Textbooks Are All You Need

Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes, Allie Del
Giorno, Sivakanth Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo de Rosa, Olli

Saarikivi, Adil Salim, Shital Shah, Harkirat Singh Behl, Xin Wang, Sébastien Bubeck,
Ronen Eldan, Adam Tauman Kalai, Yin Tat Lee, Yuanzhi Li

Microsoft Research 2023

Presented by Jack Sun and Quentin Clark

Introduction

* Variant of Scaling Law
* higher quality of the dataset -> better result (Eldan and Li, 2023)

* This work aims to show that high quality data can:
* improve the SOTA of large language models
* reduces the dataset size and training compute.

* Contribution:
* Trained a tiny and competitive LLM for Python code generation by data
filtering techniques.
* Outperform other coder LLM that are trained on larger dataset with more
parameters.

Data Filtering

 Data Sources: Deduplicated Python files in The Stack and the StackOverflow

~35B tokens, ~35M code examples)

* Annotate the quality of ~100K samples via asking GPT-4 (Prompt: “determine
the educational value of a code snippet.’)

* Minimizes human-annotation efforts

 Train a random forest classifier to
filter out low-quality data.

* Result: a 6B high-quality dataset “The
Stack”

* Significant reduction in size.

def

def

Educational values deemed by the filter

High educational value

import torch
import torch.nn.functional as F

normalize (x, axis=-1):
"""performs L2-Norm."""
num = x

denom = torch.norm(x, 2, axis, keepdim=True)

.expand_as (x) + le-12
return num / denom

euclidean_dist(x, y):

"""Computes Euclidean distance."""

m, n = x.size(0), y.size(0)

xx = torch.pow(x, 2).sum(l, keepdim=True) .
expand (m, n)

yy = torch.pow(x, 2).sum(l, keepdim=True).
expand(m, m) .t (

dist = xx + yy - 2 * torch.matmul (x, y.t())
dist = dist.clamp(min=le-12).sqrt ()

return dist

cosine_dist(x, y):

"""Computes Cosine Distance."""

x = F.normalize(x, dim=1)

y = F.normalize(y, dim=1)

dist = 2 - 2 » torch.mm(x, y.t())
return dist

Low educational value

import re
import typing

class Default (cbject):
def __init__ (self, vim: Nvim) -> None:

self. vim = vim
self._denite: typing.Optional[SyncParent]

= None

self._selected_candidates: typing.List[int
[

self._candidates: Candidates = []
self._cursor = 0

self. entire_len = 0

self._result: typing.List([typing.Any] = []
self._context: UserContext = {}
self._bufnr = -1

self._winid = -1

self._winrestcmd = ''

self._initialized = False

self._winheight = 0

self._winwidth = 0

self._winminheight = -1

self._is_multi = False

self._is_async = False
self._matched_pattern = '

Data Generation

* Method: Prompt GPT-3.5 to write code snippet.

* Challenge: ensuring that the generated dataset is diverse and
non-repetitive.

* Trick: inject randomness into the prompt regarding by providing
constraints on vocabulary, topics and target audience of the generated

textbook.
 This creates a ~1B dataset called “CodeTlextbook”.

To begin, let us define singular and nonsingular matrices. A matrix is said to be singular if its
determinant is zero. On the other hand, a matrix is said to be nonsingular if its determinant is not
ero. Now, let's explore these concepts through examples.

Example 1: Consider the matrix A = np.array([[1l, 2], [2, 4]]). We can check if this matrix is
singular or nonsingular using the determinant function. We can define a Python function, ~
is_singular(A)~, which returns true if the determinant of A is zero, and false otherwise

import numpy as np
def is_singular (A):
det = np.linalg.det (A)
if det == 0:
return True
else:
return False

A = np.array([[1, 2], [2, 4]1])
print (is_singular(A)) # True

Data Generation for alighment

* A small synthetic exercises dataset CodeExercise (~180M tokens).
* Each exercise is a docstring of a function that needs to be completed to
* Align the model to perform function completion in the fine-tuning stage.

* This dataset was generated by GPT-3.5, where the main means of eliciting
diversity is by constraining the function names.

def valid_guessing_ letters (word: str, guesses: List[str]) -> List[str]:

valid_letters = []
for letter in word:
if letter not in guesses and letter not in valid_ letters:
valid_letters.append(letter)
return valid_letters

Model Architecture

e Model Overview:

* Decoder-only Transformer with 1.3B parameters.
 FlashAttention for efficient multi-head attention.

* Parameters:
* Batch size: 1024 for pretraining, 256 for finetuning.

e Hardware: 8 A100 GPUs

* <4 days for pretraining
* 7 hours for finetuning.

phi-1 and Its Variants

* phi-1-base: Pretrained on “The Stack” + “Codelextbook” dataset for 8
passes.

* phi-1: Also finetuned on “CodeExercises”.
* Achieved 50.6% pass@1 accuracy on HumanEval, 55.5% on MBPP.

* HumanEval: 164 programs with 8 tests for each.
« MBPP (Mostly Basic Python Programming: 1000 programs, 3 tests for each.
* pass@1: check whether its initial code generation is correct.

* phi-1-small: 350M-parameter variant.

* Emergent Properties: Finetuning improves logical reasoning and
library usage.

. E{)emonstrates scaling laws for performance improvements with quality
ata.

Results: Code Benchmark Evaluation

Their Model

Date Model Model size Dataset size HumanEval MBPP
(Parameters) (Tokens) (Pass@1) (Pass@1)
2021 Jul Codex-300M [CTJ*21] 300M 100B 13.2% -
2021 Jul Codex-12B [CT.J*21] 12B 100B 28.8% -
2022 Mar CodeGen-Mono-350M [NPH*23] 350M 577B 12.8%
2022 Mar CodeGen-Mono-16.1B 16.1B 577B 29.3% 35.3%
2022 Apr PaLM-Coder [CND*22] 540B 780B 35.9% 47.0%
2022 Sep CodeGeeX m 13B 8508 22.9% 24.4%
2022 Nov GPT-3.5 [Ope23 175B N.A. 47%
2022 Dec SantaCoder 1.1B 2368 14.0% 35.0%
2023 Mar _ GPT-4 [Ope23 N.A. N.A. 67% -
2023 Apr Replit [Rep23] 2.7B 525B 21.9% -
2023 Apr Replit-Finetuned [Rep23] 2.7B 5258 30.5% -
2023 May CodeGen2-1B [NHX*23] 1B N.A. 10.3% -
2023 May CodeGen2-7B [NHX*23] 7B N.A. 19.1% -
2023 May StarCoder [LAZ*23] 15.5B 1T 33.6% 52.7%
2023 May StarCoder-Prompted [LAZ*23] 15.5B L i 40.8% 49.5%
2023 May PaLM 2-S [ADF*23] N.A. N.A. 37.6% 50.0%
2023 May CodeT5+ [WLG*23] 2B 52B 24.2% -
2023 May CodeT5+ [WLG*23] 16B 52B 30.9% -
2023 May InstructCodeT5+ [WLG*23] 16B 52B 35.0% -
2023 Jun WizardCoder [LXZ*23] 16B 1t § 57.3% 51.8%
2023 Jun phi-1 1.3B 7B 50.6% 55.5%

Observe:

~100M less
data than
Codel5
models, twice
as good
~200M less
data than
Code Gen,
almost twice as
good

Only
competitive
models are
WizardCoder
and GPT-4,
which have
vastly larger
models and
data

Results: Similarity Pruning

Removing More Data

Problem . phi-1 retrained StarCoder-Prompted
" Count o on pruned data LAZ*23
similar 71 81.7% ey 74.6% 57.7%
0.95 non-similar 93 26.9% =— 32.3% 29.0%
total 164 50.6% 50.6% 41.5%
similar 93 63.4%) m— 51.6% 48.4%
0.9 non-similar il 33.8% = 36.6% 32.4%
total 164 50.6% 45.1% 41.5%
similar 106 62.3% =ty 52.8% 47.2%
0.85 non-similar 58 29.3% m—p 34.5% 31.0%
total 164 50.6% 46.3% 41.5%
similar 116 59.5%)) 52.6% 45.7%
0.8 non-similar 48 29.2% w——) 27.1% 31.2%
total 164 50.6% 45.1% 41.5%

€S

Emergence Properti

Results

ing improves

1] General understand

2] Use of libraries not in the fine-tuning dataset increases and

improves

qo|gix=3
102dsul
ananb

ol
jueyoua
ydesb
|[ewidap
)4

2 Ad
foeds
yiewd
|lews
195005
qtjyjed
Buipealyl
3|ydiz
pUNOSUIM
Adoab

Jepuajed
qldyws
Adios

sAs
UI23YSUaAaT
5|0030uUny
ejepapodiun
AdwAs
SAS10|0D
ASD
ssacoldqns
X>A0MIDU
qiEn
bdeay
qrp
ClRRIgh}

uos/
qliusey
sepued
sysenbau
Sol3siie1s
suoljoedy
1id

AU

Buuys

2wy
qi3ojdiew
so

2l

Adwnu
S|002)
awiyaiep
Su0|329]|02
wopuel
yjew
BuidAy

<t]
o (]
~ [}

sawl] jo Jaqwnp Ho7

Buissadoudiyinw

Imports

Critical Response

ICLR 24 Reviews: https://openreview.net/forum?id=Fqg8tKt]ACC
Main critiques:

1] Data leakage possible in main Codelextbook (even though not
present in fine-tuning CodeExercices) dataset

2] Limited eval

3] Ambiguity in the data generation process (i.e., how do they
ensure data diversity?) apparently motivated by propriety

https://openreview.net/forum?id=Fq8tKtjACC

References

* Ronen Eldan and Yuanzhi Li. Tinystories: How small can language models be and still speak coherent english?
arXiv preprint arXiv:2305.07759, 2023.

* Hestness, Joel, et al. "Deep learning scaling is predictable, empirically." arXiv preprint arXiv:1712.00409 (2017).

« Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul
Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm: Scaling language modeling with
pathways. arXiv preprint arXiv:2204.02311, 2022.

» Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, and Caiming
Xiong. Codegen: An open large language model for code with multi-turn program synthesis. ICLR, 2023.

	Slide 1: Textbooks Are All You Need
	Slide 2: Introduction
	Slide 3: Data Filtering
	Slide 4: Data Generation
	Slide 5: Data Generation for alignment
	Slide 6: Model Architecture
	Slide 7: phi-1 and Its Variants
	Slide 8: Results: Code Benchmark Evaluation
	Slide 9: Results: Similarity Pruning
	Slide 10: Results: Emergence Properties
	Slide 11: Critical Response
	Slide 12: References

