
Efficient Large-Scale Language
Model Training on GPU Clusters
Using Megatron-LM
Deepak Narayanan‡, Mohammad Shoeybi† , Jared Casper† , Patrick LeGresley† , Mostofa Patwary† , Vijay
Korthikanti† , Dmitri Vainbrand† , Prethvi Kashinkunti† , Julie Bernauer† , Bryan Catanzaro† , Amar Phanishayee∗ ,
Matei Zaharia‡
†NVIDIA ‡Stanford University ∗Microsoft Research

Motivation

● Cannot fit the model parameters in a single GPU (min. 2.2 TB memory to train 175B model)

● Training requires a high number of compute operation

● Results in unrealistically long training time * (≈ 288 years for 175 B model on 1 GPU!)

● Solution : Parallelism

Problem

● Using parallelism methods in isolation limits scaling

○ Pipeline: long GPU idle time depending on pipeline schedule

○ Tensor: Slow when deployed across multi-GPU servers

○ Data: # GPUs limited to the batch size

PTD-P Contribution

● Combine

○ Pipeline

○ Tensor

○ Data

● Propose novel interleaved pipeline schedule

● Show non-trivial interactions between all 3

Data Parallelism

● Each GPU(or cluster of GPU) hosts the full model

● Data is sharded

● Gradients periodically aggregated

Tensor Model Parallelism

● Layers themselves are split over devices

MLP

MLP

Attention

Pipeline Model Parallelism

● Layers of the model are sharded

○ Each device has an equal number of layers

● Batches are split into microbatches

● Periodic flushes : synchronization

● Goal : reduce pipeline bubble time

○ Idle GPU time

Default Schedule (Gpipe)

● Need m >> p

● Large m -> high memory footprint

○ Requires caching intermediate activations for all m iterations for the backward

pass

PipeDream-Flush schedule

● 1 forward, 1 backward

PipeDream-Flush schedule

● Advantage

○ Activations are stashed for p or fewer microbatches

○ More memory-efficient when m >> p

Schedule with Interleaved Stages

● Each model has multiple subset of layers (model chunk)

○ Instead of contiguous layers only

● 1F1B schedule

Interleaved vs. Non-interleaved: empirical result

● ✅ Interleaved schedule achieves higher

throughput overall, especially with smaller batch

size.

● Non-interleaved schedule is similarly performant

with higher batch size (=smaller pipeline bubble

size)

Code

Trade-offs between configurations

1. Tensor and Pipeline

2. Data and Pipeline

3. Data and Tensor

Quick notation

● Observation

○ Scaling tensor parallelism (t) reduces pipeline bubble size, but requires more

communication

○ Scaling pipeline parallelism (p) increases GPU idle time, but requires fewer

communication

1. Tensor & Pipeline

Bubble time fraction:

1. Tensor & Pipeline: Empirical result

● ✅ The optimal configuration balances tensor
parallelism and pipeline parallelism.

● 📛 Both have communication overhead,

leading to a slowdown in suboptimal

combination

Bubble time fraction:

● Observation

○ Scaling data parallelism (d) also reduces pipeline bubble size

○ Using more microbatches (b’) is more effective for both data and pipeline

parallelism

2. Data + Pipeline

Bubble time fraction:

2. Data & Pipeline: Empirical result

● ✅ Increasing the data parallel size

decreases the pipeline bubble size, which

increases throughput

● 📛 Increasing the pipeline parallel size

increases the pipeline bubble size, which

increases the idle GPU time

Bubble time fraction:

● Observation

○ Tensor parallelism requires communication once every microbatch

○ Data parallelism requires communication once every batch

3. Data & Tensor

3. Data & Tensor: Empirical result

● 📛 Increased communication with tensor
parallelism decreases GPU utilization

● Solution

○ Use tensor parallelism within a node (t)

○ Add pipeline parallelism to scale to multiple nodes (t * p)

○ Use data parallelism to scale up training to more GPUs (t * p * d)

Pipeline/Tensor/Data Interaction Takeaway

Training a Trillion Parameter Model

● Parallelism is indispensable to training a large model

● Tensor, pipeline, data parallelism can be combined effectively
○ GPT-3 (175 billion parameter model on 300 billion tokens, 1024 A100 GPUs) ≈ 34 days
○ 1 trillion parameter model on 450 billion tokens, 3072 A100 GPUs ≈ 84 days

● To put in perspective,
○ 1024 GPU * 34 days * 24 hours = 835,584 hours

○ 3072 GPU * 84 days * 24 hours = 6,193,152 hours

Thank you for listening

If you’re interested, the paper also touches upon:

- Communication optimization

- Activation recomputation

- Comparison with ZeRO

- Microbatch size

