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Motivation and Prior Work

• Autoregressive sampling and general response generation of LLMs can contain
mistakes which need to be corrected

• Prior methods for refinement relied on:
• Human or domain specific external feedback
• Training separate refinement models
• RL training of the model (recently re-emerged)

• Despite making mistakes, LLMs can recognize and identify their own errors

• Key Question: Can we utilize the LLMs generated feedback to guide its own
refinement of responses
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Feedback-Refine Loop

Core Concept

Use the same LLM for:

• Initial generation

• Feedback generation

• Output refinement

RefineFeedback

Use M to get feedback on its own output

Input

Use M to refine its previous output, given its feedback

Model M
1 2

0
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Self-Refine Architecture

1. Initial Generation
• Generate first output y using prompt pgen and input x

2. Feedback Module
• Generate specific, actionable feedback
• Uses same model with prompt pfb, input x , and last output y

3. Refinement Module
• Improve output using feedback
• Uses prompt prefine , input x , and the history of previous outputs and their feedback
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Self-Refine Architecture
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Feedback-Refine Examples
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Results: Performance Improvements

• Consistent improvements across tasks and models:

GPT3.5 ChatGPT GPT4

Task Base +Self-Refine Base +Self-Refine Base +Self-Refine

Sentiment Reversal 8.8 30.4 (↑21.6) 11.4 43.2 (↑31.8) 3.8 36.2 (↑32.4)
Dialogue Response 36.4 63.6 (↑27.2) 40.1 59.9 (↑19.8) 25.4 74.6 (↑49.2)
Code Optimization 14.8 23.0 (↑8.2) 23.9 27.5 (↑3.6) 27.3 36.0 (↑8.7)
Code Readability 37.4 51.3 (↑13.9) 27.7 63.1 (↑35.4) 27.4 56.2 (↑28.8)
Math Reasoning 64.1 64.1 (0) 74.8 75.0 (↑0.2) 92.9 93.1 (↑0.2)
Acronym Generation 41.6 56.4 (↑14.8) 27.2 37.2 (↑10.0) 30.4 56.0 (↑25.6)
Constrained Generation 28.0 37.0 (↑9.0) 44.0 67.0 (↑23.0) 15.0 45.0 (↑30.0)

Average 33.0 46.5 (↑13.5) 35.6 53.3 (↑17.7) 31.7 56.7 (↑25.0)
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Results: Type of Feedback

1. Actionable feedback helps refinement more than generic or no feedback.

Task Self-Refine feedback Generic feedback No feedback

Code Optimization 27.5 26.0 24.8
Sentiment Reversal 43.2 31.2 0
Acronym Generation 56.4 54.0 48.0

2. Performance improves with more iterations but benefits become marginal.
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Limitations and Future Work

Key Limitations

• Requires strong base models to perform well (good instruction following capabilities)

• Benefits are not uniform across tasks, math saw little benefit

• Depending on the task, can make the model more unstable

• Relies on tailored problem specific prompts

Future Work
• Explicit training or distillation of Self-Refine into weaker, local models

• Employing feedback as part of safety mechanisms

• Better understanding of when this method does and doesn’t work: Tasks, languages,
prompts, models, etc.
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Conclusion

Key Takeaways

• LLMs can effectively refine their own outputs

• No additional training required

• Requires domain or task-specific prompts

• Increased improvements with better LLMs

Impact

Opens new possibilities for improving LLM outputs without extensive resources
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