Efficient Large-Scale Language Model Training on GPU Clusters Using Megatron-LM

Deepak Narayanan‡, Mohammad Shoeybi†, Jared Casper†, Patrick LeGresley†, Mostofa Patwary†, Vijay Korthikanti†, Dmitri Vainbrand†, Prethvi Kashinkunti†, Julie Bernauer†, Bryan Catanzaro†, Amar Phanishayee*, Matei Zaharia‡

†NVIDIA ‡Stanford University *Microsoft Research

Motivation

- Cannot fit the model parameters in a single GPU (min. 2.2 TB memory to train 175B model)
- Training requires a high number of compute operation
- Results in **unrealistically long** training time * (≈ 288 years for 175 B model on 1 GPU!)
- Solution : Parallelism

Problem

- Using parallelism methods in isolation limits scaling
 - Pipeline: long GPU idle time depending on pipeline schedule
 - Tensor: Slow when deployed across multi-GPU servers
 - Data: # GPUs limited to the batch size

PTD-P Contribution

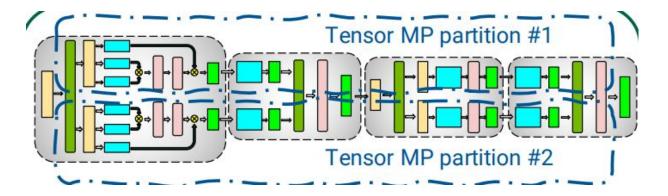
- Combine
 - Pipeline
 - \circ Tensor
 - Data
- Propose novel interleaved pipeline schedule
- Show non-trivial interactions between all 3

Data Parallelism

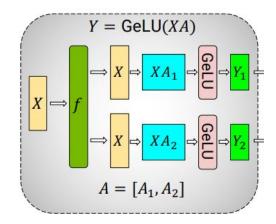
- Each GPU(or cluster of GPU) hosts the **full** model
- Data is sharded
- Gradients periodically aggregated

Tensor Model Parallelism

• Layers themselves are split over devices

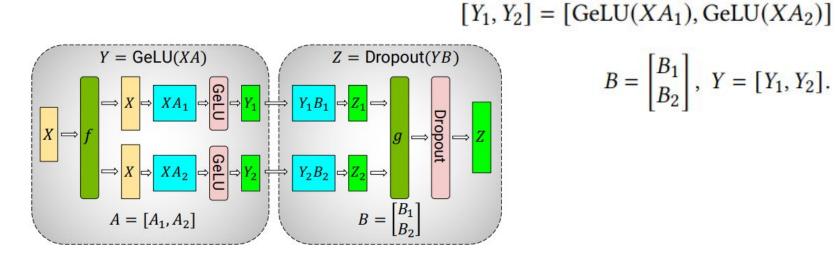


MLP



Y = GeLU(XA). Z = Dropout(YB).

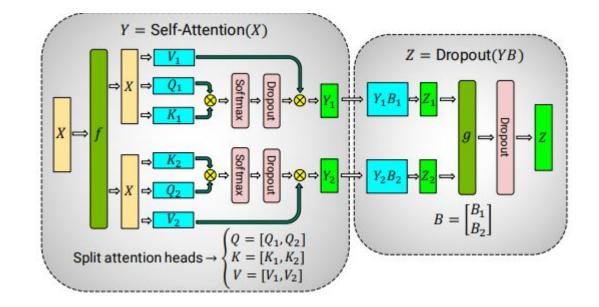
 $[Y_1, Y_2] = [\operatorname{GeLU}(XA_1), \operatorname{GeLU}(XA_2)]$



$$B = \begin{bmatrix} B_1 \\ B_2 \end{bmatrix}, \ Y = [Y_1, Y_2].$$

MLP

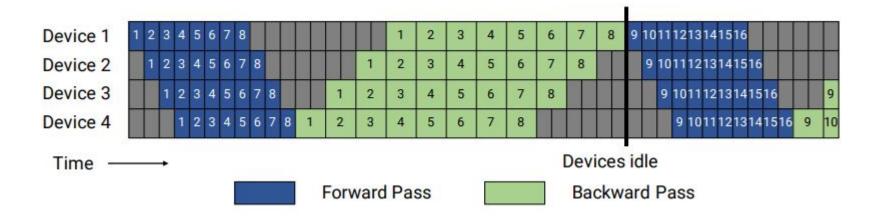
Y = GeLU(XA). Z = Dropout(YB).

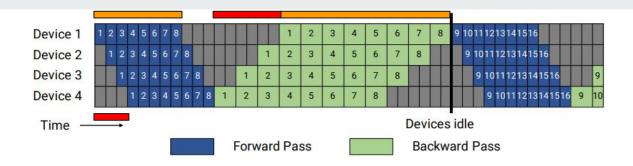


Pipeline Model Parallelism

- Layers of the model are sharded
 - Each device has an equal number of layers
- Batches are split into microbatches
- Periodic *flushes* : synchronization
- Goal : reduce *pipeline bubble* time
 - Idle GPU time

Default Schedule (Gpipe)





 t_{pb} = time of the pipeline bubble p = #devices t_f = microbatch's forward pass time t_b = microbatch's backward pass time t_{id} = ideal time per iteration m = number of microbatches

$$- t_{pb} = (p-1) \cdot (t_f + t_b)$$
$$- t_{id} = m \cdot (t_f + t_b)$$

p = #devices

m = number of microbatches

Bubble time fraction (pipeline bubble size) =
$$\frac{t_{pb}}{t_{id}} = \frac{p-1}{m}$$

- Need m >> p
- Large m -> high memory footprint
 - Requires caching intermediate activations for all *m* iterations for the backward pass

PipeDream-Flush schedule

Backward Pass

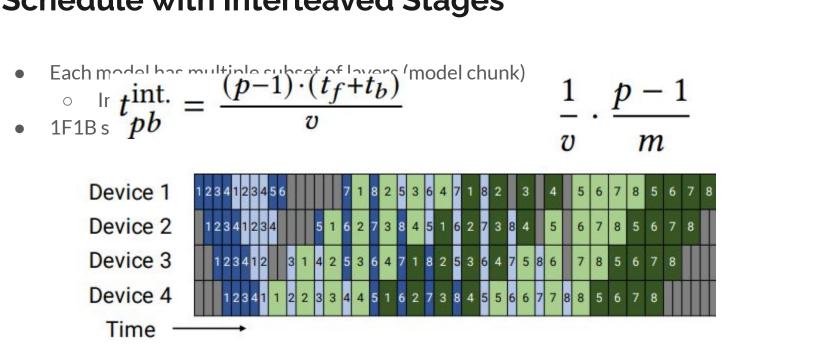
• 1 forward, 1 backward

Device 1	1	2	3	4						1	5		2	6	3	7	4	8		5		6		7	7	8
Device 2		1	2	3	4				1		2	5		3	6	4	7	5	8	e	5		7		8	
Device 3			1	2	3	4	1		2	2		3	5	4	6	Ę	5 7		6	8	7	7		8		
Device 4				1		1	2	2	3	3	4	1	4	5	5	6	6	7		7	8	8				

PipeDream-Flush schedule

- Advantage
 - Activations are stashed for *p* or fewer microbatches
 - More memory-efficient when *m* >> *p*

Device 1	1	2	3	4						1		5	2	6	3	7	4	4	8	5		6		7	7	8
Device 2		1	2	3	4				1		2		5	3	6	4	7	Ę	5	8	6		7		8	
Device 3			1	2	3	4	1			2		3	5	5	1 6		5	7	6	8		7		8		
Device 4				1		1	2	2	3	3		4	4	5	5	6	e	5	7	7	8	8				

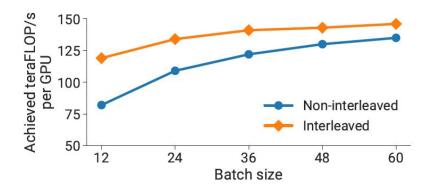


Forward Pass

Backward Pass

Schedule with Interleaved Stages

Interleaved vs. Non-interleaved: empirical result



- Interleaved schedule achieves higher throughput overall, especially with smaller batch size.
- Non-interleaved schedule is similarly performant with higher batch size (=smaller pipeline bubble size)

Code

Trade-offs between configurations

- 1. Tensor and Pipeline
- 2. Data and Pipeline
- 3. Data and Tensor

Quick notation

 $\begin{array}{l} p,t,d=\text{parallelization dimension}\\ n=\text{number of GPUs}\\ B=Q \text{lobal} d \text{Batch Size}\\ b=\text{Microbatch size}\\ m=\frac{B}{bd} \end{array}$

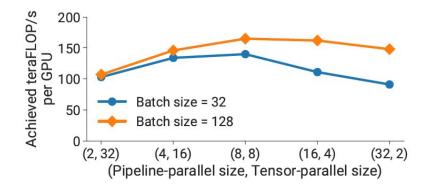
p, t, d = parallelization dimensionn = number of GPUsB = Global Batch Sizeb = Microbatch size $m = \frac{B}{bd}$

1. Tensor & Pipeline

- Observation
 - Scaling tensor parallelism (t) reduces pipeline bubble size, but requires more communication
 - Scaling **pipeline** parallelism (p) **increases** GPU idle time, but requires fewer communication

Bubble time fraction:
$$\frac{p-1}{m} = \frac{n/t-1}{m}$$

1. Tensor & Pipeline: Empirical result



- V The optimal configuration balances **tensor parallelism** and **pipeline parallelism**.
- Both have communication overhead, leading to a slowdown in suboptimal combination

Bubble time fraction:
$$\frac{p-1}{m} = \frac{n/t-1}{m}$$

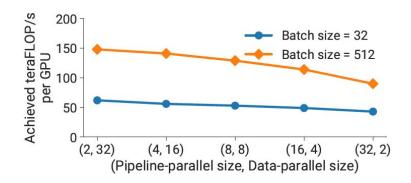
2. Data + Pipeline

- Observation
 - Scaling data parallelism (d) also reduces pipeline bubble size
 - Using **more microbatches** (b') is **more effective** for both data and pipeline parallelism

e fraction:
$$\frac{p-1}{m} = \frac{n/d-1}{b'/d} = \frac{n-d}{b'}.$$

Bubble time fraction

2. Data & Pipeline: Empirical result



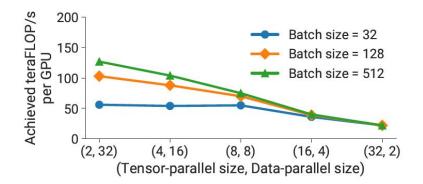
- V Increasing the data parallel size decreases the pipeline bubble size, which increases throughput
- Increasing the pipeline parallel size increases the pipeline bubble size, which increases the idle GPU time

Bubble time fraction: $\frac{p-1}{m} = \frac{n/d-1}{b'/d} = \frac{n-d}{b'}$.

3. Data & Tensor

- Observation
 - Tensor parallelism requires communication once every microbatch
 - Data parallelism requires communication once every batch

3. Data & Tensor: Empirical result



Increased communication with tensor
parallelism decreases GPU utilization

p, t, d =parallelization dimension

Pipeline/Tensor/Data Interaction Takeaway

- Solution
 - Use tensor parallelism within a node (t)
 - Add pipeline parallelism to scale to multiple nodes (t * p)
 - Use data parallelism to scale up training to more GPUs (t * p * d)

Training a Trillion Parameter Model

- Parallelism is indispensable to training a large model
- Tensor, pipeline, data parallelism can be combined effectively
 - GPT-3 (175 billion parameter model on 300 billion tokens, 1024 A100 GPUs) ≈ 34 days
 - 1 trillion parameter model on 450 billion tokens, 3072 A100 GPUs ≈ 84 days
- To put in perspective,
 - 1024 GPU * 34 days * 24 hours = 835,584 hours
 - 3072 GPU * 84 days * 24 hours = 6,193,152 hours

Thank you for listening

If you're interested, the paper also touches upon:

- Communication optimization
- Activation recomputation
- Comparison with ZeRO
- Microbatch size