Pre-training: Scaling CSC2541H1 Topics in Machine Learning, Winter 2025, UToronto

Chris J. Maddison

Announcements

- class.
- weekend.
- **Project and proposal handouts are up.**

If you are assigned to present on Feb 7, come talk about presentations after

• Launched a team-finding form for the course project. Please fill it in now, if you want help finding a team for the project. I will contact interested folks this

Questions?

Recap

- We started building a Transformer last week.
 - **Tokenization** converting text to sequences of integers

 - Named arrays syntactic sugar for JAX arrays that allows us to track axes
 - **Bigram model** predict the next token conditioned just on the current token
- Want to practice?
 - Implement an encoder-decoder Transformer with named arrays
 - Implement Llama 3 architecture

Batching – input / output matrices that capture batches of next token prediction problems

This week

- Continue building up our Transformer from scratch
- Pre-training: Scaling; Llama 3 tech report, sec 1-3.2

Llama 3: Take-homes from the team Key levers for high-quality foundation models

Data:

training data"

Scale:

- "a flagship model with 405B trainable parameters on 15.6T text tokens"
- **Managing complexity:**
 - development process"

 "careful pre-processing and curation pipelines for pre-training data and the development of more rigorous quality assurance and filtering approaches for post-

"We make design choices that seek to maximize our ability to scale the model

Llama 3 Architecture

- Standard dense Transformer with particular choices of
 - normalization
 - activation
 - attention
 - positional embedding
- But basically the same architecture we've built!

	8B	70B	405B
Layers	32	80	126
Model Dimension	4,096	8192	$16,\!384$
FFN Dimension	$14,\!336$	$28,\!672$	$53,\!248$
Attention Heads	32	64	128
Key/Value Heads	8	8	8
Peak Learning Rate	3×10^{-4}	$1.5 imes 10^{-4}$	8×10^{-5}
Activation Function	SwiGLU		
Vocabulary Size	128,000		
Positional Embeddings	RoPE ($\theta = 500,000$)		

Llama 3 Compute optimal scaling

- The FLOPs needed to train a Transformer with singlepass SGD scale like 6ND where D = parameter count and N = number of tokens in the data.
 - Let $\hat{w}_{N,D}^* \in \mathbb{R}^D$ be the result of SGD on N tokens.
- What is the best we can do under a compute constraint?

$$N^*(c), D^*(c) = \arg\min_{N,D} \mathbb{E}\left[R(\hat{w}^*_{N,D})\right] \text{ s.t. } 6ND \le c$$

- Chinchilla estimation:
 - train models at different combinations of $N \, {\rm and} \, D$
 - estimate N*(c) by optimizing over a compute level sets (IsoFLOP curves fitted to loss outcomes)
 - $6D^*(c) = c/N^*(c)$

Llama 3 **Emergence of capabilities**

- Capabilities are sometimes measured as accuracy on benchmarks.
- To forecast capabilities, we want to predict accuracy from compute. Llama team:
 - correlated train compute with normalized, negative log-likelihood per char. (similar to log-loss) on benchmark
 - then fitted a sigmoid relating NLL to accuracy
- Warning: this works on ARC Challenge, but other benchmarks are less predictable!

with compute, capabilities follow an scurve, i.e., benchmarks have dynamic ranges.

Today's presentations Topics

Computeoptimal scaling

1T Approach 1 100B — Approach 2 — Approach 3 Parameters 1.0B --- Kaplan et al (2020) 🛧 Chinchilla (70B) 🛧 Gopher (280B) ★ GPT-3 (175B) ★ Megatron-Turing NLG (530B) 100M 10M 10¹⁷ 10¹⁹ 10²¹ 10²³ 10²⁵ FLOPs

Hoffman et al, 2022

Wei et al, 2022

Emergent capabilities

Data quality

Gunasekar et al, 2023