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Motivation

Landscape so far (until early 2022)

- Large language models excel at few-shot learning (Brown et al., 2020)
- Vanilla zero-shot performance still suffers, and we need to employ alternative prompting

techniques
- Main problem: Zero-shot prompts often don’t match the pretraining format

~

ﬂ(ey research question:
Can we improve zero-shot performance on unseen tasks by fine-tuning models to follow natural

language instructions?

Instruction Tuning (IF). Also see P3/TO(Sanh et al., 2021), xP3 (Muennighoff et al., 2022), Super
Natural Instructions (Wang et al., 2022f), LIMA (Zhou et al., 2023a), Dolly (Conover et al., 2023a)
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FLAN (Finetuned Language Net) - The Recipe

Base Model: 137B parameter LaMDA-PT, pre-trained on web documents, dialog data, and
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Instruction Templates

Premise

Russian cosmonaut Valery Polyakov
set the record for the longest
continuous amount of time spent in
space, a staggering 438 days,
between 1994 and 1995.

Hypothesis

Russians hold the record for the
longest stay in space.

Target

Entailment
Not entailment

Options:

@ - yes

= no

- Natural language instructions
- 10unique templates per dataset

Template 1

<premise>

Based on the paragraph
above, can we conclude that
<hypothesis>?

<options>
S P

Template 2
Cpremise>

Can we infer the following?
<hypothesis>

x

(optlons> )

Template 3

Read the following and
determine if the hypothesis can
be inferred from the premise:

Premise: <premise>
Hypothesis: <hypothesis>
<options>

\_ J
Template 4. ...
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- When evaluating on a task type, no tasks from that cluster are used in training



Results



Zero-shot performance of FLAN compared to other approaches
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Zero-shot performance

Zero-shot FLAN outperforms the base model and GPT-3

Take-aways:

Strong gains in NLI and Reading
Comprehension

Particularly effective for tasks that
don't naturally occur in pre-training
data, e.g. NLI

Competitive in translation despite
English-centric training, but
underperforms few-shot GPT-3
Less effective when task matches
original LM objective



More tasks in training = Better performance on held-out (and new) tasks
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Instruction tuning yields big gains on large models

Average zero-shot accuracy

Performance on held-out tasks
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Adding few-shot exemplars further improves FLAN

800 a0.8 Zero-shot FLAN
sap 674 M Few-shot FLAN
59.3 59.6 60.0 '
< i 57.2
53.7
i 49.4
39.2
31.0 33.0 I
B
NLI Read. Comp. Closed-Book QA Commonsense Coreference  Translation  Struct to text
7 5 3 4 2 3 4



Code

- Scaling performance FLAN-T5
- Zero-shot vs. Few-shot performance


https://drive.google.com/file/d/1rcKU8xnp0VHTVzM_LSNLk-xMESUSxgD5/view?usp=sharing
https://drive.google.com/file/d/1rcKU8xnp0VHTVzM_LSNLk-xMESUSxgD5/view?usp=sharing

Instruction fine-tuning is actually important

FT: no instruction

Eval: instruction 37.3

FT: dataset name 46.6
Eval: instruction '

FT: dataset name

Eval: dataset name _47'0

20 30 40 50 60
Zero-shot performance
(4 task cluster avg.)

FT: instruction
Eval: instruction
(FLAN)

99.2

No Instruction: Input-Output

Dataset Name: [Translation: WMT’14 to French]
The dog runs.

FLAN: Please translate this sentence to French:
‘The dog runs.

Training with instructions is important for
zero-shot performance.



Limitations & Summary

- Only works at large scale (>68B parameters)

- Not effective when task matches language modeling

- Instructions were simple, single-sentence (vs modern complex prompts)
- English-centric performance

- Noalignment considerations



Impact & Evolution

What FLAN Showed:

- Instruction tuning works (for zero-shot performance)
- More tasks — better cross-task generalization

How Field Evolved:

- Complexinstructions
- RLHF & alignment
- More scaling in models & tasks



