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Abstract

In this paper, we show how transport policy decisions can a�ect the pandemic dynamics
in urban populations. Speci�cally, we develop a multi-agent simulation framework to model
infection dynamics in complex networks. Our agents periodically commute between home and
work via a combination of walking routes and public transit, and make decisions intelligently
based upon their location, available routes, and expectations of public transport arrival times.
Our infection scheme allows for di�erent contagiousness levels, as a function of the virus's strain
and where the agents interact (i.e., inside or outside). The results show that the pandemic's
scale is heavily impacted by the network's structure, and the decision making of the agents.
In particular, the progression of the pandemic greatly di�ers when agents primarily infect each
other in a crowded urban transportation system, opposed to while walking. Additionally, the
results show that local subgraph characteristics, including topology, structure, and statistics such
as its degree distribution and density, a�ect the viruses' transmission rates. We also assess the
e�ect of modifying the public transport's running frequency on the spread of two di�erent virus
strains (with di�erent levels of contagiousness). In particular, lowering the running frequency can
discourage agents from taking public transportation too often, especially for shorter distances.
On the other hand, the low frequency contributes to more crowded streetcars or subway cars if
the policy is not designed correctly, which is why such an analysis may prove valuable for �nding
�sweet spots� that optimize the system. The proposed approach has been validated on real world
data, and a model of the transportation network of downtown Toronto. The framework used is
�exible and can be easily adjusted to model other urban environments, and additional forms of
transportation (such as carpooling, ride-share and more). This general approach can be used
modeling of contiguous disease spread in an urban environments including in�uenza or various
COVID-19 variants.

1 Introduction

The goal of the paper is to discuss how decisions made py public transport decision maker are
a�ecting pandemic in urban population such as in�uenza or COVID-19 [1]. In th order to control
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the spread of the virus, a policy regulator may take several actions, which we refer to as policy
designs. The development of the epidemic depends on various factors, including the frequency of
social contact, the contagiousness of a particular virus strain, and the level of protection applied
during those contacts. One area where individuals can transmit the disease is in the urban space
of a large city. In such environments, people meet at various points of interest (POIs) or while
travelling, including while on sidewalks and in public transportation. In this paper, we take an
approach similar to [2] and model these processes using an agent-based model (AMB) to assess the
e�ects of social distancing interventions in public transportation of a large urban area.

While the literature on pandemic evolution is incredibly rich and vast, our work can be classi-
�ed as an agent based model (ABM) simulator that tracks infection rates in the population. As
described in [3], ABMs are valuable tools for decision makers worldwide. For instance, Covasim [4]
has informed policy decisions in the United States (US), Vietnam, the United Kingdom (UK),
and Australia. Another ABM tool, OpenABM-Covid19 [5], assesses COVID-19 non-pharmaceutical
interventions including contact tracing, and the default version of the model is designed for UK
demographics (while it can re�ect other countries through re-parametrization). On the other hand,
[6] is an example of a tool measuring the e�cacy of mitigation rules such as social distancing or
mask-wearing in metropolises. Hoertel et al. [7] introduce a COVID-19 ABM that investigates
health care considerations such as post-quarantine screening, COVID-19 treatments and their im-
pact on ICU-bed occupancy. In this framework and the accompanying article, the focus is placed
on the transportation network within the city. While there are multiple all-purpose simulators
such as Covasim, there is less work that is transportation-oriented. In this paper, we �rst design
a transportation restrictions simulator. We then explore and analyze its outcomes in order to pro-
vide qualitative guidance to policy makers on public transportation running frequency during an
epidemic outbreak.

The adopted research methodology is as follows. We �rst build a simpli�ed �toy model� of
reality that only represents the key processes from the point of view of our research questions.
We mathematically analyze this model and explore key measures such as the number of infected
pedestrians in relation to the frequency of public transportation. Afterwards, we build a simulation
model, and compare its numerical results with the toy model, where we verify that the results
of both models agree. Next, we greatly expand upon the simulation model in order to better
approximate real-world relations. We numerically simulate this expanded model and observe the
essential processes that take place in it, which we translate into real world conclusions. We have
developed the agent-based simulation model using the Julia programming language [8] and the
OpenStreetMapX.jl library. The spatial data comes from the OpenStreetMap project along with
�TTC Routes and Schedules� data-set from the Toronto Open Data portal. All simulation source
codes are available on GitHub repository1.

The main contribution of this research study is that it shows that pandemic modelling in the
context of public transportation is possible and can bring tangible bene�ts to policy makers. Nu-
merical simulations on a model that re�ects the main processes taking place in society can be a
reliable data-driven source of knowledge supporting regulators in de�ning public transport policies
to limit the spread of a virus such as COVID-19.

The remainder of the paper proceeds as follows. In Section 2, we present a literature review
regarding COVID-19 in urban areas as well as its economic impacts. In Section 3, we rigorously
analyze a small scale network �toy model� using tools from probability theory. The assumptions of

1https://github.com/NykPol/EpidemicInUrbanNetworkToronto

2

https://github.com/NykPol/EpidemicInUrbanNetworkToronto


this model are far from reality, but it incorporates the main properties which we wish to explore.
In Section 4, we introduce a far more general and complex model which re�ects the real-world more
accurately. Next, using discrete-event simulation, we run the simulation on the network of the toy
model to verify the consistency between our mathematical and numerical results. Finally, we use
simulation experiments to investigate di�erent scenarios of the complex model and �nd the optimal
setup of the public transportation system to minimize infection spread. Finally, we present our
conclusions, insights, and possible extensions in Section 5.

2 Literature Background

Agent-based modeling (ABM) of pandemic can be classi�ed into various groups depending on the
target disease, population, environment, etc. In this section, we review the use of ABMs for sim-
ulating pandemics in urban environments. We focus on in�uenza transmission, dynamic analysis
of COVID-19 outbreaks, the impact of COVID-19 on the health care system, and the economic
implications of this virus.

2.1 ABM of Pandemic in Urban Areas

In [9], an agent-based simulator taking into account social interactions and individual mobility
patterns was developed to investigate the 2009 H1N1 outbreak in Mexico. This simulator also
measures the e�ect of mobility reduction on the spread of the disease. Another example which
simulates the behaviour of the disease during pandemic outbreaks can be found in [10]. In this
model, used by the Ontario Agency for Health Protection and Promotion, authors consider each
individual to be unique and assume that transmission and infection rates are non-homogeneous.
Furthermore, they consider the use of public transportation in urban cities. The model's output
is then passed through software to generate a map of the area where the disease has been spread.
In [11], an agent-based transport simulation combined with an epidemic spread model was proposed
to understand the rate of infection in urban areas. The authors utilized the model to analyze
seasonal in�uenza outbreaks in Zurich, Switzerland. See also [12] for the development of an agent-
based model which employs geographic information system (GIS) to study in�uenza propagation in
an urban area. The model is validated using 2009 H1N1 outbreak in Kunming, China. ACEMod,
an agent-based model studies the spatiotemporal dynamics of in�uenza epidemics in Australia. The
model uses mobility patterns (worker and student commuting) as well as human interactions and
o�ers interventions/mitigation policies; see [13].

2.2 ABM of COVID-19 in Health Case System

Researchers are currently generating numerous agent-based models to investigate the impact of
COVID-19 on the health care systems and propose strategies to circumvent the issues arising from
the disease. This subsection provides an overview of some of the latest works.

Undoubtedly, testing and test-based interventions play a pivotal role in controlling the dis-
ease as people without COVID-19 symptoms can pass on the virus. To this end, an agent-based
model, which evaluates the e�ectiveness of test-based policies, has been proposed by [14]. This
tool is comprised of two models. The �rst model measures the e�ect of COVID-19 viral load on
secondary infections, false negative and false positive test results. The second model investigates
the propagation of COVID-19 through a group when test-based intervention policies are applied.
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The National Institutes of Health (NIH) main campus in Bethesda, Maryland [15] has devised a
SIMIO-based simulation model to discover the impact of bus schedule changes and reduced vehicle
capacity under a wide range of employees demands. This, as a result, guarantees safe and reliable
trips between campus buildings in the post-shutdown phase. Emergency departments (EDs) in the
US have faced scarce resources and long waiting times due to COVID-19 pandemic. Researchers
in [16] have built a discrete-event simulation model to monitor ED's operations and analyze the
the impact of the virus on the ED throughput. In particular, researchers examine if the rates of
factors such as patients length of stay and number of unvisited patients are susceptible to sta�ng
changes when they simulate both standard/non-standard (due to COVID-19) patient volumes sce-
narios. Health systems have cancelled or deferred the non-emergency medical appointments to curb
the spread of COVID-19. For instance, [17] proposes a discrete-event simulation providing insight
for assigning patients to colonoscopy appointments under reduced capacity while safety measures
remain in place. An agent-based model developed in [18] provides guidelines for emergency decision
makers to e�ectively evacuate the emergency department at the Johns Hopkins Hospital during the
pandemic. The proposed method �rst unloads non-COVID-19 patients and then starts evacuating
COVID-19 cases. It also assumes that the teams dealing with COVID-19 cases do not interact with
other patients and medical groups in other parts of the ED. A stochastic agent-based microsimula-
tion model of the COVID-19 in France has been developed to study the impact of post-lockdown
strategies, including physical distancing, mask-wearing and shielding, on cumulative incidence and
mortality and on occupant beds in ICU; see [19].

2.3 ABM of COVID-19 in Urban Environment

Many researchers have concentrated their e�orts on simulating COVID-19 movement across small
towns and/or metropolises to enable them to evaluate the performance of interventions through
agent-based frameworks. This subsection reviews some of the recent developments in this domain.

In order to understand how coronavirus spreads in small towns and cities, the paper [20] presents
an ABM platform veri�ed on real data from New Rochelle, New York. The tool incorporates
testing strategies (in-hospital and drive through), di�erent types of treatment (in-home and in-
hospital), and intervention approaches (school and business closure/reopening). Another example
is the risk assessment of COVID-19 spread in facilities proposed by [21] which helps decision makers
develop appropriate strategies. In [22], an agent-based model has been created for the city of
Salzburg, Austria, to support policy makers to take interventions measures. The model simulates
four scenarios for the after-lockdown phase of COVID-19 and the results are independent of the
above-mentioned city.

To measure the e�cacy of mitigation rules in metropolises, including social distancing, mask-
wearing, school/business closures, random testing, and quarantines of di�ering lengths, a customiz-
able agent-based simulation tool has been designed and validated on New York City, which became
the epicenter of the outbreak in the US. The capability of the model is illustrated through evaluating
random testing approaches; see [6]. In addition, the paper [7] o�ers a stochastic agent-based mi-
crosimulation model of New York City and study the e�ect of quarantine duration, quarantine lifting
type, post-quarantine screening, and the use of a hypothetical e�ective treatment against COVID-19
on the disease's cumulative incidence and mortality, and on ICU-bed occupancy. In [23], researchers
implemented an agent-based model called CityCOVID to support decision making about COVID-19
at the level of city, county, and state (currently the Chicago area). To accomplish this goal, the
model analyzes the COVID-19 transmission and understand the behaviour of individuals in reac-
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tion to the government interventions. An extension of CityCOVID, focusing on the development of
large-scale synthetic population, has been discussed in [24]. In Canada, the Public Health Agency
has developed a SEIR-type agent-based simulation [25] to study the impact of non-pharmaceutical
interventions on the spread of COVID-19 with the aim of supporting public health decision mak-
ers. The compartments used in the model are isolated cases, exposed quarantine from which spread
to susceptible individuals is not possible, asymptotic cases that might/might not be identi�ed via
surveillance. Covasim, an agent-based simulator [26], inspects the dynamics of COVID-19 disease
and evaluates various interventions policies in Africa, Europe, Oceania, and North America. Finally,
an agent-based tool called OpenABM-Covid19 [5] assesses COVID-19 non-pharmaceutical interven-
tions including contact tracing. The default version of the model is designed for UK demographics
but it can be used for other countries through simple re-parameterization.

2.4 Economic Impacts of COVID-19 and ABM

ABMs have been employed to analyze the economic e�ects of COVID-19 pandemic, even though
the number of related reports in the literature is much smaller than those discussing other aspects
of the disease. The SEIR agent-based model from [2], analyzes the coronavirus economic impact
considering seven scenarios such as do nothing, lockdown, conditional lockdown, vertical isolation,
partial isolation, use of face masks, and use of face masks together with reducing social contacts.
The model has been validated on data from Brazil but is applicable to other contexts as long as the
corresponding data is provided. Another example is the ABM of supply chains of 1.6 million �rms
in Japan which predicts a total production loss of 5.2% in the country's annual Gross domestic
product (GDP) if one-month lockdown was implemented in Tokyo; see [27]. Furthermore, the
economic, social, and health impacts of COVID-19 in the presence of interventions such as testing,
physical distancing, and school/business closure using ABM is the focus of [28]. The study conducted
by [29] aims at reducing the health and economic losses resulted from COVID-19 via ABM of the
interrelation between the prevalence of COVID-19 and economic activities.

3 Theoretical Example

In this section, we investigate a very simple scenario in which agents have only two routes to choose
from and all of them start at the same time. Of course, this is not a realistic situation but it captures
the essence of the optimization and exhibits similar properties as the simulation of more realistic
scenarios.

3.1 De�nition of the Toy Model

Suppose that we are given a graph G � pV,Eq with vertices V � th, r, w, s1, s2u, and edges E �
thr, rw, hs1, s1s2, s2wu, as well as n ¥ 1 agents, which are labelled with a label from set rns :�
t1, . . . , nu. Initially, all the agents are positioned at their home h, and they commute to and from
their work w each day via two potential routes, P1 � ph, r, wq and P2 � ph, s1, s2, wq of varying
travel times�see Figure 1. Each edge e P E is associated with the expected travel time σe, such
that σi :�

°
ePPi

σe indicates the amount of time it takes for an agent to move along route Pi. Note
that we are making the simplifying assumption that the travel times do not depend on the agent.
We also assume that there are �xed departure times for leaving both w and h to which all the agents
adhere.
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Figure 1: Toy Model

The agents are mostly rational in that they each will usually take the path that minimizes
their travel time. However, we incorporate randomness into their decision making based on an
exponential scaling function of the values σ1, σ2. Speci�cally, set σmin :� mintσ1, σ2u, and for each
i � 1, 2, de�ne the transition probability αi P r0, 1s where

αi :�
expp�σi{σminq

expp�σ1{σminq � expp�σ2{σminq
. (1)

The results obtained below (that is, Theorem 3.1 and Corollary 3.2) hold for any transition prob-
ability but the above choice has a few desired properties. First of all, it is a decreasing function of
σi: the longer travel time, the less likely an agent will select route Pi. Second of all, it only pays
attention to the relative di�erence, that is, if both travel times increase or decrease by the same
multiplicative factor, then the transition probability will not change.

During each commute t ¥ 1, each agent a P rns independently draws one of P1 and P2 according
to the transition probabilities α1 and α2, respectively. If a draws Pi, then they move along Pi or
the reversal of Pi, depending on whether they were at h or w after their previous commute.

We assume that some subset of agents I0 � rns is initially infected. Suppose that It denotes
the infected agents after t ¥ 0 rounds. We update It�1 from It based on the procedure below.
Let us assume that Pi has an interaction probability βi P r0, 1s, as well as a base contagion

probability λi P r0, 1s for i P t1, 2u.
Suppose a1 P rns is infected at time t ¥ 0, and a2 P rns is not infected after t rounds. Agent a1

infects agent a2 in round t� 1, provided the following events occur in order:

1. In round t� 1, agents a1 and a2 both select path Pi for some i P t1, 2u.

2. Agents a1 and a2 interact, which given 1., occurs independently with probability βi by
de�nition.

3. The interaction between agents a1 and a2 is contagious, which given 1. and 2., occurs inde-
pendently with probability λi.

We say that a2 is infected during commute t � 1, provided there exists at least one agent which
infects a2. In this case, we update It�1 from It by adding all those agents within rnszIt which
became infected in commute t� 1. Note that once an agent becomes infected, it remains so for the
duration of the process, i.e., It � It�1 for all t ¥ 0.
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3.2 Analyzing the Toy Model

Let us assume that βi � bi{n for non-negative constants b1, b2 which do not depend on n. Moreover,
we assume that |I0| � csn for some constant 0   cs   1, where we refer to cs as the starting
infected proportion. For convenience, we de�ne the random variable Xt :� |It| for each t ¥ 0.

Given a target �nal infection proportion cf such that 0   cs ¤ cf   1, we de�ne τcf to
be the smallest t ¥ 0 such that Xt{n ¥ cf . Note that we assume cf   1 in order to ensure the
concentration of our random variables throughout the entire process. We also assume that the
parameters b1, b2, α1, α2, λ1, λ2, cs, and cf satisfy

p1� cf qpα1p1� expp�b1λ1α1csqq � α2p1� expp�b2λ2α2csqqq ¡ 0. (2)

In particular, if all parameters are positive, then this condition is trivially satis�ed (recall that
0   cs ¤ cf   1 is already assumed). As we show below (see Corollary 3.2), this will ensure that
τcf   8. In other words, the infection is guaranteed to eventually spread through cf fraction of the
agents. Our goal is thus to predict how long this process will take with a high degree of certainty.

Consider the following recursively de�ned sequence prxtq8t�0 whererxt�1 :� rxt � p1� rxtq pα1p1� exp p�b1λ1α1rxtqq � α2p1� exp p�b2λ2α2rxtqqq, (3)

for each t ¥ 0, and x0 :� cs. Clearly, since (2) holds, this sequence is increasing and so, in particular,
cs ¤ rxt ¤ 1 for all t ¥ 0. Note that Xt{n is a random variable. However, we will show that one
can use rxt of (3) to approximate Xt{n. This approximation will hold asymptotically almost

surely (a.a.s.), that is, it will hold with probability tending to 1 as nÑ8. Having said that, with
slightly more work one may compute (or estimate) the failure probability as a function of n (decaying
exponentially fast) and state the concentration results for a given value of n. The conclusion would
be that with probability at least 1� ϵ for some small constant ϵ ¡ 0, the approximation is accurate
even for moderately small values of n.

We are now ready to state the main results in this section. We defer all proofs to Appendix A.

Theorem 3.1. For each 0 ¤ t0   τcf , there exists a function ϵ0 � ϵ0pnq � op1q, such that a.a.s. it
holds that ����Xt0

n
� rxt0 ���� ¤ ϵ0pnq.

Let us de�ne tcf ¥ 0 as the smallest t ¥ 0 such that rxt ¥ cf . Note that this is a deterministic
value, as it only depends on the (deterministic) sequence prxtq8t�0, Moreover, tcf   8. To see this,
notice that for any 0 ¤ t   tcf , we can apply (2) to ensure

rxt�1 � rxt ¥ p1� cf qpα1p1� expp�b1λ1α1csqq � α2p1� expp�b2λ2α2csqqq ¡ 0,

as rxt ¥ cs for all t ¥ 0. Thus,

tcf ¤
cf � cs

p1� cf qpα1p1� expp�b1λ1α1csqq � α2p1� expp�b2λ2α2csqqq
.

The following corollary relates τcf and tcf .

Corollary 3.2. The following holds a.a.s.:

(a) If rxtcf ¡ cf , then τcf � tcf .

(b) If rxtcf � cf , then τcf P ttcf , tcf � 1u.
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b1 interaction probability b1{n for route P1 (walking)
b2 interaction probability b2{n for route P2 (subway)
σ1 expected travel time for route P1 (walking)
σ2 expected travel time for route P2 (subway)
λ1 base contagion probability for route P1 (walking)
λ2 base contagion probability for route P2 (subway)
cs starting infected proportion
cf �nal infection proportion

Table 1: Parameters of the toy model.
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Figure 2: Scenario 1: the fraction of agents infected (left), and the fraction of new infections (right).

3.3 Illustration

Let us recall that there are 8 parameters of the toy model�we list them in Table 1. We investigate
a few scenarios below but if one wants to test other sets of parameters, then the Julia code can
be found on GitHub repository. For simplicity, for all the scenarios we set λ1 � 1{100, λ2 � 2{100,
cs � 0.01, and cf � 0.99.

Scenario 1: b1 � 5, b2 � 5, σ1 � 15, σ2 � 10.

In this scenario, the subway is 50% faster than walking and so it is used by agents more often,
namely, with probability α2 � 62.25%. We claim that 99% of agents are infected after tf � 204
iterations.

The fraction of agents infected after t iterations is presented in Figure 2 (left). We see an �S-
shaped� function which can be explained as follows. Initially, the number of infected agents is small
and they interact with a small number of non-infected agents. As a result, the new infections are
relatively rare. On the other hand, if the number of infected agents is large, then the number of
non-infected agents is small. Hence, the number of new infections is also small. The number of
new infections is large when there are many infected agents but at the same time there are many
non-infected ones that can potentially get infected�see Figure 2 (right).
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Figure 3: Scenarios 1�4: the fraction of agents infected (left), and the fraction of new infections
(right).

Scenario 2: b1 � 5, b2 � 5, σ1 � 15, σ2 � 15.

In this scenario, the subway slows down and the expected travel time by subway is the same as
walking. As a result, agents select each route with the same probability, namely, α1 � α2 � 50%.
99% of agents are infected after tf � 248 iterations. The virus spreads slower than in Scenario 1.

Scenario 3: b1 � 5, b2 � 3, σ1 � 15, σ2 � 10.

In this scenario, the subway's expected travel time is back to the original value (as in Scenario 1)
but we assume that agents taking subway interact with a smaller number of other agents: b2 is
reduced from 5 to 3. As expected, it has a positive e�ect: 99% of agents are infected after tf � 306
iterations. The virus spreads even slower than in Scenario 2.

Scenario 4: b1 � 3, b2 � 5, σ1 � 15, σ2 � 10.

This time we test the scenario in which agents meet less frequently when they walk: b1 is reduced
from 5 to 3. Not surprisingly, it also has a positive e�ect in comparison to Scenario 1: 99% of
agents are infected after tf � 217 iterations. However, as expected, it is worse than Scenario 3�the
base contagion probability for the subway is twice the corresponding probability for walking and so
reducing interactions on the subway has a larger impact.

A comparison of all scenarios can be found on Figure 3. The fraction of agents infected after t
iterations is presented on the left and new infections are presented on the right.

Scenario 5: b1 � 5, b2 � 5, σ1 � 15, 1 ¤ σ2 ¤ 50.

Finally, we investigate the process for various values of σ2, namely, we consider σ2 P r50s. When
σ2 � 50 (the subway is more than 3 times slower than walking), most agents walk, often interacting
with each other and infecting themselves quickly. Similarly, when σ2 � 1 (the subway is 15 times
faster than walking), most agents take subway infecting one another even faster (recall that the base
contagion probability for the subway is twice that of walking). In Figure 4, we present the number
of iterations needed to infect 99% of agents and the fraction of agents infected after 100 iterations,
both as a function of σ2. The �sweet spot� turns out to be when σ2 � 25: it takes 278 iterations to
infect 99% of agents and after 100 iterations only 21.21% of agents are infected.
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Figure 4: Scenario 5: the number of iterations needed to infect 99% of agents (left) and the fraction
of agents infected after 100 iterations (right).
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Figure 5: The fraction of agents infected (left), and the fraction of new infections (right): actual
vs. approximated values.

3.4 Approximation

In this section, we derive an approximate but closed formula for the number of infected agents after
a given number of iterations. First, let us note that expp�xq � 1 � x � Opx2q, and so we may
approximate (3) as follows:

rxt�1 � rxt � p1� rxtq pα1p1� exp p�b1λ1α1rxtqq � α2p1� exp p�b2λ2α2rxtqqq
� p1� rxtqrxt �b1λ1α2

1 � b2λ2α
2
2

�
� Ap1� rxtqrxt, where A :� b1λ1α

2
1 � b2λ2α

2
2.

On Figure 5 (right), we compare this approximation with the actual values for Scenario 1. Since
the base contagion probabilities are typically very small, the exponent is also small and so the
approximation expp�xq � 1� x is relatively good.

Next, we approximate the di�erence equation by the di�erential equation:

x1ptq � Ap1� xptqqxptq
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with the initial condition xp0q � cs. We get that

rxt � xptq :�
1

1� expp�Atqp1{cs � 1q
.

As expected, this approximation is working well as depicted on Figure 5 (left). By solving xptq � cf ,
it follows that

tf �
1

A
ln

�
cf

1� cf
�
1� cs
cs



.

4 Numerical Experiments

4.1 Model Details

To conduct our experiments, we use a multi-agent discrete event simulation model, which we im-
plemented in Julia. We selected this programming language because of its performance, and its
built-in simulation and distributed computing capabilities. The general logic of the model is that
agents are randomly placed in downtown Toronto. For this reason, the nomenclature in this pa-
per derives from the city's transportation system. Namely, the term TTC refers to the Toronto
Transit Commission. The simulation can be repeated for any other city since the data available on
OpenStreet map project is easily available and the framework is �exible.

Each agent has their own work and home locations which they periodically travel between.
Speci�cally, at the beginning of the process, each agent selects six static routes, three for each
direction of their commute. Their routes involve the streets the agents may walk on, as well as the
public transport available. Before each trip, each agent independently and uniformly at random
chooses between one of their three routes in the appropriate direction (i.e., home to work, or work
to home). When an agent arrives at their work location, they work an average of 8 hours (thus
remaining put), before returning home, at which point they again rest for approximately 16 hours.
To begin the process, 1% of the population is randomly chosen to be infected. We refer to each of
these agents as a �patient zero.� The agents then begin moving, and infect each other with some
probability p0 outdoors and a much higher probability indoors. The simulation stops when 95% of
the agents have become infected.

Symbols listed in Table 2 facilitate describing the simulation model in the following sections.
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K population of agents

k commuting agent, k P K

|K| the total number of agents (cardinality of K)

V set of intersections and public transportation stations (vertices)

v single intersection or public transportation station, v P V (vertex)

E
set of road/sidewalk and public transportation routes sections (directed
edges)

e
single road/sidewalk, e P E (directed edge); an edge e can be also
represented as an ordered pair of vertices that is we can write e �
pvi, vjq where i � j

VP set of intersections (vertices) accessible to pedestrians, VP � V

VT

set of stations and stops (vertices) used by public transportation sys-
tem, VT � V ; we assume that VP Y VT � V and VP X VT � H, that is,
pVP , VT q is a partition of V

GpV,Eq
urban network (directed, weighted, strongly connected graph) with
weights representing the time needed to traverse an edge;

W set of public transportation system (or: TTC) cars

w public transportation (or: TTC) car, w PW

|W | the total number of public transportation cars (cardinality of W )

wpvq
public transportation car available at the node v P V (it is assumed that
a node can be served only by a single transportation car, the exchange
stations are assuming that adjacent platforms connected by a sidewalk)

sk route taken by an agent k, sk � pe
p1q
k , . . . , e

pnkq
k q

te
weight of an edge e P E, measured in time needed to traverse e (in
seconds)

ptk estimated time to traverse the route of the agent k

t̄k actual time to traverse the route of the agent k

d̂
pwq
k

estimated transportation wait time of the agent k for the car w

ϕpwq number of infected agents in a car w PW

ψpvq number of infected pedestrians at the vertex v P VP

p0 base probability of infection

p e�ective probability of infection

Table 2: List of symbols used in the paper

4.1.1 Types of Agents

There are two types of agents in the model: people (commuters) and public transport (TTC)
cars. Each agent type is characterized by a set of attributes, each of which is categorized as �xed
or dynamic. A �xed attribute is assigned to an agent at the very beginning of the simulation
and remains unchanged. In contrast, a dynamic attribute changes throughout the course of the
simulation. We also indicate in the supporting tables whether each attribute is a value or a set of
values.

Each person (or: agent, commuter) has the set of characteristics as listed in Table 3.
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Attribute Type Class

ID �xed value
home_location �xed value
work_location �xed value
current_location dynamic value
direction dynamic value
infection_status dynamic value
walking_speed �xed value
routes �xed set
TTC_car_ID dynamic value
passengers_met_in_TTC dynamic set
number_of_trips dynamic value

Table 3: Attributes of the commuter class

ID is a unique identi�er of a person. home_location and work_location are two randomly
selected vertices from a city graph. current_location is a vertex pointing to the current position
of a person. direction indicates whether a person is going from home to work or vice versa.
infection_status helps understand if a person has already been infected, and if so, whether it
occurred on the street or inside a public transportation vehicle. walking_speed describes how many
meters per second a person can go on foot. For simplicity, this parameter is the same for all people
but it can be made more realistic if more data is injected to the model (such as distribution of ages
of the agent). Based on [30] the value for this parameter was set at 1.25 m/s, which is exactly the
walking speed observed in Japan during the COVID-19 pandemic in 2020. routes are lists of graph
edges an agent passes through before reaching their target location. As mentioned earlier, each
person has three favourite routes in each direction, which we discuss in detail in Subsection 4.1.2.
TTC_car_ID is assigned to a person once they are on-board a speci�c public transport vehicle.
passengers_met_in_TTC is the set of individuals an agent met on their ongoing ride in the same
TTC vehicle, i.e., it resets to the empty set once a TTC ride ends, and potentially starts �lling up
again during the next one. If at the end of a commuter's TTC trip there are infected people within
the set, then the new infection_status is calculated and updated. By doing this in this way
we ensure that an agent cannot be infected during the trip, which means that they cannot infect
others during the same commute. All TTC infections are resolved when agents leave a TTC car.
number_of_trips counts the number of one-direction trips a commuter makes during a simulation.

Each TTC car has the attributes presented in Table 4.
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Attribute Type Class

ID �xed value
first_station �xed value
last_station �xed value
current_station dynamic value
line �xed value
route �xed set
passengers dynamic set
passengers_limit �xed value
arrival_time_interval �xed value
one_trip_max_passengers dynamic value

Table 4: Attributes of the TTC car class

ID is a unique identi�er of a TTC car. first_station and last_station are the �rst and the
last station of a speci�c public transport line. current_station is the current position of a vehicle.
line is a unique identi�er of each direction of a public transport line, i.e., the attribute line in
the simulation is a combination of a line and its direction. route of a subway or streetcar vehicle
is presented as a sequence of stations a TTC car passes through (the same for all vehicles with
the same line attribute). As was already mentioned, in our implementation we arti�cially add the
directions for every line (e.g. Line 1(A->B) Line 1(B->A)) for implementation purposes, so each
direction has its unique route. passengers is a set of people who are currently inside the TTC car.
passengers_limit is the maximum number of passengers which can �t in one vehicle at any point
in time. arrival_time_interval is the average number of minutes that pass between two TTC
cars on the line. one_trip_max_passengers is the maximum number of passengers who were inside
a TTC car at one point in time. This parameter is helpful to measure whether a line is overloaded.
It is worth noting that a TTC car disappears after reaching the last station. Nevertheless, it calls
a new one on the same line, which keeps the e�ciency of the public transport system at the same
level because the arrival time interval does not change. It has its real-world interpretation, i.e., that
every car is disinfected at the last station.

4.1.2 Routing

A route of agent k can be represented in terms of nk consecutively adjacent edges:

sk � pe
p1q
k , . . . , e

pnkq
k q (4)

Notably, we assume that the commuting agents do not know precisely how long a route which
includes public transportation will take. They instead make assumptions about the waiting time of
the TTC cars and take this extra time into account when determining their routes. The estimated
time needed to traverse the route of the kth commuter is thus split into two sums, where the latter
aggregates over the expected waiting times of the TTC cars:ptk � ¸

ePsk

te �
¸

pv1,v2qPsk:
pv1,v2qPVP�VT

d̂
pwpv2qq
k (5)

where all symbols are in accordance with Table 2. Using the A* search algorithm, which is often used
in many �elds of computer science due to its completeness, optimality, and optimal e�ciency [31],
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we �nd the top three shortest routes in each direction for agent k with respect to the edge weights
of (5). Thus, each agent has six di�erent paths representing routes. Note that the factual travel
time of a route will in most cases di�er from its estimated traversal time.

Each time an agent goes from home to work or vice versa, they draw one of their three relevant
routes uniformly at random. We introduce this randomness, as we work under the assumption that
the commuters may not always wish to take the fastest route available, due to a variety of reasons.

4.1.3 Infection Scheme

In our model, the commuters can get infected with a virus similar to COVID-19. Speci�cally, at
any point in the process, there are a number of infected commuters, each of which has a chance to
infect an uninfected agent when an interaction occurs. An interaction between two commuters can
occur in two di�erent ways: during the wait at an intersection or by sharing public transportation.
We assume that once an agent becomes infected, they remain so for the duration of the process.
Moreover, the infections occur independently, i.e., the joint probability of non-infection over a
number of encounters is the product of the events individual probabilities. The dynamics of the
infection process is a consequence of the implementation choices, as documented in the open-source
code available at the project's GitHub repository. In summary this is the result of the chosen
Discrete Event Simulation framework.

As found in [32], the odds of indoor transmission of COVID-19 was almost 19 times higher
compared to outdoors. Based on this publication, in our study, we assume a base probability of
infection p0, which is applied to encounters at intersections, while for the TTC, it is 19 times of
that value. Note that either of these values can be adjusted easily in the Julia implementation of
the framework. As a result, the probability Qk1,k2 that an infected agent k1 infects an uninfected
agent k2 during a particular encounter can be summarized as follows:

Qk1,k2 �

#
p0 if k1 and k2 meet at an intersection,

19 � p0 if k1 and k2 meet on a TTC car.
(6)

At each stage of the trip of agent k, the probability depends on the number of infected individuals
that were encountered, and the location of the encounter. Let us assume that k is uninfected when
it meets ψpvq infected agents at intersection v, or ϕpwq infected agents while on a TTC car w. In
this case, if Qtotal denotes the overall probability that k is infected during the current stage of their
trip, then

Qtotal �

#
1� p1� p0q

ψpvq if k meets ψpvq infected agents at v P VP

1� p1� 19 � p0q
ψpwq

if k meets ψpwq infected agents while on w PW .
(7)

Also it is important to remember that all TTC infections are resolved when agents leave a TTC car,
which means that an agent can be infected during a trip, but cannot spread the infection during
the same trip (see also [33]).

4.1.4 Simulation Dynamic

We explain the simulation dynamics using a separate action diagram for each agent type. These
diagrams allow us to explain the procedure of actions taken by the various agents throughout the
course of one exemplary day. We �rst present the diagram for the commuters (Figure 6):
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Figure 6: An example of one day simulation dynamic for an agent

To summarize, the commuter wakes up at home, and then selects their route to work. While
traversing their route, they may interact with people who are infected, which could cause themselves
to become infected. After work, they select a route back to their home, and then rest for a �xed
amount of time. Below is the action diagram for the TTC cars (Figure 7):

Figure 7: An example of one day simulation dynamic for a TTC car

A TTC car is �xed to a single route upon its creation. While traversing its route, it stops at
each vertex to drop o� and pick up passengers (commuters). When a passenger leaves the subway
or streetcar vehicle, it updates their infection status based on the number of infected co-passengers
they interacted with. When the TTC car reaches the last station, it drops o� all its passengers,
computes the relevant statistics gathered on the way (e.g., maximum number of passengers) and
then stays in a depot for the remainder of the process. Additionally, using its arrival time interval
attribute, it calls a new car on the same route at the same starting location. The reason that this
is done in this way is that it is convenient for implementation purposes.

4.2 Simulation Setup

We evaluated the simulation model on a simpli�ed representation of downtown Toronto and its
transportation system, i.e., TTC (Toronto Transit Commission). Figure 8 presents the exact ele-
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ments of the city utilized in the experiment. The simulation map includes the streets of the city,
as well as the TTC lines of streetcars (marked in green in Figure 8) and subway (marked in red).
In the simulation, we track the agents only as they reach the downtown area of the city. Therefore,

08/07/2021, 23:39

Page 1 of 1file:///Users/kingasiuta/Desktop/grant_NSERC/COVID_Simulator_Toronto/index.html

++
−−

Leaflet (https://leafletjs.com) | Data by © OpenStreetMap (http://openstreetmap.org), under ODbL
(http://www.openstreetmap.org/copyright).

Figure 8: Map of Toronto used in the experiment

we assume that the commuters from the suburban areas of Toronto are present in the model, but
we only start tracking their movement once they reach the central part of Toronto. The map was
downloaded from OpenStreetMap project2. From the perspective of the simulation, the most crucial
elements of the map are the streets, sidewalks and intersections. The types of roads that were taken
into account are 1) primary, 2) secondary, 3) tertiary, 4) unclassi�ed, and 5) residential.

After preparing and �ltering the map, we represented it as a strongly connected (directed) graph.
That is, there is a vertex (directed) path between any two of its vertices. (For more details see,
for example, [34] or any other textbook on graph theory.) This avoids a situation where agents are
randomly placed in a location where they can never leave.

We later modi�ed the map by adding public transportation nodes and vertices to the resulting
graph. The two networks were connected via those walking vertices that were located nearby
TTC stations. The real-world data regarding public transport schedule and routes in Toronto
was downloaded from City of Toronto's Open Data Portal3. The �nal representation of the whole
system is a graph, where vertices are stops and intersections, edges are routes between stops and
intersections, and weights are the number of seconds between two di�erent graph vertices. It is
worth noting that each TTC line and its direction has a unique set of edges and vertices. Next, the
agents were placed on the graph and the simulation was run. The simulation hyper-parameters can
be found in Table 5.

2https://www.openstreetmap.org/
3https://open.toronto.ca/dataset/ttc-routes-and-schedules/
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Parameter Value

number_of_agents 2 000
number_of_patients_zero 20
p0 0.001
walking_speed 1.25m/s
passengers_limit 10 people
arrival_time_interval from 1 to 25 minutes by 1 minute
number_of_simulations 100

d̂
pwq
k half of a TTC interval (frequency)

Table 5: Simulation hyperparameters

The simulation was written in Julia language whose distributed computing capabilities enabled
an integration with AWS S3 and performing all necessary computations in the cloud. The cluster
consisted of 320 computing cores. The results are presented in the next section.

4.3 Experiment Results

The results section is divided into three parts. We begin with the results of a simpli�ed model that
is based on the mathematical toy model presented in Section 3. We use this simpli�ed model as
an intermediate step in understanding the complexity of the full model. The second part of the
section deals with the validation of the full simulation model. Finally, we explain the results of the
experiments, and discuss the primary outcome of our study.

4.3.1 Simpli�ed Model Results

We �rst make a number of key simpli�cations and alterations in the simulation model. The goal of
these changes is to ensure that the simpli�ed model resembles behaviour of the mathematical toy
model from Section 3.

1. A simpli�ed graph, as presented in Figure 9.

2. All agents have the same home and work location and leave their homes/works simultaneously.

3. Assigning probabilities of choosing a route (entirely walking the whole way or utilizing one
TTC edge) is based on an exponential scaling function as in the case of the mathematical toy
model.

4. Small population of agents due to the small graph.

The smaller graph and homogeneous home and work locations result in a model very similar to
the mathematical toy model, as the agents are forced to travel in large groups and reach consecutive
nodes simultaneously. This contrasts the full simulation where the paths taken by the agents are
diversi�ed. In terms of the routing decisions, recall that each agent selects of one its three optimal
routes uniformly at random in the full simulation. In contrast, in the simpli�ed model the agents
each have the same two routes, one of which involves the TTC, and thus has a travel time which
depends on the frequency parameter. Thus, if we were to assume that the agents always choose
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Figure 9: Simpli�ed graph used in toy simulation model

their optimal route, then increasing the frequency su�ciently high would force all the commuters to
forgo taking the TTC. Instead, we use the exponential weighting as in the toy model to determine
route selection probabilities.

Let us explain how the frequency of running public transportation impacts the pace of the
epidemic in the simpli�ed model. Firstly, we observe that due to the routing scheme of the model,
the more frequent the trains are, the more people there are that want to ride them. Conversely, by
increasing the interval between public transportation trains, the TTC becomes less attractive, and
so more commuters will choose to walk, thus crowding at intersections. As we can see in Figure 10,
the curve presenting the percentage of infected agents after a �xed time frame is U-shaped with a
visible �sweet-spot� (the optimal lowest number of infected commuters) at 4 minutes.

Figure 10: Infected agents at a �xed iteration depending on TTC frequency

In order to understand this �sweet spot�, it is helpful to consider Figure 11. Observe that when
the TTC arrives very frequently, it is extremely attractive for the people to take, and so a lot
of commuters are infected on their way to the station and inside the TTC. When the frequency
increases to 4 minutes, the people are appropriately spread amongst the routes to minimize the
average probability of infection, and so the described �sweet spot� occurs. Note that by increasing
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the frequency past the "sweet spot", public transport runs rarely so those who choose the TTC get
infected easily because of overcrowded public transport. The decrease in the number of TTC users
does not compensate for the less frequent TTC.

Figure 11: Infected agents in di�erent places of infection at a �xed iteration depending on TTC
frequency

We also checked how many commutes it takes to infect 95% of the simpli�ed model's population.
As observed in Figure 12, this number is lower for very frequent public transport and higher when
the TTC is rare. This is the case because public transport is extremely popular when the trains
almost immediately arrive at the station. Since the probability of infection in public transport is
signi�cantly higher than on the streets, many people use the TTC and quickly get infected. On
the other hand, when public transport arrives infrequently, many people choose the walking path
instead of the TTC, and so it takes longer (in terms of number of commutes) to infect each other.
Nevertheless, it takes the most commutes to infect 95% of the population when people are spread
between public transport and streets in a way that neither of them is overloaded. Thus, the same
conclusion as previously can be drawn from the Figure 12 as the maximum number of commutes is
achieved when public transport frequency is 4 minutes.

4.3.2 Full Model Validation

After the experiment was conducted, we veri�ed the elementary properties of the model. We have
examined the model's take on epidemic curves and increased in population while keeping the area
they move around intact (hence increasing population density or propensity to leave their homes).

First of all, the model's infection curve is a classic s-shaped curve as in Figure 13, for every
tested parametrization. The �gure presents the outcome in the scenario where all hyper-parameters
are set as in Table 5 and public transportation runs every 20 minutes.

The other model property we have found is that the more agents are on the map, the faster the
epidemic develops (see Figure 14). While for 300 agents, the epidemic has not had enough time
to develop till the end of the presented period, all three phases of an epidemic were completed for
the population of 5000 agents. This outcome agrees with [35], [36], and the #stayathome strategies
promoted all around the globe.
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Figure 12: Number of trips on the route from home to work and vice versa depending on TTC
frequency
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Figure 13: Exemplary epidemic curve in the simulation model

4.3.3 Full Model Results

In the full simulation model we also found that the frequency of running public transportation has
an impact on the pace of the epidemic, however, the further conclusions di�er signi�cantly.

As in the previous versions of the model, we observed that due to the routing scheme, the less
frequent the trains are, the least people want to ride them. As seen in Figure 15, the percentage of
agents that used public transportation at least once in their home-to-work or work-to-home routes
declines as the gap between subsequent trains increases. The more rare the trains are, the more
attractive walking becomes in comparison. While the TTC users number drops, the curve presenting
the percentage of infected agents in a �xed time frame is inverted-U-shaped with a visible peak at
4 minutes and more than 90% of infected population. This is a curve that is widely di�erent than
the ones obtained in the previous sections of the study.
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Figure 14: Population density vs pace of infection
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Figure 15: Percentage of TTC users and infected agents at a �xed iteration depending on TTC
frequency

Moreover, those results are con�rmed looking at the Figure 16, which shows how many commutes
it takes to infect 95% of the population. The point when pace of infection is the fastest is around
4-5 minutes, which is consistent with the previously described results. The number of commutes
divided by 2 could be interpreted as number of working days, because it represents a trip: home-
>work->home. Thus, at the most �dangerous� point it takes around 31 working days (63.5/2)
to infect 95% of the population, while at �the safest� point, when public transport arrives to the
station every minute, it takes around 43 working days (86.5/2), which is approximately 40% longer
comparing to the worst scenario.

In Figure 17 you can see the source of the infection peak. The chart shows the location of
infection for every infected agent and the total percentage of infected agents at every TTC frequency.
It turns out that while the infections on the city streets are relatively �at due to 1) low infection
probability, 2) sparse agents concentration outside, i.e., less people interactions at intersections, the
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Figure 16: Number of trips on the route from home to work and vice versa depending on TTC
frequency
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Figure 17: Places of infection

peak in total infections is perfectly aligned with a peak of infections in TTC.
The main reason behind the result is captured in Figure 18. The barplot presents the number of

encounters in TTC by 1) TTC frequency (OX axis), 2) number of infected agents that participated
in the interaction (bar colours). The numbers on the blocks refer to the number of encounters of
given crowd size and with a given TTC frequency.

Firstly, the number of meetings decreases as trains become less frequent and fewer agents use
public transportation. However, mind how the structure of the encounters changes�the less frequent
the trains are, the lower the percentage and number of interactions in small groups. It is the case
for all crowd sizes smaller than 7. Simultaneously, crowd sizes of 7-11 agents and 12 and more are
non-monotonous. Their share is relatively small in the left part of the graph due to the frequently
running trains�even though many agents come to stations to use the public transportation, the
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Figure 18: Number and structure of encounters in terms of crowd size (each bar colour representing
number of agents taking part in one encounter)

train comes quickly enough to prevent them from forming a large crowd. As the gap between
subsequent trains rises, TTC loses its capability to unload all passengers in time. Therefore, people
crowd at stations and in trains leading to high infection rates. In the case of the infrequent trains,
the number of people willing to ride TTC is so low that the high share of high-crowd encounters
does not result in a high infection pace. These forces lead to an infection peak in a spot, where 1)
most agents are willing to take TTC due to its relatively high frequency, 2) TTC is not e�ective
enough in separating passengers between trains.

The reason why this mechanism occurs is the time mismatch between train and agents arrivals
to stations. While some agents just missed the train, the other ones are coming and gradually form
a considerable crowd if the train does not come soon enough. In contrast, if they walked in hordes
and reached the station simultaneously as they do in the toy version of the model, the crowd size
would always be the percentage of the population that choose to take the TTC route. Mind also
that the map size in the toy model is unrealistically tiny, which is why agents can form large crowds
in the street. Hence, the model would suggest a severe danger of walking and is not realistic.

Those �ndings could also be con�rmed by looking at the number of visits of individual nodes on
the map. In Figure 19 the size of a circle around the point represents the number of visits. When
public transport is very frequent (TTC frequency = 3 minutes), TTC nodes are much more crowded
than the other, which leads to the increase in the number of infections as many people meet each
other in a closed space like a TTC car. On the other hand, when public transport is sporadic (TTC
frequency = 20 min), there is no speci�c outbreak area. In this case, TTC is not attractive for
people travelling relatively small distances, so they are more willing to walk. Thus, they are more
evenly distributed on the map, leading to fewer potential �dangerous� meetings.
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Figure 19: Individual nodes visits depending on TTC frequency on a small fragment of the map

5 Conclusions

This paper shows that public transportation schedules can be optimized in terms of epidemic safety.
However, one has to be cautious of the assumptions they are making. Namely, we have presented
two vastly di�erent sets of results obtained under di�erent assumptions and conditions. The more
intricate model resulted in an infection peak instead of a sweet spot which shows that the optimiza-
tion in the area cannot be optimized strictly under only one criterion. This conclusion agrees with
the reality�people would not be infecting each other if they did not meet anywhere, especially in
closed spaces such as a train station and a train car. Nevertheless, such a solution would be highly
impractical, which is why it is crucial for a regulator to choose a train frequency that is 1) practical
for the citizens, and 2) is not too expensive to maintain, i.e., choose a frequency on the right side
of the infection peak.

The presented model has been calibrated with sample data from Toronto Public Transportation.
Note that for simulations we have selected only a subset of the TTC system to illustrate the emergent
phenomena. However, the proposed approach can be extended onto a massive transportation model
of the entire city. We believe that our results can help decision maker to understand trade-o�s when
deciding between various frequencies for public transport in times of an ongoing epidemic.
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A Additions to Section 3

In order to prove Theorem 3.1, we �rst prove the following lemma.

Lemma A.1. There exists a function ϵ1 � ϵ1pnq � op1q, such that for any 0 ¤ t   τcf , a.a.s. it
holds that �����Xt�1 �Xt � pn�Xtq

�
2̧

i�1

αi

�
1� exp

�
�
biλiαiXt

n



������ ¤ ϵ1.

Note that ϵ1 does not depend on t.

Proof of Lemma A.1. We shall apply a standard form of Cherno� bound (see, for example, Corollary
2.3 in [37]). Let X P Binpk, pq be a random variable with the binomial distribution with parameters
k and p, and suppose 0   ϵ ¤ 3{2 and µ :� EX � kp. In this case,

Pr|X � µ| ¥ ϵ � µs ¤ 2 exp

�
�
ϵ2 � µ

3



. (8)

Given s ¥ 0 and j P t1, 2u, de�ne Dj
s as the set of agents which choose path Pj in commute s.

Moreover, for s ¥ 0, de�ne Y j
s to be the number of agents which become infected during commute

s while taking Pj . Clearly, Y
j
s � |D

j
s X Is X Is�1| for s ¥ 1. Let us now condition on It and D

j
t�1

for 0 ¤ t   τcf and �x agents a, b P rns where a � b. Observe then that if a P rnszIt, b P It, and
both a and b select Pj then

PrAgent a is infected in commute t� 1 by agent b | It, D
j
t�1s � βjλj .

To see this, observe that if both agents select path Pj , then agent b infects a provided a and b
interact, and their interaction is contagious. This occurs with probability precisely βjλj . As the

agents of It XD
j
t�1 infect a independently of one another, we have that

PrAgent a is infected in commute t� 1 | It, D
j
t�1s � 1� p1� βjλjq

|ItXD
j
t�1|. (9)

Now, βj � bj{n, so in particular, βjλj � op1q. Thus, if a P rnszIt and a P D
j
t�1 then

PrAgent a is infected in commute t� 1 | It, D
j
t�1s � 1� exp

�
�
bjλj |It XD

j
t�1|

n

�
.

29



Thus,

ErY j
t�1 | It, D

j
t�1s � |D

j
t�1 X It|

�
1� exp

�
�
bjλj |It XD

j
t�1|

n

��
(10)

To simplify (10), observe that conditional on It, the random variables |It XD
j
t�1| and |D

j
t�1 X It|

are distributed as Binp|It|, αjq and Binp| It|, αjq, respectively. Moreover, csn ¤ |It| ¤ cfn, as
0 ¤ t ¤ τcf , so we may apply (8) with say ϵpnq :� 1{n1{3 � op1q to conclude that a.a.s. ℓ :�

|It XD
j
t�1| � p1� op1qqαjXt and k :� | It XD

j
t�1| � p1� op1qqαjpn�Xtq. Thus, a.a.s.

ErY j
t�1 | It, D

j
t�1s � αjpn�Xtq

�
1� exp

�
�
bjλjαjXt

n




� Θpnq. (11)

On the other hand, Y j
t�1 conditional on It and Dj

t�1 is distributed as a binomial Binpk, pq with

parameters k � |Dj
t�1 X It| and p � 1� p1� βjλjq

|ItXD
j
t�1| � 1� p1� βjλjq

ℓ. Moreover, a.a.s.

µj :� αjpn�Xtq

�
1� exp

�
�
bjλjαjXt

n




� kp, (12)

where the approximation for p follows from (9). As a result, by taking ϵpnq � 1{n1{3 and applying
(8), we get that a.a.s.

Pr|Y j
t�1 � µj | ¥ ϵµj | It, D

j
t�1s ¤ expp�Ωpn1{3qq.

(Formally, one should stochastically lower and upper bound Y j
t�1 by Binpk�, p�q and Binpk�, p�q

with some deterministic functions k� and p�, such that p�{p� Ñ 1 and k�{k� Ñ 1 as n Ñ 8.)
Thus, a.a.s.,

|Y j
t�1 � µj | ¤ ϵµj (13)

for each j � 1, 2. On the other hand, Xt�1 �Xt �
°2
j�1 Y

j
t�1, and

µ1 � µ2 � pn�Xtq

�
2̧

i�1

αi

�
1� exp

�
�
biλiαiXt

n



�
,

so the proof is complete.

Proof of Theorem 3.1. Let us set Ai :� biλiαi ¥ 0 for i � 1, 2, and A :� maxt1, A1, A2u for
convenience. Given 0 ¤ t0   τcf , our goal is to show that there exists a function ϵ0 � ϵ0pnq � op1q
such that a.a.s. ����Xt0

n
� rxt0 ���� ¤ ϵ0pnq.

In order to prove this, we �rst prove the following implication. Let us take 0 ¤ t   τcf , and assume
that 0 ¤ δ � δpnq ¤ 1 satis�es ����Xt

n
� rxt���� ¤ δ, (14)

and �����Xt�1 �Xt � pn�Xtq

�
2̧

i�1

αi

�
1� exp

�
�
biλiαiXt

n



������ ¤ δ. (15)
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Under these assumptions, we claim that |Xt�1{n� rxt�1| ¤ 5Aδ. Observe �rst that by (14), Xt{n ¤rxt � δ, so
expp�AiXt{nq ¥ expp�Aiprxt � δqq.

Now, using the inequality 1� x ¤ expp�xq, we get that

expp�pz1 � z2qq ¥ expp�z1qp1� z2q ¥ expp�z1q � z2

for z1, z2 ¥ 0. It follows that

expp�Aiprxt � δqq ¥ expp�Airxtq �Aδ. (16)

De�ne gpzq :�
°2
i�1 αip1� expp�Aizqq for z P R. Observe then that gpzq is an increasing function

of z and so by (14) and (16),

gpXt{nq ¤ gprxt � δq ¤ gprxtq � 2Aδ. (17)

Now, applying (15),

Xt�1

n
¤
Xt

n
�

�
1�

Xt

n


� 2̧

i�1

αi p1� exp p�AiXt{nqq

�
� δ

¤ rxt � δ � p1� rxt � δqgpXt{nq � δ

¤ rxt � p1� rxtqgpXt{nq � δ � δ

¤ rxt � p1� rxtqgprxtq � 2Aδ � 2δ � δ

¤ rxt � p1� rxtqgprxtq � 5Aδ

where the latter inequalities follow since gpzq ¤ 1 for z ¥ 0, and by (14) and (17). Yet, rxt�1 :�rxt � p1� rxtqgprxtq, so
Xt�1

n
¤ rxt�1 � 5Aδ.

An analogous argument shows that Xt�1{n ¥ rxt�1 � 5Aδ. Thus, assuming (14) and (15) for δ ¤ 1,
it follows that ����Xt�1

n
� rxt�1

���� ¤ 5Aδ.

In order to complete the argument, take δpnq � ϵ3pnq, where ϵ3 � op1q is from Lemma A.1. Clearly,
we may assume that 5t0Aδ ¤ 1 for n su�ciently large. Now, X0{n � rx0 by assumption. Moreover,
since t0 is constant, we may apply Lemma A.1 to each 0 ¤ t ¤ t0 to ensure that (15) holds a.a.s.
for all 0 ¤ t ¤ t0 simultaneously. Thus, proceeding by induction, we get that a.a.s.����Xt0

n
� rxt0 ���� ¤ 5t0Aδ.

Since t0 is a constant, 5t0Aδ � op1q, so the argument is complete.

Proof of Corollary 3.2. Let us �rst �x c :� rxtcf�3, which clearly satis�es c ¡ cf . By applying
Theorem 3.1, it is easy to show that τc ¡ tcf � 1. Thus, we may apply Theorem 3.1 at the values
from ttcf � 1, tcf , tcf � 1u. Speci�cally, there exists ϵ1 � op1q such that a.a.s.,����Xk

n
� rxk���� ¤ ϵ1pnq (18)

31



for each k P ttcf � 1, tcf , tcf � 1u.
Now, for k � tcf � 1, (18) implies that a.a.s.

Xtcf�1

n
¤ rxtcf�1 � ϵ1.

On the other hand, rxtcf�1   cf . Thus, for all n su�ciently large, ϵ1pnq   cf � rxtcf�1. It follows
that a.a.s.

Xtcf�1

n
  cf ,

and so τcf ¥ tcf .
Suppose now that rxtcf ¡ cf (part (a)). Using (18) for k � tcf , we get that a.a.s.,

Xtcf

n
¥ rxtcf � ϵ1.

Since rxtcf ¡ cf , for all n su�ciently large, ϵ1pnq   rxtcf � cf . It follows that a.a.s.
Xtcf

n
¡ cf ,

and so τf ¤ tcf . The same argument can be applied for part (b) but with Xtcf�1 instead of Xtcf
.
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