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Announcements

* |f you are assigned to present on March 21, come talk about presentations
after class.

* [his week we again only have two presentations.

Questions?



Today

 We’ve now basically covered the full training pipeline of contemporary large
models.

 [oday we're going to talk about evaluation.



Why evaluate?

 Benchmarks drive research Open LLM Leaderboard
progress and industry adoption

 Evals incentivize the research
community and dictate
optimization targets

» Evals help us detect progress
(improvements in good
capabilities) or threats (safety
concerns)
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Types of benchmarks

o Static vs Dynamic

 Preference-based vs Ground
Truth

Static Live
Evaluation Ground Truth MMLU, HellaSwag, GSM-8K Codeforces Weekly Contests
Metric Human Preference MT-Bench, AlpacaEval LLM Arena

Chiang et al, 2024, Chatbot Arena



GSMS8K

Static, Ground-Truth

» Dataset of 8.5K high quality linguistically diverse grade school math word
problems created by human problem writers

Problem: Beth bakes 4, 2 dozen batches of cookies in a week. If these cookies are shared amongst 16 people equally, how many cookies does
each person consume?

Solution: Beth bakes 4 2 dozen batches of cookies for a total of 4*2 = <<4*2=8>>8 dozen cookies

There are 12 cookies in a dozen and she makes 8 dozen cookies for a total of 12*8 = <<12*8=96>>96 cookies

She splits the 96 cookies equally amongst 16 people so they each eat 96/16 = <<96/16=6>>6 cookies

Final Answer: 6

Cobbe et al, 2021, Training Verifers to Solve Math Word Problems



GSMS8K

Static, Ground-Truth

* |njected calculation annotations Hor sistor gave her 20+ 10=<<20 || Generstor |—
Into train set.
Her sister gave her 20 + 10 = <<20+ — Generator [—» 10
» At test-time, a calculator will | iager
. . Her sister gave her 20 + 10 = <<20+10 —  Generator [—*> = Calculator
override sampling when the
model chooses to use these Her sister gave her 20 + 10 = <<20+10=  |—» e\f;?(l‘?;(;it%") - 30>>
annotations.
Her sister gave her 20 + 10 = <<20+10=30>> [—>| Generator [—*| books
o Calculator override reduces
arlth metIC errOrS IS thls falrf? Cobbe et al, 2021, Training Verifers to Solve Math Word Problems

* [ypically disabled now.



Chatbot Arena

Dynamic, Preference-based

(4 Expand to see 20+ Arena players <
Model A Model B
(] O e n I ath rl I I fo r a n O n I I I O | I S | would like to buy a new car. Can you give me three recommendations? A | would like to buy a new car. Can you give me three recommendations? A
y family-friendly car with lots of space, An eco-friendly electric or hybrid car. family-friendly car with lots of space, An eco-friendly electric or hybrid car.
" Family outings or road trips, City driving and errands, Long distance travels. Family outings or road trips, City driving and errands, Long distance travels.
ra I l d O I I I I Z e d I I M b att I e S Give me three options at different price points. Give me three options at different price points.

Certainly! When looking for a new car that fits the criteria of being family- Absolutely! Here are three car options for your diverse needs, each aiming

friendly with lots of space, eco-friendly, and suitable for various driving for a different budget:

| ] ] ] | ]
® P a I rW I S e C O m a rI S O n S W I 't h needs, you'll want to consider factors like safety features, cargo space, ) ) )
seating comfort, fuel efficiency, and range. Here are three options at AL S TIES
R pefis e Chrysler Pacifica Hybrid (Starting at ~$40,000): This minivan is the

| | | | | | o q . .
h I d d e n m O d e I I d e n-t I-t I eS Bl Ry @ e Ty PAA L pinnacle of family-friendly transportation. It offers abundant space for
. . |
> e Tayea WA R B e e ety e s (e ing o passengers and cargo (up to 140.5 cubic feet with seats folded!), plus

e e e e e e E e A clever features like Stow 'n Go second-row seats and built-in vacuum

e G, e e G By e e cleaner. The hybrid powertrain delivers 36 mpg combined, reducing

. - . .. . environmental impact and fuel costs. It's perfect for road trips, cit
road trips. It's also efficient for city driving and errands due to its P P P y

L S e i e B e S e i e errands, and long-distance travels thanks to its comfortable ride and

electric motor to improve fuel economy. The RAV4 Hybrid Tl Rl

provides safety features and a comfortable ride, making it a great Eco-Friendly Electric:

- Ais better <~ Bis better w Tie ~" Both are bad

Send

Chiang et al, 2024, Chatbot Arena



Chatbot Arena

Dynamic, Preference-based

» Model preferences in a Bradley-Terry model, i.e. the probability that a human prefers m to m’ is
modelled as (where s(m) € R is a score associated with m)

|
1 + exp(s(m’) — s(m))

PH=1)=

* Score function is estimated by a cross-entropy objective over all pairwise preferences.

* The ranking is then (roughly)

rank(m) = 1 Z 1{s(m) > s(m))

* I’m omitting some important details that correct for non-uniform choices of which models to serve
and management of uncertainty.



Challenges

o Static eval challenges:

e saturation, contamination,
scalability

* Preference-based challenges:

* subjectivity, consistency,
reward hacking

Normalized Exact Match

Static evals have dynamic ranges
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Ruan et al, 2024, Observational Scaling Laws

Preference evals lead to reward hacking

Probability of LLM Response Winning by Length Differential
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Static benchmarks saturate over time

Good benchmarks SRR

Jason Wer’s Blogpost
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Kiela et al, 2021
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One metric Noise reduces the dynamic range

GSMS8K Test Performance
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Automated evaluation
AlpacaFarm

* Using stronger models (like
GPT-4) to approximate human
judgment

* Benefits: scalability, consistency,
cost-effectiveness

* Limitations: judge model bias,
risk of reinforcing limitations
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API LLMs provide pairwise
feedback for model samples
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Urgent challenges

« How can we evaluate capabilities that are beyond human capabilities?
o Safety benchmarking (next week) is also a critical issues.

« How can we measure capabilities relevant to catastrophic risk if we’re still
researching the contours of those outcomes?

» |deally, we'd rule-in risks.



Take-homes

Evaluation

 Benchmarking drive progress
» Benchmark development is very high impact

« Benchmark development is challenging



