Memory 315G 6.4G 50.9G 199.9G 796.1G

UNIVERSITY OF

¥ TORONTO

Table Source: Huang, Yanping et al. “GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism.”

20

Evaluations

Research Question 1:
Does GPipe efficient in reducing vVRAM Usage?

Define vVRAM Usage Ratio:
Peak Activation Memory divided by Model Parameter size

—8— CNN
- Transformer

o o o

o o o

%) o <
1

Memory-Param Ratio
o
o
o

0.03 -
0.02
—® ®
001- *¥——ouH___ ® - - X
oyl
Naive-1 Card Pipeline-1 Card Pipeline-2 Card Pipeline-4 Card Pipeline-8 Card

Experiment Setting

Yes. Application of GPipe yields to
significantly better GPU memory
utilization efficiency

21

Evaluations

Research Question 2:

Does GPipe efficient in accelerating model training? res. Effectiveness depend on number of
micro-batches and model architecture

Test GPipe’s effect in accelerating model training with NVLink disabled:
GPU AmoebaNet Transformer * K: Number of GPUs, M: Number of Micro-batches
K— 2 4 8 2 4 8 - Even with NVLink disabled, training speed still increases as

M=32 1 17 27 1 18 33 number of GPU increases.
* CNN performs worse than Transformer due to imbalance

model splitting.

Acceleration rate (1.7 times, 2.7 times, etc.)

Test GPipe’s effect in accelerating model training with NVLink enabled:
a

TPU AmoebaNet Transformer

Performance depend on MicroBatch number: M.

K= 2 4 8 2 4 8 U .
M =1 1 113 138 1 107 13 « M = 1: no linearity between number of GPUs and training speed
M=4 107 126 172 17 32 48 M = 4: noticeable improvement

M=32 121 184 348 18 34 63 .« M = 32: significantly better, observed linearity on Transformer.

#» Acceleration rate (1.07 times, 1.21 times, etc.)
= UNIVERSITY OF

% TORONTO 2

Table Source: Huang, Yanping et al. “GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism.”

Jupyter Notebook Demo Result

Experiment Objective:

Demonstrate GPipe’s effectiveness in accelerating CNN model training via toy examples
Experiment Environment: Kaggle Dev Notebook (2* Nvidia T4, batch size=128 only)

Experiment: Training Resnet 50 and evaluate training efficiency improvement brought by GPipe

"

1.0-

0.8 -

-
|

0.6 -

w
[

0.4 -

ResNet50 Training Time
(Averaged for 10 runs)

0.2 -

ResNet50 Training Time
(Averaged for 10 runs)

*. .
i é é é 1b 1'2 2'0 4b 6b >0 Naive Mocllel Parallel Singlé GPU Pipelining Mlodel Parallel
Ablation on Micro-batch number Comparing three strategies
uNIvVERSITY of (More micro batches, faster training) (GPipe performs best)

%Y TORONTO

23

Jupyter Notebook Demo Result

Experiment Objective:

Demonstrate GPipe’s effectiveness in accelerating Transformer model training via toy examples
Experiment Environment: Kaggle Dev Notebook (2* Nvidia T4, batch size=128 only)

Experiment: Training Transformer and evaluate training efficiency improvement brought by GPipe
2.5-

25 -

™
o
|

N
o
|

[
(9]
|
=
w
|

ResNet50 Training Time
(Averaged for 10 runs)

ResNet50 Training Time
(Averaged for 10 runs)

0_

0.0 -

135 81012 20 40 60 Model Parallel Singlé GPU Pipeline Model Parallel
Ablation on Micro-batch number Comparing three strategies
uNIvVERSITY of (More micro batches, faster training) (GPipe performs best)

%Y TORONTO

24

Scope and Limitations

Scope is Limited to Pipeline Parallelism

Higher-level model parallelism, including data parallelism and tensor parallelism can be
implemented to achieve better efficiency (Megatron LM, ZeRO, etc.)

GPU vRAM usage could be further optimized

PipeDream (Microsoft, SOSP 2019):

Immediately perform backpropagation once a micro batch has completed forward propagation,

can abandon micro-batches’ activations earlier

Startup State Steady State
UNIVERSITY OF >

% TORONTO Time
- Forward Pass [| Backward Pass Y Idle

Figure Source: Harlap, Aaron et al. “PipeDream: Fast and Effici th line Parallel DNN Training.”

25

Scope and Limitations

Scope is Limited to Pipeline Parallelism

Higher-level model parallelism, including data parallelism and tensor parallelism can be
implemented to achieve better efficiency (Megatron LM, ZeRO, etc.)

GPU vRAM usage could be further optimized
PipeDream (Microsoft, SOSP 2019):

Immediately perform backpropagation once a micro batch has completed forward propagation,
can abandon micro-batches’ activations earlier

Worker 1 Why Google decide to made the trade-off?

1. Cannot reduce bubble size

2. Require maintaining multiple model weight
versions for consistent gradient update

: s ' . 3. Further reduce memory usage but require

ONIVERSITY OF Startup State Sleadysute complex implementation

%': Time
TORONTO I Forward Pass :I Backward Pass Y Idle B

Figure Source: Harlap, Aaron et al. PpD eam: Fast and Efficient Pipeline Parallel DNN Training.”

Worker 2
\

Worker 3

N
Worker 4
AN AN AN

Summary

1. Proposed novel pipeline-parallelism:
GPipe is achieved through batch-splitting mechanism

2. Performed intensive experiment:
Demonstrated strong empirical results and proved the efficiency of GPipe

3. Introduced GPipe:

Implemented as a scalable model-parallelism library enabling the training
of giant neural networks on Tensorflow

@
0,
:?ﬁf;.

oy

UNIVERSITY OF
[]

TORONTO

27

UNIVERSITY OF

¥ TORONTO

Thanks

28

