Fast Inference from Transformers via Speculative Decoding

Leviathan, Yaniv et al. "Fast Inference from Transformers via Speculative Decoding." International Conference of Machine Learning (2022)

Presenter: Ao Li, Bogdan Pi

Agenda

- Background
- Motivation & Design
- Analysis
- Experiments
- Discussion

Background

- With great parameters comes long inference time
- Decoding happens sequentially
 - Decode token k requires token k 1
 - Can we improve the latency?

Related Work

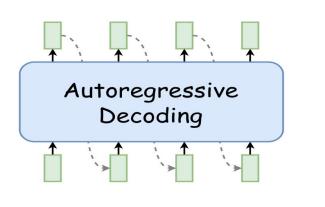
- Make the model smaller
 - Distiliation, Transfer Learning
 - Requires a re-training
- Modify the design of model
 - Adaptive Transformers

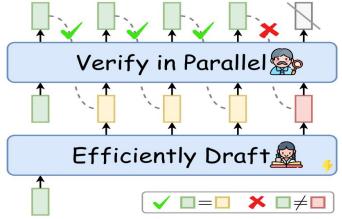
Observations

- Observation 1: Inference bottlenecked on memory bandwidth and communcation
 - Majority of time is not spent on computation but on moving parameters and weights
- Observation 2: Some inference are easy to do even with a small model.
 - \circ e.g., My name ?

Speculative Decoding

- Utilize smaller models as draft models to generate tokens in less amount of time
- Target model is in charged of verifcation of drafts in parallel





Speculative Execution - Instruction Pipeline

- There are 4 stages for an instruction:
 - Fetch, Decode, Execution, and Write Back
- Each instruction can enter the pipeline once previous instruction shifts to a different stage

Inst1	Fetch	Decode	Execution	Write Back		
Inst2		Fetch	Decode	Execution	Write Back	
Inst3			Fetch	Decode	Execution	Write Back

Pipeline - Branching

- Branching can slow down the performance
- if (cond) then A
- The instruction has to wait the result of cond to be available in the hardware to execute
 - This causes the stall

Fetch	Decode Execution		Write Back		
	Fetch	Decode	Stall	Execution	Write Back

Speculative Execution - Branch Prediction

• Instead of stall, take a guess of which branch will be taken and execute it.

• If prediction is correct: saves time

• If wrong: discard results (minimal overhead)

• Hide latency in pipelined processors by keeping execution units busy

Speculative Decoding - Draft Stage

1. Draft model samples γ tokens and probabilities

 $\triangleright \text{ Sample } \gamma \text{ guesses } x_{1,...,\gamma} \text{ from } M_q \text{ autoregressively.}$ for i = 1 to γ do $q_i(x) \leftarrow M_q(prefix + [x_1, \dots, x_{i-1}])$ $x_i \sim q_i(x)$ end for

Speculative Decoding - Verfication

2. Target Model validates the guesses and their respective probabilities in parallel \triangleright Run M_p in parallel. $p_1(x), \ldots, p_{\gamma+1}(x) \leftarrow$ $M_p(prefix), \ldots, M_p(prefix + [x_1, \ldots, x_{\gamma}])$ \triangleright Determine the number of accepted guesses n. $r_1 \sim U(0, 1), \ldots, r_{\gamma} \sim U(0, 1)$ $n \leftarrow \min(\{i-1 \mid 1 \le i \le \gamma, r_i > \frac{p_i(x)}{a_i(x)}\} \cup \{\gamma\})$ \triangleright Adjust the distribution from M_p if needed. $p'(x) \leftarrow p_{n+1}(x)$ if $n < \gamma$ then $p'(x) \leftarrow norm(max(0, p_{n+1}(x) - q_{n+1}(x)))$ end if

Speculative Decoding - Verification

- The verification is measured by the probability between target model and draft model
- Accept if $P_{target}(x) \ge P_{draft}(x)$
 - Target model is more confident in this case
- Otherwise, accept with probability $\frac{I_{target}(x)}{P_{draft(x)}}$

	$P_{target}(x)$
litv	

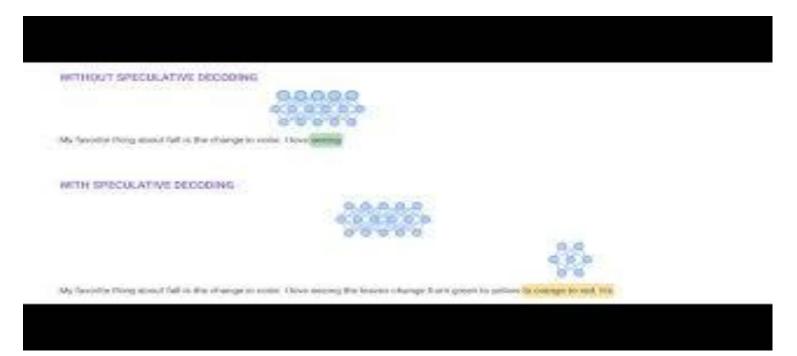
Token	x1	x2	x3	x4	x5
	dogs	love	chasing	after	cars
Draft	0.8	0.7	0.9	0.8	0.7
Target	0.9	0.8	0.8	0.3	0.8
Accept				×	×

Speculative Decoding - Additional Sampling

3. Sample an additional token to fix the first one that was rejected, or to add an additional one if they are all accepted

▷ Return one token from M_p , and n tokens from M_q . $t \sim p'(x)$ return $prefix + [x_1, ..., x_n, t]$

Animation



[https://research.google/blog/looking-back-at-speculative-decoding/]

Analysis - Walltime Improvement

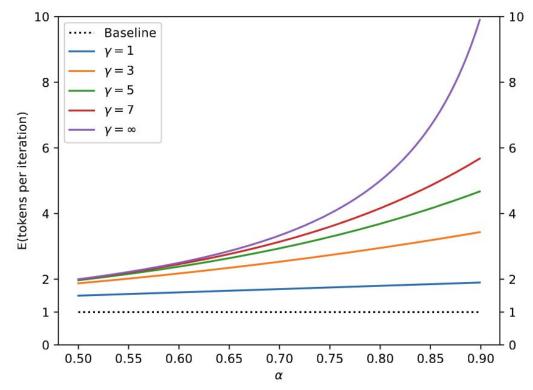
- Key Metric: Acceptance Rate (a)
 - Probability of small model's tokens being accepted 0
- Expected tokens per iteration: $\frac{1 \alpha^{\gamma+1}}{1 \alpha}$
 - γ = speculation length 0
- Walltime Improvement factor: $(1 \alpha)(\gamma c + 1)$

$$\frac{1-\alpha^{\gamma+1}}{\alpha^{\gamma+1}}$$

- c = cost coefficient (runtime ratio of small vs. large model) 0
- Trade-off: More speculative tokens $(\gamma) \rightarrow$ more potential speedup but diminishing returns

Analysis - Expected Tokens Per Iteration

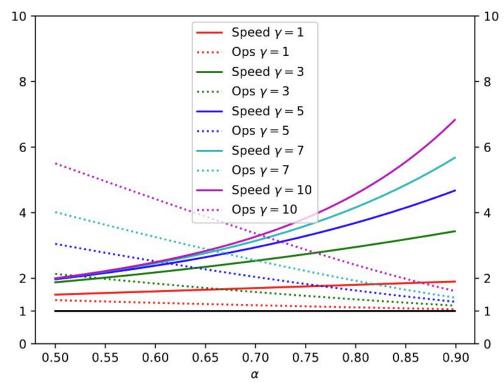
- Higher acceptance rates dramatically improve throughput;
- X-axis: Acceptance rate (*a*) ε [0.5, 0.9];
- Y-axis: expected tokens per iteration (1 to 10);
- Multiple curves for *γ* = {1,3,5,7, ∞};
- Baseline (standard decoding) = 1 token per iteration.



Expected number of tokens generated by SpeculativeDecodingStep as a function of a for various values of γ

Analysis - Speed vs. Computation

- Speed improves while computation increases, but the trade-off is favorable;
- X-axis: Acceptance rate (*a*) ε [0.5, 0.9];
- Y-axis: Factor relative to baseline (1 to 10)
- Multiple curves for different γ values {3, 5, 7, 10}



Experimental Setup

- → Target Models:
 - <u>T5-XXL (11B param)</u>
 - GPT-like model (97B param)
 - LaMDA (137B param)
- → Approximation Models:
 - <u>T5-small (77M param), T5-base (250M param), T5-large (800M param)</u>
 - Smaller GPT-like models (6M parameters)
 - Even simple n-gram models
- → Tasks:
 - English-German translation (WMT)
 - News summarization (CNN/DM)
 - Unconditional Generation (LM1B)
 - Dialog Tasks

Empirical Results - Translation & Summarization

	TASK	M_q	Темр	γ	lpha	SPEED
	ENDE	T5-small ★	0	7	0.75	3.4X
	ENDE	T5-BASE	0	7	0.8	2.8X
Real-world speedups of 2-3X	ENDE	T5-LARGE	0	7	0.82	1.7X
with identical outputs	ENDE	T5-SMALL ★	1	7	0.62	2.6X
	ENDE	T5-BASE	1	5	0.68	2.4X
	EnDe	T5-LARGE	1	3	0.71	1.4X
	CNNDM	T5-small ★	0	5	0.65	3.1X
	CNNDM	T5-BASE	0	5	0.73	3.0X
	CNNDM	T5-LARGE	0	3	0.74	2.2X
	CNNDM	T5-small ★	1	5	0.53	2.3X
	CNNDM	T5-BASE	1	3	0.55	2.2X
	CNNDM	T5-LARGE	1	3	0.56	1.7X

Empirical results for speeding up inference from a T5XXL 11B model.

Acceptance Rates (a) Across Models

	Model Pair (Mq \rightarrow Mp)	Task	SMPL{Temp=0} (<i>a</i>)	SMPL{Temp=1} (<i>a</i>)
<u>S</u>	Unigram \rightarrow T5-XXL	Translation(En-De)	0.08	0.07
ze inc	Bigram \rightarrow T5-XXL	Translation(En-De)	0.20	0.19
Size increases	T5-small \rightarrow T5-XXL	Translation(En-De)	0.75 👔	0.62
0	T5-base \rightarrow T5-XXL	Translation(En-De)	0.80	0.68
	T5-large \rightarrow T5-XXL	Translation(En-De)	0.82	0.71

- Higher *a* with argmax sampling (T=0) vs. standard sampling (T=1)
- Even simple models achieve non-zero acceptance rates
- Larger approximation models \rightarrow higher acceptance rates

Theoretical vs. Empirical Results

	TASK	M_q	Темр	γ	lpha	С	Exp Emp
	EnDe	T5-small	0	7	0.75	0.02	3.2 👄 3.4
The mathematical	ENDE	T5-BASE	0	7	0.8	0.04	3.3 ⇔ 2.8
model generally	ENDE	T5-LARGE	0	7	0.82	0.11	2.5 ⇔ 1.7
predicts	ENDE	T5-SMALL	1	7	0.62	0.02	2.3 👄 2.6
real-world	ENDE	T5-BASE	1	5	0.68	0.04	2.4 👄 2.4
performance well	ENDE	T5-large	1	3	0.71	0.11	2.0 ⇔ 1.4
	CNNDM	T5-SMALL	0	5	0.65	0.02	2.4 ⇔ 3.1
	CNNDM	T5-base	0	5	0.73	0.04	2.6 ⇔ 3.0
	CNNDM	T5-LARGE	0	3	0.74	0.11	2.0 👄 2.2
	CNNDM	T5-SMALL	1	5	0.53	0.02	$1.9 \Leftrightarrow 2.3$
	CNNDM	T5-base	1	3	0.55	0.04	$1.8 \Leftrightarrow 2.2$
	CNNDM	T5-LARGE	1	3	0.56	0.11	1.6 ⇔ 1.7

Expected improvement factor (EXP) vs. empirically measured improvement factor (EMP).

Limitations and Privacy Concerns

- Privacy Concern
 - Spectre and Meltdown
 - Input fingerprinting: Network-based attackers can identify user queries with >90% accuracy
 - Wei, J., Abdulrazzag, A., Zhang, T., Muursepp, A., & Saileshwar, G. (2024). Privacy Risks of Speculative Decoding in Large Language Models. ArXiv. <u>https://arxiv.org/abs/2411.01076</u>
- Increased computational overhead

Key Takeaways from Experiments

- Practical speedups of 2-3X with no change to model outputs;
- Works across model scales from millions to billions of parameters;
- Effective for diverse tasks translation, summarization, dialog, etc;
- Small approximation models often provide best overall speedup;
- Even simple models (like n-grams) can provide measurable benefits;

Discussion

Questions?

