Pre-training: Parallelism

CSC2541H1 Topics in Machine Learning, Winter 2025, UToronto

Chris J. Maddison

Announcements

* |f you are assigned to present on Feb 14, come talk about presentations
after class.

* | will try to get you feedback on the presentations within 2 weeks of your
presentation.

Questions?

Recap & agenda

* | ast week: understanding the rate at which we can turn compute into
better test loss through scaling laws.

* This week: Improvements in the rate at which we can turn time into
compute through parallelism.

e These two rates summarize the end-to-end performance of ML systems.

 Most progress can be understood in these terms: Transformers (more efficient
compute — test loss) and GPUs (more efficient time — compute)

Take-homes

ML systems take-homes from Llama 3

* A number of interesting systems take-homes from reading.
 But | will be focusing on the bigger picture: GPUs and multi-GPU setups.

 Caveat: | am not a systems expert!

CPUs vs GPUs

High level

few compute units vs. many

ALU ALU
» Thread: a seq. of instructions. S E
* Executed by a processor Cache
. Inc_lude read_/ write memory, floating —— DRAM
point operations.
CPU GPU

 CPUs are low latency

GPU - High Throughput Processor Computation Thread

- few threads, rarely waiting for data m
U8 Processing
|| | - I Waiting for data

 GPUs are high throughput

CPU core — Low Latency Processor

A B R B B

' Ready to be processed

 many threads, often waiting for data

https://developer.nvidia.com/blog/cuda-refresher-reviewing-the-origins-of-gpu-computing/

GPU

Execution model

* Groups threads (warps) execute
a single instruction, but applied
to different data elements.

e Vectorized instructions like

matmul efficiently parallelized.

 Bulk of Transformer compute is
vectorized!

« GPUs and Al/ML are a pair.

Host ' Device
Grid 1
| Block
Kernel — (0, 0)
1 | | |
| Block
- (0,1
,;"Grld,'é
Kernel ——)" [7
2 4
" Block (1, 1)

Block Block

(1,00 (2,0)
Block . Block

(1,1) & @1)

https://nyu-cds.github.io/python-gpu/02-cuda/

Multi-GPU

Parallelizing across GPUs

* As models scale, they no longer fit
on a single GPU.

* Distribute models (weights and
activations) across GPU network

« Communicate to synchronize state

 Clever overlapping of
communication and computation
needed

e As network scales,
communication costs can hurt.

AllGather

i rank 0 | rank1 { rank 2 | rank 3 | i rank O { rank1 | rank 2 | rank 3 |

.
. '
. .
. .
. '
. '
. '
. .
. .
. '
. '
. '
.
.
.
.
.
.
.
.
.

1 in1 |

| in3 | :

out[Y*count+i] = inY[i]

ReduceScatter

i rank O | rank1 | rank 2 | rank 3 | i rank O { rank1 | rank 2 | rank 3 |

| outO |
1 B ISR s e
i nl § A3 | - Towrat
, out3

outY[ﬁ = sum(i'nX[Y*cou.nt+i])
AllIReduce

i rank O | rank1 | rank 2 | rank 3 | i rank 0 { rank1 | rank 2 | rank 3 |

II in3 | M) ;| out || out || out |i| out |:

'out[l] = Sl.Jm(lnx[i])l

https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/usage/collectives.html

Parallelism

 To summarize the efficiency of a multi-GPU setup, we can measure the
model FLOP utilization (MFU).

« Each GPU has a peak throughput measured in tera-FLOPs / s (TFLOPS).
« MFU is [observed TFLOPS] / [theoretical TFLOPS aggregated across GPUS]

want MFU to be constant
as you add GPUs

P/s)

-
-
-
-
-
-
-
-
-
-,
-
-
-
-
-
>
-
-
-
-
- 7F
- /IE
-
g
-
-
-
-
-
-
-
-
-
-
=
=
=
=
-
>
-
-
™
-

Aggregate throughput (petaFLO

https://github.com/stas00/ml-engineering/blob/master/training/performance/README.md

