
Leviathan, Yaniv et al. “Fast Inference
from Transformers via Speculative
Decoding.” International Conference on
Machine Learning (2022)

Presenter: Ao Li, Bogdan Pikula

Fast Inference from Transformers
via Speculative Decoding

1

Agenda
● Background
● Motivation & Design
● Analysis
● Experiments

● Discussion

2

Background
● With great parameters comes long inference time

● Decoding happens sequentially

○ Decode token k requires token k - 1

○ Can we improve the latency?

3

Related Work
● Make the model smaller

○ Distiliation, Transfer Learning

○ Requires a re-training

● Modify the design of model

○ Adaptive Transformers

4

Observations
● Observation 1: Inference bottlenecked on memory bandwidth and

communcation

○ Majority of time is not spent on computation but on moving parameters and
weights

● Observation 2: Some inference are easy to do even with a small model.

○ e.g., My name ?

5

Speculative Decoding
● Utilize smaller models as draft models to generate tokens in less amount of

time

● Target model is in charged of verifcation of drafts in parallel

6

Speculative Execution - Instruction Pipeline
● There are 4 stages for an instruction:

○ Fetch, Decode, Execution, and Write Back

● Each instruction can enter the pipeline once previous instruction shifts to a different stage

Fetch Decode Execution Write Back

Fetch Decode Execution Write Back

Fetch Decode Execution Write Back

Inst1

Inst2

Inst3

7

Pipeline - Branching
● Branching can slow down the performance

● if (cond) then A

● The instruction has to wait the result of cond to be available in the hardware to execute

○ This causes the stall

Fetch Decode Execution Write Back

Fetch Decode Stall Execution

8

Write Back

Speculative Execution - Branch Prediction
● Instead of stall, take a guess of which branch will be taken and execute it.

● If prediction is correct: saves time

● If wrong: discard results (minimal overhead)

● Hide latency in pipelined processors by keeping execution units busy

9

Speculative Decoding - Draft Stage
1. Draft model samples γ tokens and probabilities

10

Speculative Decoding - Verfication
2. Target Model validates the guesses and their respective probabilities in parallel

11

Speculative Decoding - Verification
● The verification is measured by the probability between target model and

draft model

● Accept if

○ Target model is more confident in this case

● Otherwise, accept with probability

12

Token x1 x2 x3 x4 x5

dogs love chasing after cars

Draft 0.8 0.7 0.9 0.8 0.7

Target 0.9 0.8 0.8 0.3 0.8

Accept ✅ ✅ ✅ ❌ ❌

Speculative Decoding - Additional Sampling
3. Sample an additional token to fix the first one that was rejected, or to add an
additional one if they are all accepted

13

Animation

14

[https://research.google/blog/looking-back-at-speculative-decoding/]

http://www.youtube.com/watch?v=nY53RdP1qeY

Analysis - Walltime Improvement
● Key Metric: Acceptance Rate (𝞪)

○ Probability of small model’s tokens being accepted

● Expected tokens per iteration:

○ 𝞬 = speculation length

● Walltime Improvement factor:

○ ᴄ = cost coefficient (runtime ratio of small vs. large model)

● Trade-off: More speculative tokens (𝞬) → more potential speedup but
diminishing returns

15

Analysis - Expected Tokens Per Iteration
● Higher acceptance rates

dramatically improve
throughput;

● X-axis: Acceptance rate (𝞪) ϵ
[0.5, 0.9];

● Y-axis: expected tokens per
iteration (1 to 10);

● Multiple curves for 𝞬 = {1,3,5,7,
∞};

● Baseline (standard decoding) =
1 token per iteration.

16
Expected number of tokens generated by SpeculativeDecodingStep as
a function of 𝞪 for various values of 𝞬

Analysis - Speed vs. Computation
● Speed improves while

computation increases, but
the trade-off is favorable;

● X-axis: Acceptance rate (𝞪) ϵ
[0.5, 0.9];

● Y-axis: Factor relative to
baseline (1 to 10)

● Multiple curves for different 𝞬
values {3, 5, 7, 10}

Experimental Setup
➔ Target Models:

◆ T5-XXL (11B param)
◆ GPT-like model (97B param)
◆ LaMDA (137B param)

➔ Approximation Models:
◆ T5-small (77M param), T5-base (250M param), T5-large (800M param)
◆ Smaller GPT-like models (6M parameters)
◆ Even simple n-gram models

➔ Tasks:
◆ English-German translation (WMT)
◆ News summarization (CNN/DM)
◆ Unconditional Generation (LM1B)
◆ Dialog Tasks

Empirical Results - Translation & Summarization

Real-world speedups of 2-3X
with identical outputs

Empirical results for speeding up
inference from a T5XXL 11B model.

Acceptance Rates (𝞪) Across Models
Model Pair (Mq → Mp) Task SMPL{Temp=0} (𝞪) SMPL{Temp=1} (𝞪)

Unigram → T5-XXL Translation(En-De) 0.08 0.07

Bigram → T5-XXL Translation(En-De) 0.20 0.19

T5-small → T5-XXL Translation(En-De) 0.75 0.62

T5-base → T5-XXL Translation(En-De) 0.80 0.68

T5-large → T5-XXL Translation(En-De) 0.82 0.71

● Higher 𝞪 with argmax sampling (T=0) vs. standard sampling (T=1)

● Even simple models achieve non-zero acceptance rates

● Larger approximation models → higher acceptance rates

S
ize increases

Theoretical vs. Empirical Results

Expected improvement factor (EXP) vs.
empirically measured improvement factor (EMP).

The mathematical
model generally
predicts
real-world
performance well

Limitations and Privacy Concerns
● Privacy Concern

○ Spectre and Meltdown

○ Input fingerprinting: Network-based attackers can identify user queries
with >90% accuracy

○ Wei, J., Abdulrazzag, A., Zhang, T., Muursepp, A., & Saileshwar, G.
(2024). Privacy Risks of Speculative Decoding in Large Language
Models. ArXiv. https://arxiv.org/abs/2411.01076

● Increased computational overhead

22

https://arxiv.org/abs/2411.01076

Key Takeaways from Experiments
● Practical speedups of 2-3X with no change to model outputs;

● Works across model scales - from millions to billions of parameters;

● Effective for diverse tasks - translation, summarization, dialog, etc;

● Small approximation models often provide best overall speedup;

● Even simple models (like n-grams) can provide measurable benefits;

Discussion
Questions?

24

