
Lessons from the Trenches on
Reproducible Evaluation of
Language Models
Stella Biderman, Hailey Schoelkopf,
Lintang Sutawika, et al.

Presenters: Steven Yuan, Frank Bai

Key Questions

- Why is it hard to evaluate LM’s fairly, consistently, and transparently?

- How can we make scientific progress despite these difficulties?

- What are the best practices for evaluating language models?

- What common infrastructure do researchers need?

The Key Problem

To tell if LM output matches a target, we need to determine semantic equivalence,

but the best tool we have to determine semantic equivalence is a LM…

Dealing with the Key Problem

- Expert human annotators?
- Cost-prohibitive. Doesn’t scale. Humans are biased.

- BLEU/ROUGE score?
- Inherently flawed. Not construct valid. Implementation differences.

- Ground truth verifier
- For code generation and mathematics.

- Re-framing as multiple choice
- Applicable to some use cases.

Problems with Consistency

- Implementations of the same benchmark can have small differences

- Results can be very sensitive to differences in implementation details

- Re-implementing/adapting benchmarks is sometimes unavoidable

- Sometimes because they’re being adapted outside of their original paradigm

Models

Benchmarks

Problems with Fairness

Different models may expect different prompting styles.

Multi-Prompt Evaluation

Any single prompting style can be biased.

Solution: Perform the same benchmark

with many prompt styles and compare models

by their accuracy distributions w.r.t. style.

Model A

Model B

Model C

Model D

Distribution of Model
Accuracy Across Prompts

Problems with Transparency

- Some researchers in industry labs don’t release the models

- Some models are only available through an API or chatbot interface

- APIs may non-transparently modify the model or become deprecated

- Chatbots have additional layers of product features that add complications

- Access to proprietary models can be expensive

Best Practices for LM Evaluation

- Always share your code and exact prompts

- Always provide model outputs and artifacts

- Do not compare against results from
other works without reproducing them

- Do statistical significance testing

- Perform qualitative analyses

The Language Model Evaluation Harness

Motivation

- Centralizes evaluation tasks & reduces duplication

- Ensures consistent prompts & metrics

- Eases reproducibility across different models

Core Design Philosophy

- Orchestration Problem: Single codebase to evaluate any benchmark on any
model

- Modularity: Separate “Tasks” (benchmarks) from “LM” (model interface)

- Focus on Best Practices: Automatic logging, versioning, standard error
reporting

Tasks Overview

- Implemented via a standardized `Task` class

- YAML or Python subclass for flexible setup

- Common methods: data loading, prompt formatting, metric computation

Tasks Overview

The LM Interface

- Three main “Request” types:
- Loglikelihood (multiple choice)
- Rolling Loglikelihood (perplexity)
- Generation (free text)

- Tokenization is abstracted away

- Supports flexible model backends

Handling Minor Implementation Details

- Small prompt differences can alter scores significantly

- Harness ensures identical formatting, tokenization rules

- Task versioning records changes over time

Broader Impact

- Encourages better reporting (code, prompts, outputs)

- Aids new benchmark development and adoption

- Empowers deeper analysis of LLM behaviors

Limitations

- Focus on Implementation Consistency

- Benchmark Validity

- Resource & Cost Barriers

- Closed-Source Model Constraints

- Ongoing Rapid Evolution

