JetFormer: An Autoregressive Generative Model of Raw Images and Text

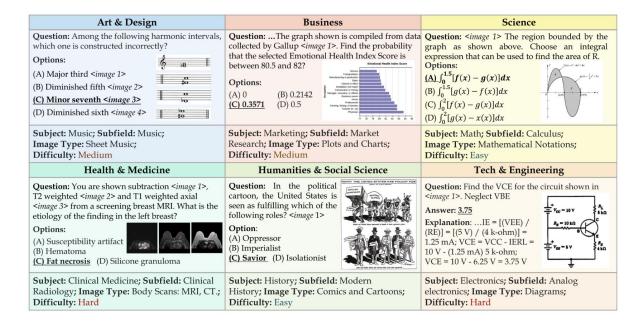
Michael Tschannen, Andre Susano Pinto, Alexander Kolesnikov Google DeepMind ICLR 2025

Presented by:

Nathan de Lara and Jasper Gerigk March 28, 2025

Vision Language Models (VLM)

Learn Joint Distribution over Images and Text



Source: A Massive Multi-discipline Multimodal Understanding and Reasoning Benchmark for Expert AGI (link)

A transparent sculpture of A chromeplated cat sculpture placed on a Persian a duck made out of glass. rug.

A kangaroo holding a an egg and a bird made of beer, wearing ski goggles wheat bread and passionately singing

Figure 2: Generated images from a 7B Transfusion trained on 2T multi-modal tokens.

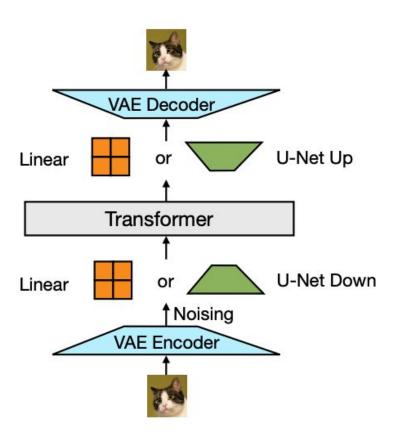
silly songs.

Source: Transfusion: Predict the Next Token and Diffuse Images with One Multi-Modal Model (link)

Training an Image Generating VLM

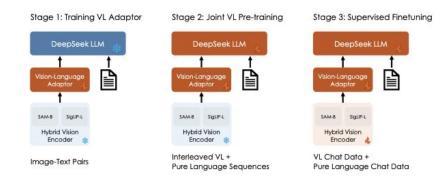
Transfusion: Predict the Next Token and Diffuse Images with One Multi-Modal Model

Chunting Zhou ^{µ*}	Lili Yu $^{\mu*}$	Arun Babu $^{\delta \dagger}$	Kushal Tirumala $^{\mu}$		
Michihiro Yasunaga $^{\mu}$	Leonid Shami	is ^µ Jacob	Kahn $^{\mu}$	Xuezhe Ma $^{\sigma}$	
Lu	ke Zettlemoyer $^{\mu}$	Omer L	evy†		

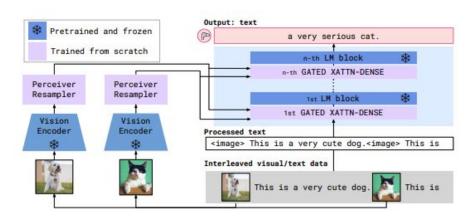


Training an Image Generating VLM

Popular existing methods freeze and train components separately during initial learning



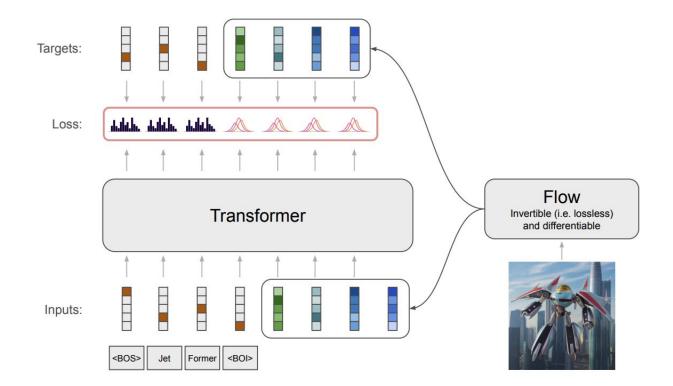
Source: DeepSeek-VL: Towards Real-World Vision-Language Understanding (link)



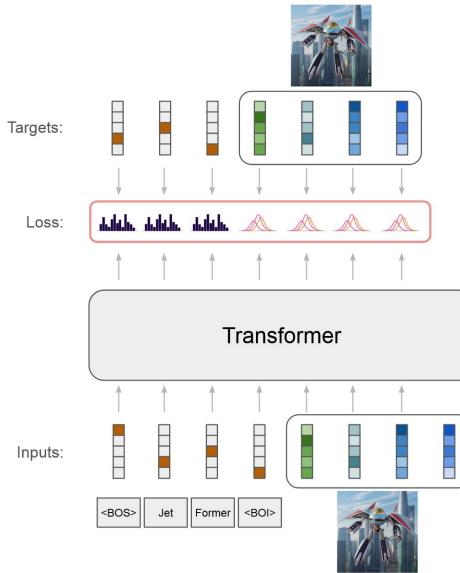
Source: Flamingo: A visual Language Model for Few-Shot Learning (link)

Motivation

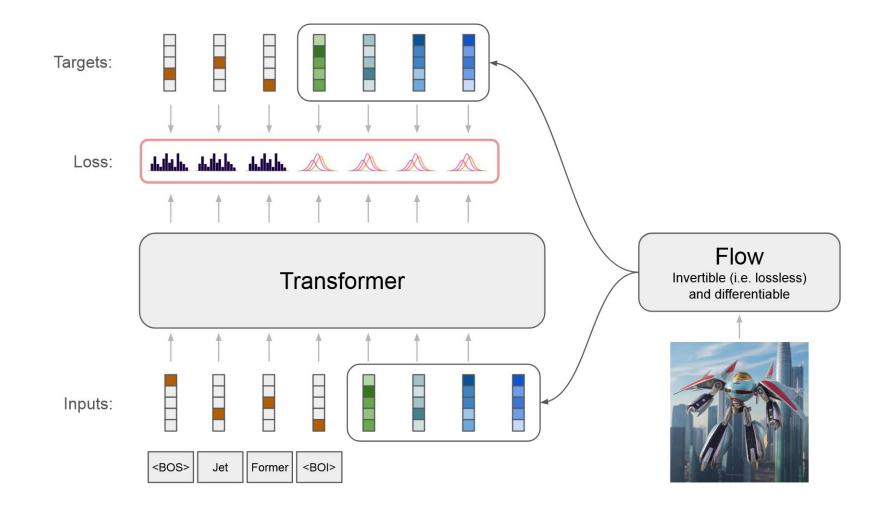
Replace freezing and individual component steps with one completely end-to-end trained model



JetFormer: An Autoregressive Generative Model of Raw Images and Text



JetFormer: An Autoregressive Generative Model of Raw Images and Text

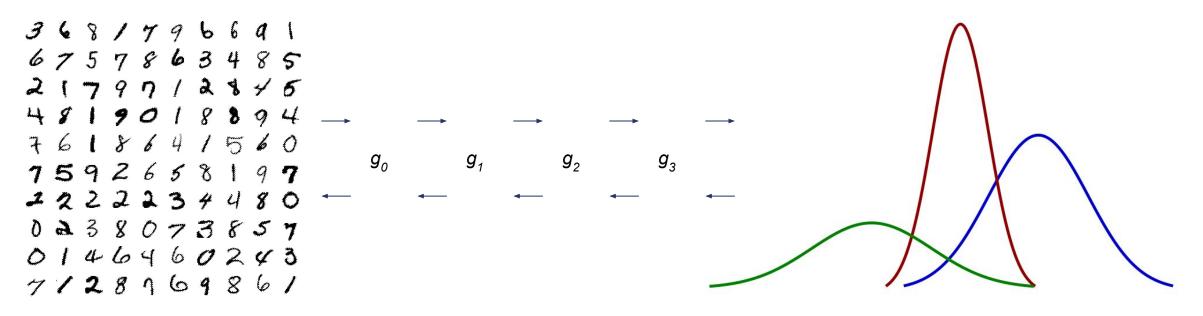


Flow Models

g

LeCun, Yann, et al. "Gradient-based learning applied to document recognition." *Proceedings of the IEEE* 86.11 (1998): 2278-2324.

Flow Models



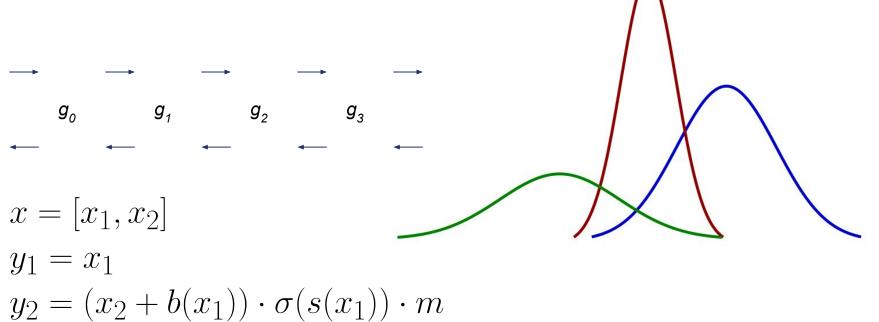
LeCun, Yann, et al. "Gradient-based learning applied to document recognition." *Proceedings of the IEEE* 86.11 (1998): 2278-2324.

Flow Models

368/796641675786348521797/2846 $4819018894 <math>\rightarrow \rightarrow$ 761864/560 g_0 g_1 g_1 g_1 g_1 g_1 g_1 g_2 g_1 g_1 g_2 g_1 g_1 g_1 g_2 g_1 g_2 g_1 g_2 g_1 g_2 g_1 g_2 g_1 g_2 g_2 g_2 g_1 g_2 g_2 g_2 g_1 g_2 g_2 g_2 g_1 g_2 g_2 g_1 g_2 g_2 g_1 g_2 g_2 g_2 g_1 g_2 g_2 g_1 g_2 g_2 g_2 g_2 g_1 g_2 g_2 g_2 g_2 g_1 g_2 g_3 g_1 g_2 g_2 g_3 g_1 g_2 g_2 g_3 g_1 g_2 g_1 g_2 g_1 g_2 g_1 g_2 g_2 g_3 g_1 g_2 g_2 g_3 g_1 g_2 g_2 g_3 g_1 g_2 g_3 g_1 g_2 g_1 g_2 g_3 g_1 g_2 g_2 g_2 g_2 g_3 g_1 g_2 g_2 g_2 g_2 g_3 g_1 g_2 g_2 g_2 g_2 g_2 g_2 g_3 g_2 g_2 g_3 g_1 g_2 g_2 g_2 g_2 g_3 g_2 g_2 g_3 g_2 g_2 g_2 g_3 g_2 g_2 g_3 g_2 g_2 g_3 g_2 g_3 g_2 g_2 g_3 g_2 g_3 g_2 g_3 g_2 g_3 g_2 g_3 g_3 g_3

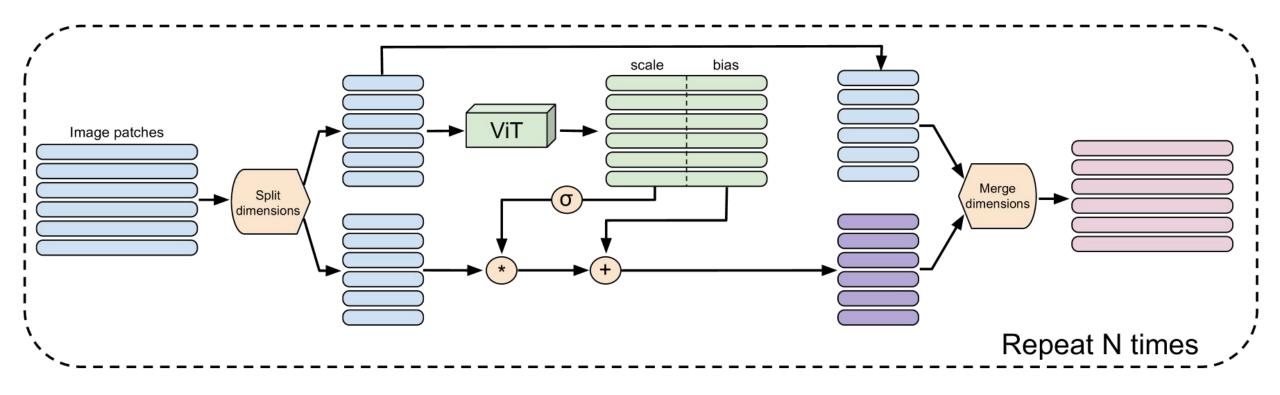
LeCun, Yann, et al. "Gradient-based learning applied to document recognition." *Proceedings of the IEEE* 86.11 (1998): 2278-2324.

UNIVERSITY OF TORONTO



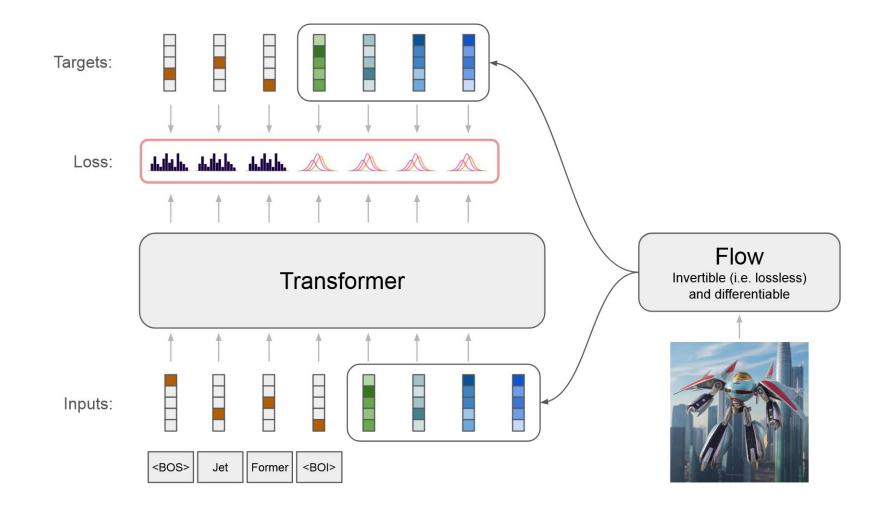
Where *b* is the bias, *s* the scale, and *m*=2 magnitude

Jet: A Modern Transformer-Based Normalizing Flow



Kolesnikov, Alexander, André Susano Pinto, and Michael Tschannen. "Jet: A Modern Transformer-Based Normalizing Flow." arXiv preprint arXiv:2412.15129 (2024).

JetFormer: An Autoregressive Generative Model of Raw Images and Text



Combining Auto-Regressive Transformer and Normalizing Flow

• Use soft-tokens to represent the images

- ^o Use the final hidden layer as the image representation
- $^{\circ}$ No loss of precision through discretization of tokens

Combining Auto-Regressive Transformer and Normalizing Flow

Use soft-tokens to represent the images

- ^o Use the final hidden layer as the image representation
- $^{\rm O}$ No loss of precision through discretization of tokens

• End-end learning unlocks full potential

- ^o Auto-regressive predictions works better if key decisions are made first
- $^{\circ}~$ End-end learning allows the order of channels to be influenced
- ^o Not possible when using a VAE (which must be pretrained)

Combining Auto-Regressive Transformer and Normalizing Flow

Use soft-tokens to represent the images

- ^o Use the final hidden layer as the image representation
- $^{\rm O}$ No loss of precision through discretization of tokens

• End-end learning unlocks full potential

- $^{\circ}$ Auto-regressive predictions works better if key decisions are made first
- $^{\circ}~$ End-end learning allows the order of channels to be influenced
- ^o Not possible when using a VAE (which must be pretrained)

Normalizing Flow maintains number of dimensions

- $^{\circ}\,$ This makes the task harder for the auto-regressive transformer
- $^{\circ}\,$ Model some of the channels using Gaussians and only some using the Flow
- Same ideas as in probabilistic PCA

RGB Noise Curriculum During Training

Data

baseline samples

Fixed forward diffusion process

Generative reverse denoising process https://cvpr2023-tutorial-diffusion-models.github.io/

noise curriculum samples

Model Training

Normalizing Flows are Invertible — Closed form available for log-likelihood!

Change of variables formula: let X be a random variable with density $f_X(x)$ and g be a monotone function. Then density of the random variable Y = g(X) is given by

$$f_Y(y) = \left| \frac{d}{dy} g^{-1}(y) \right| f_X \left(g^{-1}(y) \right).$$

Model Training

Normalizing Flows are Invertible — Closed form available for log-likelihood!

Train on (x, y) pairs and maximize log-likelihood of p(y | x)

Maintain separate heads for text and image prediction

(x, y) pairs are (text, image) or (image, text)

Experiments

Training

- Text-to-Image
 - Training: ImageNet1K
 - Testing: Common Objects in Context (MS-COCO

- Image-to-Text:
 - Training: WebLI dataset
 - Testing: ImageNet

Ima	ge classification		
Steel drum	Steel drum Folding chair Loudspeaker Accuracy: 1	Scale T-shirt <u>Steel drum</u> Drumstick Mud turtle Accuracy: 1	Scale T-shirt Giant panda Drumstick Mud turtle Accuracy: 0
Steel drum Sing	le-object localization		
	Persian cat Steel drum Picket fra Picket fra	Persian cat Steel drum Folding char Picket ence	Persian cat
Ground truth	Accuracy: 1	Accuracy: 0	Accuracy: 0
Obje	ct detection		
Steel drum Person Microphane			e Microphone Shell drum Person Folding chair 0.3 0.2 0.9 0.9 0.3 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 0
Ground truth	AP: 1.0 1.0 1.0 1.0	AP: 0.0 0.5 1.0 0.3	AP: 1.0 0.7 0.5 0.9

Input: Generate the alt_text in EN Output: A cellar filled with barrels of wine

Input: Generate the alt text in EN

Output: a clock on a building that says

'lyvania' on it

Input: Generate the alt_text in EN Output: Two helicopters are flying in the sky and one has a yellow stripe on the tail

Experimental Results

Text-to-Image Generation

	extra step	#param.	FID	FID (ft.)	NLL (ft.)
DALL-E (Ramesh et al., 2021)	VQ-VAE	12B	27.50		
CogView (Ding et al., 2021)	VQ-VAE	4B	27.10		
CogView2 (Ding et al., 2022)	VQ-VAE	6B	24.00	17.50	
ARGVLT (T&I) (Kim et al., 2023)	VQ-VAE	0.45B	16.93		
MAGVLT (T&I) (Kim et al., 2023)	VQ-VAE	0.45B	12.08		
Make-A-Scene (Gafni et al., 2022)	VQ-VAE	4B	11.84	7.55	
LDM-KL-8-G (Rombach et al., 2022)	VAE	1.45B	12.63		
GLIDE (Nichol et al., 2022)	Super-res.	6B	12.24		
DALL-E-2 (Ramesh et al., 2022)	Super-res.	5.2B	10.39		
JetFormer-L (T&I)	-	2.75B	20.86	13.70	3.86
JetFormer-L		2.75B	18.63	13.07	3.85

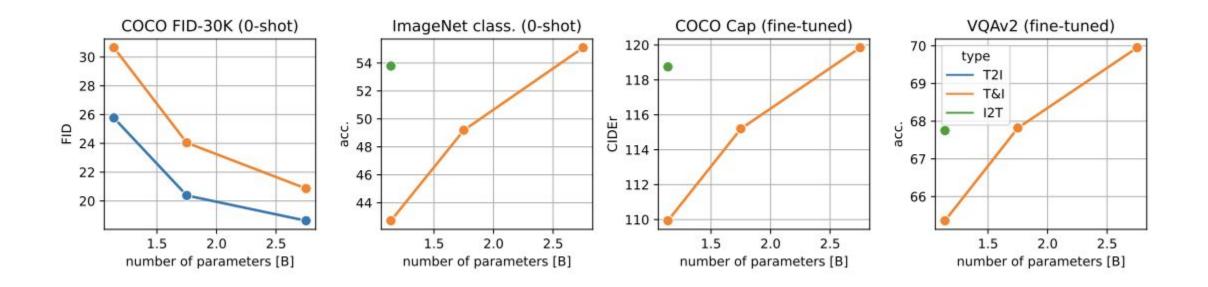
Experimental Results

Image-to-Text Understanding (VQA)

	extra step	COCO cap.	VQAv2
CapPa L/14 (Tschannen et al., 2023)*		118.7	68.6
CLIP L/14 (Radford et al., 2021)*		118.2	67.9
ARGVLT (T&I) (Kim et al., 2023)	VQ-VAE	94.7	65.7
MAGVLT Large (T&I) (Kim et al., 2023)	VQ-VAE	110.7	
JetFormer-B (I2T)	_	118.7	67.2
JetFormer-L (T&I)		119.8	70.0

Experimental Results

Scaling Dynamics



Limitations & Future Work

- Final trained model often fails to out-perform baselines
- Limited training and evaluation
- End-to-End training also requires more compute since image encodings cannot be pre-calculated
- Separate heads for image and text means responses are modality restricted

Conclusions & Future Work

- End-to-End Text and Image models are trainable by stitching together existing architectures!
- Optimizing closed-form log-likelihood enables end-to-end objective
- Adding noise and gradually removing throughout training is crucial

