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Key Questions

- Why is it hard to evaluate LM’s fairly, consistently, and transparently?

- How can we make scientific progress despite these difficulties?

- What are the best practices for evaluating language models?

- What common infrastructure do researchers need?



The Key Problem

To tell if LM output matches a target, we need to determine semantic equivalence,

but the best tool we have to determine semantic equivalence is a LM…



Dealing with the Key Problem

- Expert human annotators?
- Cost-prohibitive. Doesn’t scale. Humans are biased.

- BLEU/ROUGE score?
-  Inherently flawed. Not construct valid. Implementation differences.

- Ground truth verifier
- For code generation and mathematics.

- Re-framing as multiple choice
- Applicable to some use cases.



Problems with Consistency

- Implementations of the same benchmark can have small differences

- Results can be very sensitive to differences in implementation details

- Re-implementing/adapting benchmarks is sometimes unavoidable

- Sometimes because they’re being adapted outside of their original paradigm
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Problems with Fairness

Different models may expect different prompting styles.



Multi-Prompt Evaluation

Any single prompting style can be biased.

Solution: Perform the same benchmark

with many prompt styles and compare models

by their accuracy distributions w.r.t. style.
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Problems with Transparency

- Some researchers in industry labs don’t release the models

- Some models are only available through an API or chatbot interface

- APIs may non-transparently modify the model or become deprecated

- Chatbots have additional layers of product features that add complications

- Access to proprietary models can be expensive



Best Practices for LM Evaluation

- Always share your code and exact prompts

- Always provide model outputs and artifacts

- Do not compare against results from
other works without reproducing them

- Do statistical significance testing

- Perform qualitative analyses



The Language Model Evaluation Harness

Motivation

- Centralizes evaluation tasks & reduces duplication

- Ensures consistent prompts & metrics  

- Eases reproducibility across different models  



Core Design Philosophy

- Orchestration Problem: Single codebase to evaluate any benchmark on any 
model 

- Modularity: Separate “Tasks” (benchmarks) from “LM” (model interface) 

- Focus on Best Practices: Automatic logging, versioning, standard error 
reporting



Tasks Overview

- Implemented via a standardized `Task` class 

- YAML or Python subclass for flexible setup 

- Common methods: data loading, prompt formatting, metric computation



Tasks Overview



The LM Interface

- Three main “Request” types:
- Loglikelihood (multiple choice)
- Rolling Loglikelihood (perplexity)
- Generation (free text)

- Tokenization is abstracted away 

- Supports flexible model backends 



Handling Minor Implementation Details

- Small prompt differences can alter scores significantly 

-  Harness ensures identical formatting, tokenization rules 

- Task versioning records changes over time



Broader Impact

- Encourages better reporting (code, prompts, outputs)  

- Aids new benchmark development and adoption

- Empowers deeper analysis of LLM behaviors



Limitations

- Focus on Implementation Consistency

- Benchmark Validity

- Resource & Cost Barriers

- Closed-Source Model Constraints

- Ongoing Rapid Evolution




