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Introduction

* Variant of Scaling Law
* higher quality of the dataset -> better result (Eldan and Li, 2023)

* This work aims to show that high quality data can:
* improve the SOTA of large language models
* reduces the dataset size and training compute.

* Contribution:
* Trained a tiny and competitive LLM for Python code generation by data
filtering techniques.
* Outperform other coder LLM that are trained on larger dataset with more
parameters.



Data Filtering

 Data Sources: Deduplicated Python files in The Stack and the StackOverflow

~35B tokens, ~35M code examples)

* Annotate the quality of ~100K samples via asking GPT-4 (Prompt: “determine
the educational value of a code snippet.’)

* Minimizes human-annotation efforts

 Train a random forest classifier to
filter out low-quality data.

* Result: a 6B high-quality dataset “The
Stack”

* Significant reduction in size.

def

def

Educational values deemed by the filter

High educational value

import torch
import torch.nn.functional as F

normalize (x, axis=-1):
"""performs L2-Norm."""
num = x

denom = torch.norm(x, 2, axis, keepdim=True)

.expand_as (x) + le-12
return num / denom

euclidean_dist(x, y):

"""Computes Euclidean distance."""

m, n = x.size(0), y.size(0)

xx = torch.pow(x, 2).sum(l, keepdim=True) .
expand (m, n)

yy = torch.pow(x, 2).sum(l, keepdim=True).
expand(m, m) .t (

dist = xx + yy - 2 * torch.matmul (x, y.t())
dist = dist.clamp(min=le-12).sqrt ()

return dist

cosine_dist(x, y):

"""Computes Cosine Distance."""

x = F.normalize(x, dim=1)

y = F.normalize(y, dim=1)

dist = 2 - 2 » torch.mm(x, y.t())
return dist

Low educational value

import re
import typing

class Default (cbject):
def __init__ (self, vim: Nvim) -> None:

self. vim = vim
self._denite: typing.Optional[SyncParent]

= None

self._selected_candidates: typing.List[int
[

self._candidates: Candidates = []
self._cursor = 0

self. entire_len = 0

self._result: typing.List([typing.Any] = []
self._context: UserContext = {}
self._bufnr = -1

self._winid = -1

self._winrestcmd = ''

self._initialized = False

self._winheight = 0

self._winwidth = 0

self._winminheight = -1

self._is_multi = False

self._is_async = False
self._matched_pattern = '




Data Generation

* Method: Prompt GPT-3.5 to write code snippet.

* Challenge: ensuring that the generated dataset is diverse and
non-repetitive.

* Trick: inject randomness into the prompt regarding by providing
constraints on vocabulary, topics and target audience of the generated

textbook.
 This creates a ~1B dataset called “CodeTlextbook”.

To begin, let us define singular and nonsingular matrices. A matrix is said to be singular if its
determinant is zero. On the other hand, a matrix is said to be nonsingular if its determinant is not
ero. Now, let's explore these concepts through examples.

Example 1: Consider the matrix A = np.array([[1l, 2], [2, 4]]). We can check if this matrix is
singular or nonsingular using the determinant function. We can define a Python function, ~
is_singular(A)~, which returns true if the determinant of A is zero, and false otherwise

import numpy as np
def is_singular (A):
det = np.linalg.det (A)
if det == 0:
return True
else:
return False

A = np.array([[1, 2], [2, 4]1])
print (is_singular(A)) # True




Data Generation for alighment

* A small synthetic exercises dataset CodeExercise (~180M tokens).
* Each exercise is a docstring of a function that needs to be completed to
* Align the model to perform function completion in the fine-tuning stage.

* This dataset was generated by GPT-3.5, where the main means of eliciting
diversity is by constraining the function names.

def valid_guessing_ letters (word: str, guesses: List[str]) -> List[str]:

valid_letters = []
for letter in word:
if letter not in guesses and letter not in valid_ letters:
valid_letters.append(letter)
return valid_letters




Model Architecture

e Model Overview:

* Decoder-only Transformer with 1.3B parameters.
 FlashAttention for efficient multi-head attention.

* Parameters:
* Batch size: 1024 for pretraining, 256 for finetuning.

e Hardware: 8 A100 GPUs

* <4 days for pretraining
* 7 hours for finetuning.



phi-1 and Its Variants

* phi-1-base: Pretrained on “The Stack” + “Codelextbook” dataset for 8
passes.

* phi-1: Also finetuned on “CodeExercises”.
* Achieved 50.6% pass@1 accuracy on HumanEval, 55.5% on MBPP.

* HumanEval: 164 programs with 8 tests for each.
« MBPP (Mostly Basic Python Programming: 1000 programs, 3 tests for each.
* pass@1: check whether its initial code generation is correct.

* phi-1-small: 350M-parameter variant.

* Emergent Properties: Finetuning improves logical reasoning and
library usage.

. E{)emonstrates scaling laws for performance improvements with quality
ata.



Results: Code Benchmark Evaluation

Their Model

Date Model Model size Dataset size HumanEval MBPP
(Parameters) (Tokens) (Pass@1) (Pass@1)
2021 Jul  Codex-300M [CTJ*21] 300M 100B 13.2% -
2021 Jul  Codex-12B [CT.J*21] 12B 100B 28.8% -
2022 Mar  CodeGen-Mono-350M [NPH*23] 350M 577B 12.8%
2022 Mar  CodeGen-Mono-16.1B 16.1B 577B 29.3% 35.3%
2022 Apr  PaLM-Coder [CND*22] 540B 780B 35.9% 47.0%
2022 Sep  CodeGeeX m 13B 8508 22.9% 24.4%
2022 Nov  GPT-3.5 [Ope23 175B N.A. 47%
2022 Dec SantaCoder 1.1B 2368 14.0% 35.0%
2023 Mar _ GPT-4 [Ope23 N.A. N.A. 67% -
2023 Apr  Replit [Rep23] 2.7B 525B 21.9% -
2023 Apr  Replit-Finetuned [Rep23] 2.7B 5258 30.5% -
2023 May CodeGen2-1B [NHX*23] 1B N.A. 10.3% -
2023 May CodeGen2-7B [NHX*23] 7B N.A. 19.1% -
2023 May StarCoder [LAZ*23] 15.5B 1T 33.6% 52.7%
2023 May StarCoder-Prompted [LAZ*23] 15.5B L i 40.8% 49.5%
2023 May PaLM 2-S [ADF*23] N.A. N.A. 37.6% 50.0%
2023 May CodeT5+ [WLG*23] 2B 52B 24.2% -
2023 May CodeT5+ [WLG*23] 16B 52B 30.9% -
2023 May InstructCodeT5+ [WLG*23] 16B 52B 35.0% -
2023 Jun  WizardCoder [LXZ*23] 16B 1t § 57.3% 51.8%
2023 Jun  phi-1 1.3B 7B 50.6% 55.5%

Observe:

~100M less
data than
Codel5
models, twice
as good
~200M less
data than
Code Gen,
almost twice as
good

Only
competitive
models are
WizardCoder
and GPT-4,
which have
vastly larger
models and
data



Results: Similarity Pruning

Removing More Data

Problem . phi-1 retrained StarCoder-Prompted
" Count o on pruned data LAZ*23
similar 71 81.7% ey 74.6% 57.7%
0.95 non-similar 93 26.9% =— 32.3% 29.0%
total 164 50.6% 50.6% 41.5%
similar 93 63.4%) m— 51.6% 48.4%
0.9 non-similar il 33.8% = 36.6% 32.4%
total 164 50.6% 45.1% 41.5%
similar 106 62.3% =ty 52.8% 47.2%
0.85 non-similar 58 29.3% m—p 34.5% 31.0%
total 164 50.6% 46.3% 41.5%
similar 116 59.5%) ) 52.6% 45.7%
0.8 non-similar 48 29.2% w——) 27.1% 31.2%
total 164 50.6% 45.1% 41.5%
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Critical Response

ICLR 24 Reviews: https://openreview.net/forum?id=Fqg8tKt]ACC
Main critiques:

1] Data leakage possible in main Codelextbook (even though not
present in fine-tuning CodeExercices) dataset

2] Limited eval

3] Ambiguity in the data generation process (i.e., how do they
ensure data diversity?) apparently motivated by propriety



https://openreview.net/forum?id=Fq8tKtjACC
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