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Introducing BLT: A Dynamic Approach 
(in 5 sentences)
This paper introduces the Byte Latent Transformer 

(BLT), a new large language model (LLM) architecture 

that avoids fixed-vocabulary tokenization by working 

directly with raw bytes. 

BLT addresses these shortcomings by learning “patches” 

of bytes:

1. A local encoder

2. A global “latent” transformer 

3. A local decoder

By dynamically allocating more compute for difficult 

parts of text and fewer steps for predictable ones, BLT 

cuts down the overall inference cost (up to ~50% 

savings in FLOPs) at parameter scales up to 8B. 

The paper’s experiments show improvements:

• Scaling

• Robustness

• Generalization

Overall, the authors argue that byte-level patching can 

be a strong alternative to traditional tokenization, 

offering improved efficiency, robustness to text noise, and 

more flexible scaling for large language models.



The Problem with Traditional 
Tokenization

Domain Sensitivity

Traditional tokenization creates biases in how strings are 

compressed, leading to domain and modality sensitivity issues.

Noise Vulnerability

Token-based models struggle with input noise, lacking 

robustness to character-level variations.

Multilingual Inequity

Fixed vocabularies create inherent biases against certain languages, 

particularly those with different scripts or morphological structures.

Limited Orthographic Knowledge

Token-based models lack direct access to character-level 

information, limiting their understanding of spelling and phonology.

Large language models traditionally rely on fixed-vocabulary tokenization to preprocess text into subword tokens. This 

approach, however, has well-known drawbacks: tokenization can make models brittle to domain shifts or noisy input (e.g. 

typos) and can obscure character-level information.  It also introduces biases (e.g. favoring well-represented 

languages/scripts over others).



The Promise of Byte-Level Processing

Robustness

Working directly at the byte level 

(i.e. on raw text bytes/characters) 

could eliminate tokenization issues 

and make models more robust and 

language-agnostic.

Language Agnostic

Byte-level processing treats all 

languages equally without favoring 

well-represented languages or 

scripts over others.

Character-Level Fidelity

Preserves important character-level information that might be lost during 

traditional tokenization processes.

In principle, working directly at the byte level (i.e. on raw text bytes/characters) 

could eliminate these issues and make models more robust and language-

agnostic.



The Computational Challenge

Byte-by-Byte Processing

Processing every character individually creates extremely long 

sequences

Attention Complexity

Attention mechanisms scale quadratically with sequence length

Feed-Forward Networks

Running huge feed-forward networks at every sequence position 

becomes the main cost

Computational Waste

Wastes computation on predictable characters (e.g., last letters of 

common words)

In other words, a byte-level model wastes a lot of computation on every character 

– whether it's an informative one or just the last letter of a very predictable word.



Early Byte-Level Models and Their Limitations

ByT5 (Xue et al., 2022)

Showed the promise of tokenization-free NLP, but 

scaling such models is challenging due to very 

long sequences and prohibitive compute costs. CANINE (Clark et al., 2022)

Used more efficient attention mechanisms to 

mitigate the computational challenges of byte-

level processing.

Prior studies like ByT5 (Xue et al., 2022) showed the promise of tokenization-free NLP, but scaling such models is 

challenging: processing every byte leads to very long sequences and prohibitive compute cost for large transformers.

Xue, Linting, et al. "Byt5: Towards a token-free future with pre-trained byte-to-byte models." Transactions of the Association for Computational 

Linguistics 10 (2022): 291-306.

Clark, Jonathan H., et al. "Canine: Pre-training an efficient tokenization-free encoder for language representation." Transactions of the Association 

for Computational Linguistics 10 (2022): 73-91.



MegaByte: A Multiscale Transformer

Fixed-Length Byte Chunks

Processed data in fixed-length byte chunks (patches) to 

reduce sequence length

Decoder-Only Causal LLM

Concatenated groups of bytes into larger representations, 

then used a global transformer

Local Decoder

Used a small local decoder to generate the bytes within 

each chunk

Competitive Performance

Matched a token-based model around the 1B parameter 

scale on a 400 billion byte dataset

A particularly influential predecessor of BLT was MegaByte, introduced by Yu et al. in 2023 (Yu, Lili, et al. "Megabyte: Predicting million-

byte sequences with multiscale transformers." Advances in Neural Information Processing Systems 36 (2023): 78808-78823.).



Limitations of Static Patching
Performance Gap

Still lagged behind latest tokenized models

Static Chunking

One-size-fits-all approach was inefficient

Compute Budget Issues

Underperformed when controlling for compute

Lack of Adaptability

Couldn't adjust to text complexity

However, its static patching (e.g. always grouping, say, 8 bytes at a time) was a limitation. Follow-up analyses found that a one-size-

fits-all chunking still lagged behind the latest tokenized models when controlling for the same compute budget.

Attempted Improvements to MegaByte
Natural Boundary 
Segmentation

Segmenting on 

natural boundaries 

like whitespace

Local Encoder 
Addition

Introducing a local 

encoder in addition to 

the decoder

Domain-Specific 
Improvements

Better results on certain 

domains (e.g. code from GitHub 

and scientific text from arXiv)

1B Parameter Scale

Improvements 

demonstrated at the 

1B parameter scale

Yet, even with these tweaks, the static or heuristic patching strategies were not enough to fully close the gap with state-of-the-art token-
based LLMs.  This pointed to the need for a more flexible, learned approach to grouping bytes – which is exactly the problem the Byte 
Latent Transformer (BLT) set out to solve.



Introducing the Byte Latent Transformer

Eliminates Fixed Tokenization

Byte Latent Transformer (BLT) is a new byte-level 

LLM architecture that eliminates fixed tokenization

Adaptive "Byte Patching"

Introduces an adaptive "byte patching" mechanism 

to allocate computation non-uniformly across a text 

sequence

Focus on Unpredictable Parts

Focuses more resources on unpredictable parts of 

the input and fewer on well-predicted parts

Multi-Module Design

Features local encoder/decoder transformers that 

interface with a global latent transformer

The core idea is to allocate computation non-uniformly across a text sequence, focusing more resources on 

unpredictable parts of the input and fewer on well-predicted parts.



The BLT Architecture
Local Encoder

A local encoder groups consecutive bytes into patches based on a 

small auxiliary model’s entropy estimates.  Higher-entropy 

(unpredictable) regions of text get more, smaller patches (and thus 

more compute steps), while predictable regions can be grouped 

into fewer, larger patches.

Latent Transformer

A global “latent” transformer then operates on these 

patch representations—similar to how a standard LLM 

operates on token embeddings.

Local Decoder

A local decoder finally expands the predicted patch 

representations back into bytes.

BLT also employs specialized attention connections between the local and global layers (e.g. a 
cross-attention that allows the latent transformer to peek into finer-grained byte details when 
needed) and byte n-gram embeddings to enrich the patch representations.



Patching: central to how BLT tackles sequence length

What is Patching?
Patching is the process of grouping bytes into variable-sized units called "patches" that serve as the primary units of 

computation. Unlike tokens, patches have no fixed vocabulary and can be of any length.

Patching Methods Compared



Entropy-Based Dynamic Patching
How It Works

Unlike static chunking, BLT decides patch boundaries on 

the fly based on the information content of the data. It 

uses a separately trained lightweight entropy model that 

looks at the context and estimates the uncertainty 

(entropy) of the next byte.

• Low entropy (predictable) → extend current patch

• High entropy (uncertain) → start a new patch

BLT tries to create patches such that each patch has a 

relatively uniform level of uncertainty/information.

Benefits

"Hard" parts of text (e.g. the first letter of a new word, 

an unpredictable token, a language/script change, etc.) 

result in shorter patches (more focus), whereas "easy" 

stretches (like finishing a common word or a sequence of 

repeated characters) can be folded into longer patches.

This entropy-guided grouping is dynamic and data-

dependent, not fixed by any predetermined rule or 

vocabulary. It allows the model to allocate compute 

adaptively, focusing its power where needed and 

skipping ahead when possible.

The entropy of each byte in “Daenerys Targeryen is in Game of Thrones, a fantasy epic by George R.R. Martin.”



Local Encoder: Creating Robust Representations
The Local Encoder Model is a lightweight transformer-

based model with significantly fewer layers than the 

global model. Its main role is to efficiently map input 

bytes into expressive patch representations.

A primary departure from the transformer architecture 

is the addition of a cross-attention layer after each 

transformer layer, whose function is to pool byte 

representations into patch representations.

The transformer layers use a local block causal attention 

mask; each byte attends to a fixed window of preceding 

bytes that in general can cross the dynamic patch 

boundaries but cannot cross document boundaries.



Encoder Hash n-gram Embeddings
Creating Expressive Representations
A key component in creating robust, expressive representations at each step is to incorporate information about 

the preceding bytes. In BLT, this is achieved by modeling both the byte individually and as part of a byte n-gram.

Hash Function Approach

BLT introduces hash n-gram embeddings that map all byte n-grams via a hash function to an index in an 

embedding table with a fixed size, for each size n ∈ {3, 4, 5, 6, 7, 8}. The resulting embedding is then added to the 

embedding of the byte before being normalized and passed as input to the local encoder model, creating a rich 

representation that captures multi-byte patterns.

This approach allows the model to efficiently capture n-gram patterns without requiring an exponentially large 

vocabulary, as would be needed with traditional tokenization approaches.



Encoder Multi-Headed Cross-Attention
BLT closely follows the input cross-attention module of the Perceiver architecture, with the main difference being 

that latent representations correspond to variable patch representations as opposed to a fixed set of latent 

representations, and only attend to the bytes that make up the respective patch.

The module comprises a query vector, corresponding to each patch, which is initialized by pooling the byte 

representations corresponding to the patch, followed by a linear projection. This cross-attention mechanism allows 

the model to effectively aggregate information from variable-length byte sequences into fixed-dimension patch 

representations.



Local Decoder: From Patches Back to Bytes

Input Processing
Takes global patch representations and previously decoded 

bytes as input

Cross-Attention

Applies cross-attention where byte representations are 

queries and patch representations are keys/values

Transformer Layers

Processes the resulting byte sequence through 

transformer layers

Similar to the local encoder, the local decoder is a lightweight transformer-based model with significantly fewer layers than 

the global model. It decodes a sequence of global patch representations into raw bytes, predicting a sequence of raw bytes 

as a function of previously decoded bytes.



Cross-Attention Mechanism

Decoder Cross-Attention

In the decoder, the roles are reversed: byte 

representations are the queries, and patch 

representations are the keys and values.

This allows the model to decode patch representations 

back into bytes, completing the end-to-end byte-level 

processing pipeline.



Differences from Earlier Byte-Level 
Approaches

Feature MegaByte BLT

Patch Sizing Fixed length Dynamic, entropy-driven

Input Processing Concatenation of byte 

vectors

Learned encoding 

transformer

Local Modules Decoder only Encoder and decoder

Attention Mechanisms Standard Enhanced with cross-

attention

Memory None Byte-sequence memory

Performance at Scale Lags behind token models Matches token models

These innovations collectively allow BLT to match the modeling power of token-based transformers – 

something static patch models struggled with beyond small scales.



Experimental Setup

Pre-training Datasets

• Llama 2 dataset: 2 trillion tokens from various public 

sources

• BLT-1T: A new dataset with 1 trillion tokens from public 

sources, including a subset of Datacomp-LM

Neither dataset includes any data from Meta products or 

services.

Entropy Model

A byte-level language model trained on the same training 

distribution as the full BLT model, with 100M parameters, 

14 layers, and a hidden dimensionality of 512.

Context Length Equalization

To maintain the same average context length and avoid 

giving larger patch sizes unfair advantage, the number of 

bytes in each batch remains constant in expectation.

The experiments were carefully designed to compare BLT with tokenization-based models with particular attention to 

not give BLT any advantages from possibly using longer sequence contexts.



Experimental Setup
FLOPs Estimation

To compute flops per byte for BLT models, the flops for 

the local encoder transformer, the global latent 

transformer, and the local decoder transformer are added 

together with the cross-attention blocks in the encoder 

and the decoder.

A notable difference from standard approaches is that the 

input embedding layer is implemented as an efficient 

lookup instead of a dense matrix multiplication, therefore 

becoming a 0-flop operation.

Bits-Per-Byte (BPB) Estimation

When comparing byte and token-level models, BPB is 

used as a tokenizer-independent version of perplexity:

This allows for fair comparison between models with 

different tokenization schemes.



Experimental Setup

Transformer Architecture Hyperparameters

For all transformer blocks in BLT, the architecture largely 

follows that of Llama 3, using the SwiGLU activation 

function in feed-forward layers, rotary positional 

embeddings (RoPE) with θ = 500000 only in self-attention 

layers, and RMSNorm for layer normalization. Flash 

attention is used for all self-attention layers with fixed-

standard attention masks, and Flex Attention for cross-

attention layers with dynamic patch-dependent masks.

BLT-Specific Hyperparameters

The authors train BLT models ranging from 400M to 8B 

parameters. These models adopt a fixed learning rate of 

4×10⁻⁴ with AdamW, a 2000-step linear warm-up, and a 

cosine decay schedule to zero. 



Scaling Trends: Parameter Matched Compute Optimal
Using the Llama 2 dataset, various compute-optimal BPE and BLT models were trained across four different sizes, ranging 

from 1B to 8B parameters. The BPE models were trained using the optimal ratio of model parameters to training data, as 

determined by Llama 3.

BLT models either match or outperform their BPE counterparts, and this trend holds as model size and flops scale. To 

the best of our knowledge, BLT is the first byte-level Transformer architecture to achieve matching scaling trends with 

BPE-based models at compute optimal regimes.



Scaling Trends: Beyond Compute Optimal Task Eval

The authors train an 8B-parameter 

BLT model beyond its compute-

optimal ratio on a high-quality 

1T-token dataset and evaluate it 

against token-based Llama 3 on 

reasoning and coding tasks (ARC, 

HellaSwag, PIQA, MMLU, MBPP, 

HumanEval). The BLT-Entropy variant 

matches or surpasses Llama 3 in four 

out of seven tasks, indicating that 

patch-based byte modeling can 

outperform fixed-vocabulary 

tokenization at scale. Meanwhile, 

BLT-Space—though less accurate—

reduces inference costs by grouping 

more bytes into each patch.



Scaling Trends: Patches Scale Better Than Tokens
With BLT models, it's possible to simultaneously increase model size and patch size while maintaining the same 

training and inference flop budget and keeping the amount of training data constant. This is a unique feature of 

patch-based models which break free of the efficiency tradeoffs of fixed-vocabulary token-based models.

Longer patch sizes save compute, which can be reallocated to grow the size of the global latent transformer, 

because it is run less often. Fixed inference scaling studies show that BLT models achieve better scaling trends 

than tokenization-based architectures for both inference flop classes tested.



Byte Modeling Improves Robustness: 
Character-Level Tasks
Noise Data

The authors introduce random casing, repeated characters, and 

uppercase transformations to standard classification tasks (like 

HellaSwag) to simulate real-world “noisy” text. BLT remains robust 

under such distortions, outperforming a Llama 3 baseline by clear 

margins. Its byte-level processing preserves orthographic nuances 

that typical tokenizers fail to capture.

Phonology

To test fine-grained letter-sound knowledge, they evaluate a 

grapheme-to-phoneme (G2P) task. BLT exhibits stronger accuracy 

than token-based models, reflecting its direct character access. 

This detailed orthographic modeling is beneficial in languages or 

tasks requiring precise letter-wise reasoning.

CUTE  

CUTE requires local character edits—like inserting symbols or 

swapping letters—where subword-based models often struggle. 

BLT excels in these cases because it treats every character as a 

first-class input. Its success on spelling manipulations and 

orthographic edits underscores the benefits of a purely byte-level 

approach.



Byte Modeling Improves Robustness: 
Character-Level Tasks

Low-Resource Machine Translation

The authors assess BLT on a suite of lower-resource language pairs 

from the FLORES-101 benchmark. In many cases, BLT achieves 

higher BLEU scores than a comparable Llama 3 baseline, 

especially for languages with complex scripts or limited training 

data. By avoiding a fixed subword vocabulary, BLT’s byte-level 

modeling yields more flexible, granular representations, resulting in 

better coverage and improved translation quality for 

underrepresented languages.



Byte Modeling Improves Robustness: 
Training BLT from Llama 3

The authors explore initializing BLT’s large global transformer with the parameters of an existing Llama 3.1 model (excluding 

embeddings), while the new local encoder and decoder components start from scratch. They then update the global transformer 

at a lower learning rate than the local components. The results show that this partial transfer improves BLT’s performance on 

several tasks (including MMLU), compared to training BLT from scratch, and reduces the total cost of training a byte-level 

model. Nonetheless, further work is needed to fully match or exceed all task performance of the original Llama 3.1 baseline, 

implying that factors like data mixtures and hyperparameters could play an important role in optimizing this model-initialization 

procedure.



Ablations: Entropy Model Hyperparameters
The authors vary the size and context window of the small byte-level language model that produces next-byte entropy 

estimates for patching. Model sizes range from as little as ~1 million to 100 million parameters, and the context window 

(the byte span each entropy prediction sees) varies from 64 to 512. 

The findings show that larger entropy models and longer context windows do improve BLT’s downstream 

performance—particularly for lower-parameter BLT models—though returns diminish beyond roughly 50 million 

parameters and a 512-byte window. This suggests that moderate-sized entropy models can adequately guide patch 

boundaries without overly inflating the overall training cost.



Ablations: Types of Patching
The authors compare four methods for grouping bytes into patches:

Strided Patching: Splitting bytes at a fixed stride (e.g., every 4 or 6 bytes).

Space Patching: Creating new patches whenever a space character appears.

BPE Patching: Using a subword tokenizer (e.g., Llama 3’s BPE) to define patch boundaries.

Entropy-Based Patching: Dynamically placing boundaries where next-byte entropy is high.

They ensure each method sees the same average context length—so no approach gains an unfair advantage by 

processing more (or fewer) bytes overall. Results show dynamic (entropy) patching generally achieves the best trade-

off between compute savings and performance, with space patching providing a simpler alternative that still 

outperforms basic strided patching in many cases.



Ablations: Cross-Attention
The authors examine the design of cross-attention blocks both in the local encoder and the local decoder. They test how 

many layers should include cross-attention and how the initial “query” is formed (e.g., from a pooled byte embedding vs. 

a single learned vector). Their findings show that:

Cross-Attention in the Decoder consistently yields the largest gains, allowing byte-level representations to attend 

directly to the global patch embeddings.  

Pooling the encoder’s byte representations to initialize patch queries outperforms a single learned query.  

Increasing the number of cross-attention layers produces diminishing returns, but at least one or two such layers in 

both encoder and decoder helps capture key local-global interactions.

While each additional cross-attention layer adds overhead, it improves the alignment between byte embeddings and 

latent patch representations enough to be worthwhile.



Ablations: n-gram Hash Embeddings
The authors investigate adding “hash-based n-gram embeddings” (3-grams through 8-grams) on top of each byte’s 

embedding. They explore varying the vocabulary size (e.g., 300 k vs. 2 M hash entries) and different n-gram ranges. Across 

all tested BLT models, including n-gram embeddings consistently lowers bits-per-byte error, most noticeably on 

structured data like GitHub code or Wikipedia text. 

Although larger vocabularies generally yield better results, the returns diminish beyond roughly one to two million 

entries. Smaller n-gram spans (e.g., 3–5) also tend to boost performance more than only using larger n-grams (6–8). 

Overall, these hash embeddings appear crucial for capturing local patterns in raw bytes.



Ablations: Local Model Hyperparameters
The authors vary how many layers to allocate to the local encoder versus the local decoder, and how large each 

component’s hidden dimension should be. They discover that a minimal encoder (often a single layer) paired with a 

deeper decoder (e.g., 9 layers) performs well, especially when combined with hash-based n-gram embeddings. More 

encoder layers can help slightly, but the largest improvements come from a stronger decoder, which handles 

byte-to-patch alignment and output generation more effectively.



Limitations and Future Work

Scaling Laws

The optimal ratio of data to parameter sizes may 

differ for BLT compared to BPE-level transformers. 

Future work could calculate specific scaling laws for 

BLT, potentially leading to even more favorable 

scaling trends.

Implementation Efficiency

Existing transformer libraries are optimized for 

tokenizer-based architectures. While theoretical flop 

matched experiments were presented, 

implementations may not yet be at parity with 

tokenizer-based models in terms of wall-clock time.

End-to-End Patching

While BLT uses a separately trained entropy model 

for patching, learning the patching model in an end-

to-end fashion could be an interesting direction for 

future work.

Byte-ifying Existing Models

Further work on "byte-ifying" tokenizer-based 

models may uncover methods that not only retain 

the benefits of byte-level processing but also push 

performance beyond that of these tokenizer-based 

models without training them from scratch.



Conclusion and Impact

Performance Parity

BLT achieves performance 

parity with tokenization-

based models at scale, 

demonstrating the viability 

of byte-level modeling for 

large language models.

Inference Efficiency

Dynamic patching enables 

up to 50% reduction in 

inference costs while 

maintaining competitive 

performance on standard 

benchmarks.

New Scaling Dimension

BLT unlocks a new 

dimension for scaling by 

allowing simultaneous 

increases in model and 

patch size within a fixed 

inference budget.

Improved Robustness

Direct engagement with 

raw byte data improves the 

model's handling of noisy 

inputs, character-level 

tasks, and multilingual 

content.

The Byte Latent Transformer represents a significant advancement in language model architecture, challenging the 

conventional dependency on fixed-vocabulary tokenization. By dynamically allocating compute based on data 

complexity, BLT offers a more efficient and adaptable framework for language modeling that maintains performance 

while improving robustness and multilingual capabilities.

Whether 2025 will fully "say goodbye to tokenization" remains to be seen, but BLT has certainly laid the 
conceptual groundwork for a future where NLP models learn their own text representations on the fly, leading 
to more scalable and adaptable language technology.



Code Notebook 
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