
Leviathan, Yaniv et al. “Fast Inference 
from Transformers via Speculative 
Decoding.” International Conference on 
Machine Learning (2022) 

Presenter: Ao Li, Bogdan Pikula

Fast Inference from Transformers 
via Speculative Decoding

1
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Background
● With great parameters comes long inference time

● Decoding happens sequentially

○ Decode token k requires token k - 1

○ Can we improve the latency?
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Related Work
● Make the model smaller

○ Distiliation, Transfer Learning

○ Requires a re-training

● Modify the design of model

○ Adaptive Transformers
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Observations
● Observation 1: Inference bottlenecked on memory bandwidth and 

communcation

○ Majority of time is not spent on computation but on moving parameters and 
weights

● Observation 2: Some inference are easy to do even with a small model.

○ e.g., My name ?
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Speculative Decoding
● Utilize smaller models as draft models to generate tokens in less amount of 

time

● Target model is in charged of verifcation of drafts in parallel
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Speculative Execution - Instruction Pipeline
● There are 4 stages for an instruction:

○ Fetch, Decode, Execution, and Write Back

● Each instruction can enter the pipeline once previous instruction shifts to a different stage

Fetch Decode Execution Write Back

Fetch Decode Execution Write Back

Fetch Decode Execution Write Back

Inst1

Inst2

Inst3
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Pipeline - Branching
● Branching can slow down the performance

● if (cond) then A

● The instruction has to wait the result of cond to be available in the hardware to execute

○ This causes the stall

Fetch Decode Execution Write Back

Fetch Decode Stall Execution
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Write Back



Speculative Execution - Branch Prediction
● Instead of stall, take a guess of which branch will be taken and execute it.

● If prediction is correct: saves time

● If wrong: discard results (minimal overhead)

● Hide latency in pipelined processors by keeping execution units busy
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Speculative Decoding - Draft Stage
1. Draft model samples γ tokens and probabilities
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Speculative Decoding - Verfication
2. Target Model validates the guesses and their respective probabilities in parallel
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Speculative Decoding - Verification
● The verification is measured by the probability between target model and 

draft model

● Accept  if

○ Target model is more confident in this case

● Otherwise, accept with probability
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Token x1 x2 x3 x4 x5

dogs love chasing after cars

Draft 0.8 0.7 0.9 0.8 0.7

Target 0.9 0.8 0.8 0.3 0.8

Accept ✅ ✅ ✅ ❌ ❌



Speculative Decoding - Additional Sampling
3. Sample an additional token to fix the first one that was rejected, or to add an 
additional one if they are all accepted

13



Animation
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[https://research.google/blog/looking-back-at-speculative-decoding/]

http://www.youtube.com/watch?v=nY53RdP1qeY


Analysis - Walltime Improvement
● Key Metric: Acceptance Rate (𝞪)

○ Probability of small model’s tokens being accepted

● Expected tokens per iteration: 

○ 𝞬 = speculation length

● Walltime Improvement factor: 

○ ᴄ = cost coefficient (runtime ratio of small vs. large model)

● Trade-off: More speculative tokens (𝞬) → more potential speedup but 
diminishing returns
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Analysis - Expected Tokens Per Iteration
● Higher acceptance rates 

dramatically improve 
throughput;

● X-axis: Acceptance rate (𝞪) ϵ 
[0.5, 0.9];

● Y-axis: expected tokens per 
iteration (1 to 10);

● Multiple curves for 𝞬 = {1,3,5,7,
∞};

● Baseline (standard decoding) = 
1 token per iteration.
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Expected number of tokens generated by SpeculativeDecodingStep as 
a function of 𝞪 for various values of 𝞬



Analysis - Speed vs. Computation
● Speed improves while 

computation increases, but 
the trade-off is favorable;

● X-axis: Acceptance rate (𝞪) ϵ 
[0.5, 0.9];

● Y-axis: Factor relative to 
baseline (1 to 10)

● Multiple curves for different 𝞬 
values {3, 5, 7, 10}



Experimental Setup
➔ Target Models:

◆  T5-XXL (11B param)
◆  GPT-like model (97B param)
◆  LaMDA (137B param)

➔ Approximation Models:
◆  T5-small (77M param), T5-base (250M param), T5-large (800M param)
◆  Smaller GPT-like models (6M parameters)
◆  Even simple n-gram models

➔ Tasks:
◆  English-German translation (WMT)
◆  News summarization (CNN/DM)
◆  Unconditional Generation (LM1B)
◆  Dialog Tasks



Empirical Results - Translation & Summarization

Real-world speedups of 2-3X 
with identical outputs

Empirical results for speeding up 
inference from a T5XXL 11B model.



Acceptance Rates (𝞪) Across Models
Model Pair (Mq → Mp) Task SMPL{Temp=0} (𝞪) SMPL{Temp=1} (𝞪)

Unigram → T5-XXL Translation(En-De) 0.08 0.07

Bigram → T5-XXL Translation(En-De) 0.20 0.19

T5-small → T5-XXL Translation(En-De) 0.75 0.62

T5-base → T5-XXL Translation(En-De) 0.80 0.68

T5-large → T5-XXL Translation(En-De) 0.82 0.71

● Higher 𝞪 with argmax sampling (T=0) vs. standard sampling (T=1)

● Even simple models achieve non-zero acceptance rates

● Larger approximation models → higher acceptance rates

S
ize increases



Theoretical vs. Empirical Results

Expected improvement factor (EXP) vs. 
empirically measured improvement factor (EMP).

The mathematical 
model generally 
predicts 
real-world 
performance well



Limitations and Privacy Concerns
● Privacy Concern

○ Spectre and Meltdown

○ Input fingerprinting: Network-based attackers can identify user queries 
with >90% accuracy

○ Wei, J., Abdulrazzag, A., Zhang, T., Muursepp, A., & Saileshwar, G. 
(2024). Privacy Risks of Speculative Decoding in Large Language 
Models. ArXiv. https://arxiv.org/abs/2411.01076

● Increased computational overhead
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https://arxiv.org/abs/2411.01076


Key Takeaways from Experiments
● Practical speedups of 2-3X with no change to model outputs;

● Works across model scales - from millions to billions of parameters;

● Effective for diverse tasks - translation, summarization, dialog, etc;

● Small approximation models often provide best overall speedup;

● Even simple models (like n-grams) can provide measurable benefits;



Discussion
Questions?
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