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Course Introduction



Machine learning: algorithms for prediction
For example,

sign identification optical character recognition 3d reconstructions



What is at stake?
Good predictions help us make decisions that reduce suffering

climate prediction drug discovery clinical decision-making

FourCastNet

(Pathak et al, 2022)

AlphaFold 3

(Abramson et al, 2024)

fastMRI

(Zbontar et al, 2019)



Compute, large models play a central role
Our algorithms are consuming increasing amounts of compute

Sevilla et al., 2022. “Compute trends across three eras of machine learning”



This course: the frontier of large models

• Deep dive into the development pipeline of one of the largest open-source 
models ever built.


• We will read The Llama 3 Herd of Models (arXiv:2407.21783) over the 
course of 10 weeks. This will structure the course. 


• A graduate seminar course:


• Learning by reading the primary literature.


• Most weeks will consist of student presentations.


• Assessment largely focused on a student project.

https://arxiv.org/abs/2407.21783
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Course information
Course website

https://www.cs.toronto.edu/~cmaddis/courses/csc2541_w25/

The course website will have the most up-to-date 
information and Quercus will be used for announcements.

https://www.cs.toronto.edu/~cmaddis/courses/csc2541_w25/


Presentation sign-up

https://forms.office.com/r/DpQ14sdAb3

https://forms.office.com/r/DpQ14sdAb3


Presentation timeline

• At least two weeks before your presentation. 

• Come to OH to finalize which paper you will present. Can come before two weeks.


• A few days before your presentation. 

• Meet with one of the TAs to practice your presentation and get feedback.


• On the day of your presentation. 

• Your slides and code notebook are due at the start of the class.


• If you decide to drop the course (don’t feel bad), but please email me so that I 
can make sure we have enough presenters!



Questions?



• I mask because I have had Long 
Covid since 2022.


• Long Covid is not rare, it can cause 
significant disability, and there is no 
approved treatment.


• I was so sick that I was off work for 2 
years. This is my first time teaching 
since I got sick.


• I am extremely grateful and 
excited to be here with you. 
Thanks for your patience.

My mask



The Story of A Single Bit



• A measurement is an action that 
determines a property of a system.


• E.g., silver halide crystals in film 
reducing to metallic silver 
determine light intensity.


• Stored measurements are data.


• In computers, we store data in a 
digital representation.


• I.e., a list of numbers.

Data begins with 
a measurement

Source: Andrej Karpathy



Bits

• More precisely, data is typically stored as sequences of 1s and 0s


• I will tell you the story of a single bit of data, which is my story.


• What I am trying to highlight:


• Data is not abstract thing. 

• The processes that produce it are complex and also very personal.

(Y1, Y2, …, Yn) ∈ {0,1}n



• 1987, I was born in Boston.


• 2016, MSc from UofT.


• 2019, a novel coronavirus 
spreads across the world.


• 2020, PhD from Oxford.


• 2020, I joined the faculty at UofT.


• 2022, I decided to stop being as 
cautious about COVID.

A Single Bit



• Let  be the outcome of a rapid 
antigen test, 1 if positive, 0 o.w.


• 7 February 2022, the single bit 
that changed my life:





• Something to think about: what 
is the provenance of a bit?

Y

Y = 1

A Single Bit



Prediction



Prediction

• Could I have predicted whether I would test positive before the test? 

• Let’s study this abstractly. At a high level, the set up is as follows.


• We specify a prediction before observing the outcome. A prediction a 
statement about a future event.


• A loss function quantifies our prediction’s error upon seeing the outcome.


• The expected loss function, or risk, quantifies our error on average on 
random, unseen data.



Bernoulli outcome with log-loss

• Represent the test outcome as a binary random variable .


• We specify a prediction using a real number  to model .


• Not the only choice! Could have predicted just 0 or 1.


• How do we score our prediction?

Y ∈ {0,1}

q ∈ [0,1] P(Y = 1)

A special case

*The base of the logarithm does not change our discussion.



Bernoulli outcome with log-loss

• We score our prediction for each outcome using the log-loss*,





• We score our prediction on average via the risk (or cross-entropy in this case),


.


where .


Note: if , we drop the  term or  term, respectively.

ℓ(Y, q) = − Y log(q) − (1 − Y)log(1 − q) .

𝔼Y[ℓ(Y, q)] = − p log(q) − (1 − p)log(1 − q) = ℓ(p, q)

p = P(Y = 1)

p ∈ {0,1} p 1 − p

A special case

*The base of the logarithm does not change our discussion.



Why is this a good choice for the risk?
p uniquely minimizes the cross-entropy

The prediction with the lowest risk is the true probability .p



Derivation
Cross-entropy minimizer

Prop 1. Let , then





with equality iff .


Pf. First, consider the case . By strict concavity:  
with eq. iff , and thus


 with equality iff .

p, q ∈ [0,1]

ℓ(p, q) ≥ ℓ(p, p)

q = p

p, q ∈ (0,1) log(x) ≤ x − 1
x = 1

log(q/p) ≤ q/p − 1 q = p



Derivation
Cross-entropy minimizer

Applying  to  and , we get





with equality iff . If  or , the bound holds trivially. ∎

log(q/p) ≤ q/p − 1 q/p (1 − q)/(1 − p)

ℓ(p, p) − ℓ(p, q) = p log ( q
p ) + (1 − p)log ( 1 − q

1 − p )
≤ p ( q

p −1) + (1 − p)( 1 − q
1 − p −1)

= (q − p) + (1 − q − 1 + p)
= 0

p = q p ∈ {0,1} q ∈ {0,1}



• The log-loss can be motivated through a statistical notion of uncertainty.


• Goal: quantify the “amount of uncertainty that is resolved when we observe 
an outcome ”, which measures how surprised we are to observe its value. 

• To understand the goal consider the following scenario. Can we quantify this?


•  iff indep. events  and  happen.


• After observing , I would be less surprised to find out  than I was 
before observing , i.e., my uncertainty is reduced.

Y

Y = 1 A B

A Y = 1
A

Uncertainty
Motivating the log-loss



• Let  be the function that represents my surprise upon 
observing an event that I think has probability .


• If I believe , then my expected surprise is


.


• What properties should we expect  to satisfy?

h : (0,1] → ℝ
q

P(Y = 1) = q

ph(q) + (1 − p)h(1 − q)

h

Uncertainty
Motivating the log-loss



• Suppose I believe:  iff indep. events  and , , and .


• My surprise at observing  should be .


• After observing , the remaining surprise (after removing the surprise  
at seeing ) should be exactly the independent surprise  of seeing .


• To reflect this structure additively, we can require that  satisfy: 

 for 

Y = 1 A B P(A) = q1 P(B) = q2

Y = 1 h(q1q2)

A h(q1)
A h(q2) B

h : (0,1] → ℝ

h(q1q2) − h(q1) = h(q2) q1, q2 ∈ (0,1]

Uncertainty
Motivating the log-loss



• If  satisfies


1.  for ,


2.  is continuous and monotonically decreasing in ,


• then  must be


 for some 


• Follows from classical calculus arguments or see Robert Ash, Information Theory. 

• We take  and  by convention.

h : (0,1] → ℝ

h(q1q2) = h(q1) + h(q2) q1, q2 ∈ (0,1]

h q

h

h(q) = − r logb(q) r > 0, b > 1

b = e r = 1

Uncertainty
Motivating the log-loss



the least surprised we could be

•  is minimized at  and equals 





• Called the entropy, which is the least 
surprised we could be.


• Most surprised at outcomes if  
and least surprised if .


• Claude Shannon: cannot store data 
using fewer bits on average than the 
entropy.

ℓ(p, q) q = p

H(p) = − p log(p) − (1 − p)log(1 − p)

p = 0.5
p ∈ {0,1}

Entropy



Recap
Prediction

• A prediction is a statement about a future event.


• We can predict random bits by specifying the probability of them being 1.


• The log-loss scores our surprise at observing the outcome.


• Nice property: surprise at observing coincident, independent events is 
additive.


• The optimal prediction under the log-loss is the true probability, at which point 
the risk achieves the entropy.



Learning



Learning

• To predict well, we want . But how can we get this in practice?


• Learning is the study of procedures that estimate predictors from data. 

• When we do a good job of learning, i.e., we found a good predictor from a set 
of observations, we say that we have achieved good generalization.


• Returning to our Bernoulli example, let’s study a simple learning algorithm: 
empirical risk minimization.

P(Y = 1)



• We observe a data set  for outcomes  that are i.i.d. .


• E.g., a set of COVID test outcomes from Toronto during the pandemic.


• Ideally we would be able to solve the risk minimization problem to get ,





• But we don’t have access to …

{Yi}n
i=1 Yi Bern(p)

p

arg min
q∈[0,1]

ℓ(p, q)

ℓ(p, q)

Empirical risk minimization
A special case



• Instead, we can approximate the risk with the empirical risk:


.


• Notice that  almost surely by the law of large numbers.


• This motivates empirical risk minimization, which is the estimation procedure that finds





1
n

n

∑
i=1

ℓ(Yi, q)

1
n ∑i

ℓ(Yi, q) → ℓ(p, q)

arg min
q∈[0,1]

1
n

n

∑
i=1

ℓ(Yi, q)

Empirical risk minimization
A special case



Derivation
Bernoulli ERM

Prop 2. Given  i.i.d. , the ERM w.r.t. the log-loss is


 where 


Pf. Note,


. 

 is a cross-entropy, so our result follows from Prop 1. ∎ 

{Yi}n
i=1 Bern(p)

̂pn = arg min
q∈[0,1]

1
n

n

∑
i=1

ℓ(Yi, q) ̂pn = 1
n ∑

n

i=1
Yi

1
n

n

∑
i=1

ℓ(Yi, q) = 1
n

n

∑
i=1

− Yi log(q) − (1 − Yi)log(1 − q) = ℓ( ̂pn, q)

ℓ( ̂pn, q)



ERM with log-loss

• Does  approach  as  in some sense?


• We can study this by studying the behaviour of the excess risk





• Note two things:


•  for all .


•  is a non-negative real-valued random variable.

̂pn p n → ∞

ℰ(q) = ℓ(p, q) − ℓ(p, p)

ℰ(q) ≥ ℰ(p) = 0 q ∈ [0,1]

ℰ( ̂pn)



• Does  converge?  

• Recall,  is a random variable, 
so need to define “converge”.


• Answer: it convergences in various 
senses under various conditions!


• van der Vaart, Asymptotic Statistics 
or Ostrovskii and Bach (2020).


• Very deep and theoretical area of 
inquiry - out of scope for this class.

ℰ( ̂pn)

ℰ( ̂pn)

ERM convergence



• Let’s study convergence in 
simulation (derivation in the 
Bernoulli case is a bit tricky).


• Median converges like, 

 

• Typical rate for learning.


• Key take-home: the more data 
we have, the better our 
predictions.

median [ℰ( ̂pn)] → C/n

ERM convergence



Recap
Learning

• Learning is the study of procedures that estimate predictors from data.


• Empirical risk minimization tries to solve this by picking the predictor that 
minimizes the average loss on a data set.


• Predictors obtained from data are random because the data is random.


• We can study predictors by studying the excess risks, i.e., the deviation of the 
expected loss from the best possible expected loss.


• When the excess risk is small, we have generalized.


• The more data we have, the better we generalize.



Conditional Prediction



• Could I have predicted my test 
more accurately, if I had other 
measurements about me?


• Did anything in the last 37 
years make  more likely?


• Answer is typically yes! 

• Let’s study a special case of 
conditional prediction: logistic 
regression.

Y = 1

Conditional prediction



Logistic regression
A special case

• Let  be a random vector of other measurements called “features”. 

• E.g., my age as a number, my location as coordinates, etc.


• Seeing  may inform us about  and make  more predictable.


• I.e.,  may have less entropy than .


• To take advantage of this, we can build conditional predictions of  given . 


• Logistic regression is a special case!

X ∈ ℝd

X = x Y Y = 1

P(Y = 1 |X = x) P(Y = 1)

Y X



Logistic regression
A special case

• Logistic regression: predict  with a sigmoid function that 
depends linearly on :


 


where  is the sigmoid and  are called parameters.


• The params. plus the rule for computing the prediction is called the model.

P(Y = 1 |X)
X

q(X) = σ(w⊤X)

σ(t) = 1
1 + exp(−t) w ∈ ℝd



Intuition

• This is a generalization of the 
Bernoulli prediction case we 
considered.


• Take  to be constant.


• Then  where 
.


• Can represent any  
this way.

X ≡ 1

q(1) = σ(w)
w ∈ ℝ

q ∈ (0,1)

Logistic regression



Intuition

• The set of  where  is 
the hyperplane





•  separates our predictions. 

• As  travels along , our prediction 
that  increases towards 1.


• As  travels along , our 
prediction that  decreases 
towards 0.

x σ(w⊤x) = 0.5

{x ∈ ℝd : w⊤x = 0}

w

x w
Y = 1

x −w
Y = 1

Logistic regression



Conditional prediction
Which w should we pick?

• We can start by defining a notion of risk, similar to the Bernoulli case





• Interpretation: risk of our prediction of  averaged over .


• If the entropy of  is much smaller than  for all , 
then we can achieve much lower risk in principle with conditional prediction.

R(w) = 𝔼X,Y [ℓ(Y, q(X))]
P(Y = 1 |X) X

P(Y = 1 |X = x) P(Y = 1) x



Logistic regression
Which w should we pick?

• The structure of  depends on ’s distribution and its relationship to .


• Realizable case: let’s assume, that there exists a unique  s.t.


 and that 


• How do we get ? As before, it is common to optimize the empirical risk: 

 where  are i.i.d. as 

R X Y

w*

w* = arg min
w∈ℝd

R(w) P(Y = 1 |X = x) = σ(x⊤w*)

w*

R̂n(w) = 1
n

n

∑
i=1

ℓ(Yi, σ(w⊤Xi)) (Xi, Yi) (X, Y)



Logistic regression
Which w should we pick?

• Optimizing is harder than the Bernoulli case: (i) sometimes there’s no 
minimizer, (ii) when there is a minimizer, it’s not always unique, and (iii) even if 
it’s unique, there’s often no closed form!


• Out of scope to study this in detail, let’s assume there exists a unique ERM,





• How can we find the ERM? Gradient descent is one choice!

ŵ*n = arg min
w∈ℝd

R̂n(w)



Intuition

• The gradient of the empirical 
risk is the vector of partial 
derivatives,





• The negative gradient is the 
direction of greatest 
instantaneous descent on the 
surface of .

∇R̂n(w) = ( ∂R̂n

∂wj )
d

j=1

R̂n(w)

Gradient descent



Intuition

• The gradient descent algorithm 
iteratively follows the gradient: 

 

    for some step-size .

w(t+1) = w(t) − η∇R̂n(w(t))

η > 0

Gradient descent



Intuition

• In our setting, we have


 

for small  because the empirical 
risk is smooth and convex.


• Technical terms that are out of 
scope for us.


• Optimization is another very large, 
very deep field (also out of scope).

w(t) → ŵ*n

η

Gradient descent



Logistic regression
How well does ERM perform in this case?

• Does  approach  as  in some sense?


• Again, we can study generalization by studying the behaviour of the excess risk





• Classical result (see Ostrovskii and Bach, 2020): under mild smoothness conditions,


 as 


• Key take-home: the more data we have, the better our predictions, BUT the 
more parameters, the worse our predictions.

ŵ*n w* n → ∞

ℰ(w) = R(w) − R(w*)

𝔼 [ℰ(ŵ*n )] =
d
2n

+ o(n−1) n → ∞



Recap
Conditional Prediction

• Observing more data can sometimes improve predictions.


• We can compute conditional predictions with parametric models like logistic 
regression.


• In general, finding the ERM of parametric models is challenging and we often 
resort to iterative optimization algorithms like gradient descent.


• Rule of thumb: learning in parametric models improves with data and 
deteriorates with parameter count.



Large Models and Bitter Lessons



From logistic regression to ChatGPT

• So far the methods we’re looking at are simple and classical, taking us 
probably to the mid 20th century. You have probably already seen them.


• About 70 years of AI research brought us from what I presented to the start of 
the current revolution in AI.


• Just to give you a brief flavour of the kinds of changes to the paradigm that 
led to the large language models like ChatGPT and Claude…



From logistic regression to ChatGPT

Predictions computed 
with non-linear 

models
New, better 
optimizers

credit: Deniz Yuret
Li et al. 2018. Visualizing the Loss 

Landscape of Neural Nets.

Non-convex 
empirical risk 

surfaces

credit: Wikipedia



Still, AIs like ChatGPT are in this same basic paradigm as logistic regression: 

They are parametric models.



From logistic regression to ChatGPT

• Large language models (LLMs) are


• predictors that are parameterized by real-valued vectors 


• whose parameters are set by minimizing empirical risks (ish)


• with gradient-descent-type algorithms on data gathered from the internet.


• In essence, LLMs are predictors of the text that is found on the internet.


• Massive oversimplification (more next week!)…



Despite this, LLM era is (apparently) distinguished by some key trends: 
  

Risk seemingly improves with data and parameter count  
Many capabilities emerge with scale.



Observation: risk shrinks smoothly with scale
Increasing data or parameter count improves the risk

Dataset Size 
tokens

Parameters 
non-embedding

Compute 
PF-days, non-embedding

Te
st

 L
os

s

Kaplan et al. 2020. Scaling Laws for Neural Language Models.



Observation: information transfers between domains
Pre-training on natural language transfers information to other domains

Visual Explanation of Effective Data Transferred

Fine-tuning 
dataset

Effective Data 
Transfered

Total Effective Data

Kaplan et al. 2021. Scaling Laws for Transfer.



Observation: multi-task capabilities emerge with scale
As models scale on internet data, they improve on very diverse set of capabilities 

Wei et al. 2022. Emergent Abilities of Large Language Models.



Paradigm shift

• Two things to note:


• Many quantities (risk, optimal hyper parameters, etc.) have smooth, 
predictable structure as you scale. 

• Diverse capabilities emerge when training on internet-scale data


• These led a paradigm shift and a massive industrialization of our field.



Paradigm shift
Predictable scaling motivated us to industrialize

Observed
Prediction
gpt-4

100p 10n 1µ 100µ 0.01 1
Compute

1.0

2.0

3.0

4.0

5.0

6.0
Bits per word

OpenAI codebase next word prediction

Bi et al., 2024. “DeepSeek LLM Scaling Open-
Source Language Models with Longtermism”

Hoffmann et al., 2022. “Training 
Compute-Optimal Large Language 

Models”

OpenAI, 2023. “GPT-4 Technical Report”

Capability prediction Resource allocation Hyperparameter selection

Slide credit: Yangjun Ruan



Pre-scaling paradigm

• When I started in ML in 2011:


• method-driven progress


• single-task models


• static datasets


• Improving generalization was 
the job of the researcher 
through clever models and 
methods that effectively reduced 
the dimension of the parameters.

• In the scaling paradigm:


• data-driven progress


• massively multi-task


• cookie-cutter methods


• Generalization and capabilities 
are expanded by adding data 
and parameters. The role of 
researchers is to find more data, 
like finding oil reserves.

Scaling paradigm
Paradigm shift



The Bitter Lesson
by Rich Sutton

• Could compute be the key driver of progress in AI?


• Rich Sutton wrote about this in a 2019 essay titled “The Bitter Lesson”. He 
was comparing two approaches to progress:


• researchers designing clever methods that capture knowledge of the data 


vs.


• compute invested into general-purpose algorithms


• The “bitter lesson”, he argues, is that compute-driven approaches are 
winning over longer time scales.



Rich Sutton

“One thing that should be learned from the bitter lesson is the great 
power of general purpose methods, of methods that continue to 
scale with increased computation even as the available 
computation becomes very great. The two methods that seem to 
scale arbitrarily in this way are search and learning.”



Thanks!


