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Announcements

* |f you are assigned to present on Feb 14, come talk about presentations
after class.

* | will try to get you feedback on the presentations within 2 weeks of your
presentation.

Questions?



Recap & agenda

* | ast week: understanding the rate at which we can turn compute into
better test loss through scaling laws.

* This week: Improvements in the rate at which we can turn time into
compute through parallelism.

e These two rates summarize the end-to-end performance of ML systems.

 Most progress can be understood in these terms: Transformers (more efficient
compute — test loss) and GPUs (more efficient time — compute)



Take-homes

ML systems take-homes from Llama 3

* A number of interesting systems take-homes from reading.
 But | will be focusing on the bigger picture: GPUs and multi-GPU setups.

 Caveat: | am not a systems expert!



CPUs vs GPUs

High level

few compute units vs. many
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https://developer.nvidia.com/blog/cuda-refresher-reviewing-the-origins-of-gpu-computing/



GPU

Execution model

* Groups threads (warps) execute
a single instruction, but applied
to different data elements.

e Vectorized instructions like

matmul efficiently parallelized.

 Bulk of Transformer compute is
vectorized!

« GPUs and Al/ML are a pair.
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https://nyu-cds.github.io/python-gpu/02-cuda/




Multi-GPU

Parallelizing across GPUs

* As models scale, they no longer fit
on a single GPU.

* Distribute models (weights and
activations) across GPU network

« Communicate to synchronize state

 Clever overlapping of
communication and computation
needed

e As network scales,
communication costs can hurt.
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https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/usage/collectives.html



Parallelism

 To summarize the efficiency of a multi-GPU setup, we can measure the
model FLOP utilization (MFU).

« Each GPU has a peak throughput measured in tera-FLOPs / s (TFLOPS).
« MFU is [observed TFLOPS] / [theoretical TFLOPS aggregated across GPUS]

want MFU to be constant
as you add GPUs
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https://github.com/stas00/ml-engineering/blob/master/training/performance/README.md



