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Abstract

Suppose that Kn is the complete graph on vertex set [n], and D is a distribution on subsets of
its edges. The D-adaptive random graph process (or D-process) is a single player game in which
the player is initially presented the empty graph on [n]. In each step, a subset of edges of Kn, say
X, is independently sampled from D and presented to the player. The player then adaptively
selects precisely one edge e from X, and adds e to its current graph. For a fixed (edge) monotone
graph property, the objective of the player is to force the graph to satisfy the property in as
few steps as possible. Through appropriate choices of D, the D-process generalizes well-studied
adaptive processes, such as the Achlioptas process and the semi-random graph process.

We prove a theorem which gives a sufficient condition for the existence of a sharp threshold
for the property P in the D-process. We apply our theorem to the semi-random graph process
and prove the existence of a sharp threshold when P corresponds to being Hamiltonian or to
containing a perfect matching. These are the first results for the semi-random graph process
which show the existence of a sharp threshold when P corresponds to containing a sparse
spanning graph. Using a separate analytic argument, we show that each sharp threshold is of
the form CPn for some fixed constant CP > 0. This answers two of the open problems proposed
by Ben-Eliezer et al. (SODA 2020) in the affirmative. Unlike similar results which establish
sharp thresholds for certain distributions and properties, we establish the existence of sharp
thresholds without explicitly identifying asymptotically optimal strategies.

1 Introduction

Let n ∈ N, and Kn be the complete graph on vertex set [n] := {1, . . . , n}. Suppose that D is
a fixed distribution on (non-empty) subsets of edges of Kn. The D-adaptive random graph
process (shortly, D-process) is a single player game in which the player is initially presented a
graph G0 on vertex set [n], which unless specified otherwise, will be the empty graph. In each step
(or round) t ∈ N, a subset of edges Xt is sampled from D. The player (who is aware of graph
Gt and the subset Xt) must then select an edge Yt from Xt and add it to Gt−1 to form Gt. In
this paper, the goal of the player is to devise a strategy which builds a (multi)graph satisfying a
given monotone increasing property P in as few rounds as possible. Some examples of D-processes
are the Erdős–Rényi random graph process [10] (where multi-edges are allowed), the Achlioptas
process [6], the semi-random graph process [5] (see Section 1.2), and the semi-random tree process
[7].

Formally, a strategy (i.e., algorithm) S = Sn is defined by specifying a sequence of functions
(st)

∞
t=1, where for each t ∈ N, st(Gt−1, Xt) is a distribution on Xt which depends on the graph at

step t − 1 (and the edges of Xt). Then, an edge Yt ∈ Xt is chosen according to this distribution.
If st is an atomic distribution, then Yt is determined by Gt−1 and Xt. Note that if for each t ≥ 1,
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st is atomic, then we say that the strategy S is deterministic. In this case, we may assume that
each st is a function which depends only on X1, . . . , Xt.

We denote (GS
i (n))ti=0 as the sequence of random (multi)graphs obtained by following the strat-

egy S for t rounds; where we shorten GS
t (n) to Gt or Gt(n) when there is no ambiguity. Moreover,

we define the stopping time TS = TS(n) to be the minimum t ≥ 1 such that GS
t (n) satisfies P,

where TS := ∞ if no such t exists. In this paper, we develop a framework for characterizing which
properties admit sharp thresholds. All our asymptotics are with respect to n → ∞, and with high
probability (w.h.p.) means with probability tending to 1 as n → ∞.

Definition 1 (Sharp Threshold). Given an edge monotonic property P, we say that there exists a
sharp threshold for P in the D-process (or P admits a sharp threshold), provided there exists a
function m∗ = m∗

P,D(n) such that for every ϵ > 0:

1. There exists a strategy S ′
n such that P(TS′

n
≤ (1 + ϵ)m∗) = 1 − o(1).

2. Every strategy Sn satisfies P(TSn ≤ (1 − ϵ)m∗) = o(1).

When m∗ satisfies these properties, we say that it is a sharp threshold of P in the D-process.

There have been a few results which establish the existence of sharp thresholds for adaptive
random graph processes. In [3, 4], Ben-Eliezer et al. showed that the property of containing an
arbitrary spanning graph with (1 + o(1))∆n/2 edges has ∆n/2 as a sharp threshold, provided its
maximum degree ∆ satisfies ∆ = ω(log n). For certain types of Achlioptas processes, Krivelevich
et al. [15] 1 showed that the property of being Hamiltonian admits a sharp threshold. Both of
these papers follow the same high-level approach:

1. A naive lower bound L is obtained from a standard analysis, such that any strategy needs at
least approximately L steps to succeed w.h.p..

2. An explicit strategy S is devised and shown to satisfy the desired property in approximately
L steps w.h.p. This second step establishes the existence of a sharp threshold, and all the
work is done here.

As one might expect, there are certain limitations to such an explicit approach. First, it is not
always the case that the naive lower bound is the right answer. For instance, in the semi-random
graph process, Gao et al. [12, 14, 13] established that the naive lower bound can be improved
substantially when the property corresponds to containing a Hamiltonian cycle [12, 13], or to
containing a perfect matching [14]. Second, even if a sharp threshold does exist, it is not clear that
it can be identified by a strategy with an explicit description. For example, in the semi-random
graph process, Gao et al. introduce algorithms for constructing Hamiltonian cycles [12, 13], and
perfect matchings [14]. While each algorithm satisfies the relevant property in number of steps close
to the best known lower bound, the authors indicate that they do not believe their algorithms are
optimal. This greatly limits their usefulness in terms of proving the existence of sharp thresholds.
In this paper, we circumvent these limitations by developing a general machinery which allows us
to establish the existence of sharp thresholds in the D-process implicitly. That is, without explicitly
identifying lower bounds or finding (asymptotically) optimal strategies.

While we are unaware of any work applying this implicit approach to any “truly adaptive”
random graph process, it has been used when the player has no real control (i.e., D is supported on

1The model in [15] samples k edges uniformly at random from the set of currently missing edges instead of the
set of all edges (i.e. D slightly changes over time). However, this distinction does not change the existence of sharp
thresholds in the regime of interest.
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singletons). In his seminal paper, Friedgut [11] proved the existence of sharp thresholds for “global”
properties in the Erdős–Rényi random graph process2 in an implicit way. To do so, he identifies

the Erdős–Rényi random graph with the product space measure on {0, 1}(n2), and applies Fourier
analysis to the Boolean function indicating whether or not the random graph satisfies the given
property. It is not clear how such techniques can be generalized to the D-process, as in general,
the D-process depends on the decisions of the player, and so it cannot be obviously modelled by a
product space measure.

1.1 Main result

Given an arbitrary distribution D, Theorem 1 provides a sufficient condition for when a monotone
increasing property P admits a sharp threshold in the D-process. For any θ ∈ (0, 1), define
mP(θ, n) to be the minimum t ≥ 1, such that there exists a strategy S ′

n which satisfies P[TS′
n
≤

mP(θ, n)] ≥ θ, and for every strategy Sn, P[TSn ≤ mP(θ, n) − 1] < θ. For convenience we let
m∗ := m∗(n) := mP(1/2, n), and define the sufficient condition used in Theorem 1:

Definition 2 (Edge-Replaceable). We say that P is ω-edge-replaceable (or just edge-replaceable)
if there exists ω := ω(n) → ∞ such that the following property holds: For any G ∈ P, and e ∈ E(G),
if we begin the D-process with graph G0 = G− e, then there exists a strategy for the player which
constructs some3 G′ ∈ P in

√
m∗/ω steps with probability at least 1 − o(1/

√
m∗). We refer to this

strategy as an edge-replacement procedure of P.

Theorem 1 (Sharp threshold). If P is ω-edge-replaceable, then for any constants 0 < θ1 < θ2 < 1,
we have that

mP(θ2, n) −mP(θ1, n) = Oθ1,θ2

(
m∗

ω

)
, (1)

where the implicit constant in the O term depends on θ1, θ2. Thus, m∗ is a sharp threshold of P.

We prove Theorem 1 by fixing an arbitrary strategy which succeeds with probability at least
θ ∈ [θ1, θ2] in mP(θ, n) steps, and identifying a strategy modification which has the potential to
increase the strategy’s winning probability by Ω(1/

√
m∗). The proof relies on a new martingale

concentration inequality, whose full statement we defer to Section 3. After performing this strategy
modification, the final graph G0 we are left with may be lacking an edge e necessary to satisfy
P, however we can apply an augmentation via the edge-replacement procedure of P to G0 to
recover a graph G′ which does satisfy P in

√
m∗/ω steps. Thus, we boost the win probability of

S by Θ(1/
√
m∗) in

√
m∗/ω steps. By applying this procedure

√
m∗ times, we increase the original

strategy’s win probability by Θ(1). Since this only requires an extra Θ(
√
m∗) ·

√
m∗/ω = o(m∗)

steps in total, we are able to establish the existence of a sharp threshold.

1.2 Application: The Semi-Random Graph Process

The semi-random graph process was suggested by Peleg Michaeli, introduced formally in [5],
and studied in [3, 12, 4, 14, 2, 13, 7]. The process is a one player game in which the player begins
with the empty graph on [n]. In each step t ≥ 1, the player is given a vertex ut drawn independently
and uniformly at random (u.a.r.) from [n], often referred to as a square. They then adaptively
pick a vertex vt (called a circle), and add the edge (ut, vt) to their current graph. Observe that

2The model considered does not allow multi-edges, but such distinction is irrelevant in many regime of interest.
3For the properties we consider, G′ will typically be distinct from G.

3



if D is the uniform distribution over all spanning stars on Kn, then the D-process encodes the
semi-random graph process.

To warm-up, we first consider the property Pk of attaining minimum degree k ≥ 1 in the semi-
random graph process. In [5], Ben-Eliezer et al. identified a constant hk such that Pk is satisfied
w.h.p. after at most (hk + o(1))n steps, and showed that their algorithm is asymptotically optimal
amongst algorithms which succeed w.h.p. When k is constant, hkn is a constant factor larger4

than the naive lower bound of kn/2. Thus, it is conceivable that an algorithm could succeed with
non-zero constant probability in (hk − ϵ)n steps for some ϵ > 0. Since Pk is edge-replaceable,
Theorem 1 implies that this is not possible.

Corollary 2 (of [5], and Theorem 1). For each k ≥ 1, hkn is a sharp threshold for Pk.

Moving on to our main applications, let M be the property of containing a perfect matching5,
and H be the property of containing a Hamiltonian cycle. As an application of Theorem 1 and the
tools we develop in Section 4, we prove the following sharp threshold result. This result answers
two of the open problems proposed by Ben-Eliezer et al. in [4] (the journal version of [3]).

Theorem 3. Let P ∈ {M,H}. In this case, if m∗(n) := m∗
P(n) := mP(1/2, n), then

1. ‘Existence of a threshold’: In the semi-random graph process, m∗ is a sharp threshold for P

2. ‘Linear growth’: There exists some constant CP > 0, such that m∗ = (CP + o(1))n.

There are a few notable complications in proving Theorem 3 versus Corollary 2. First, it turns
out that the condition in Theorem 1 does not hold for either M or H. However, for each of M
and H, we can define an approximate property that does satisfy the required conditions, and thus
admits a sharp threshold. Since each approximate property is closely related to M and H, we
are able to argue that M and H also have sharp thresholds. Relating each approximate property
with its “full” property relies on the “clean-up” algorithms of Gao et al. [14, 13]. When P is M,
this clean-up algorithm allows one to extend a large matching to a perfect matching in a sublinear
number of steps. When P is H, the clean-up algorithm has a similar guarantee. Second, unlike for
the property of attaining minimum degree k ≥ 1, an optimal algorithm with an explicit description
is not known for M nor H. Instead, we identify the explicit form of these sharp thresholds by
arguing that the limit limn→∞m∗(n)/n exists for each approximate property. To do this, we
consider the optimal strategy Sn that minimizes ETSn =: In, and show that In satisfies a certain
set of inequalities (see Theorem 18, Lemma 21). We then use a purely analytic argument to show
the existence of the limit limn→∞ In/n (see Lemma 22), which quickly leads to the desired result.

2 Proving Theorem 1

Suppose that P is an edge-replaceable property with respect to ω → ∞ (see Definition 2) in some
arbitrary D-process. Moreover, take 0 < θ1 < θ2 < 1. We wish to show that if we are given a
strategy which wins after m(θ1, n) steps with probability at least θ1, then we can augment the
strategy to boost its win probability to θ2 in O (m∗/ω) additional steps. If we can prove this, then
it will imply that m (θ2, n) −m(θ1, n) = O (m∗/ω). Now, suppose that we have boosted to a win
probability of θ ∈ [θ1, θ2], and θ∗ := min(θ+ θ(1− θ)3/32, θ2) is the next target probability we wish

4For instance, h1 = ln(2) ≈ 0.6931, h2 = ln 2 + ln(1 + ln 2) ≈ 1.2197, and h3 = ln((ln 2)2 + 2(1 + ln 2)(1 + ln(1 +
ln 2))) ≈ 1.7316.

5By perfect matching on an odd number of vertices, we mean a matching which saturates all but one vertex.
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to boost to. We claim that this increase is attainable in an appropriate number of steps. That is,
for each θ ∈ [θ1, θ2],

m (θ∗, n) −m(θ, n) ≤ m∗/ω. (2)

By beginning with θ = θ1, and iterating (2) a constant number of times, Theorem 1 follows (see
the proof of Theorem 1 below for the details).

2.0.1 Reducing (2) to Small Boosts

Instead of trying to directly describe a strategy which implies (2), we first prove that we can boost
the winning probability by Θ(1/

√
m∗) in O(

√
m∗/ω) extra steps. More precisely, if a strategy wins

with probability θ after m(θ, n) steps, then we can augment the strategy such that its winning

probability is θ + θ(1−θ)3

4
√
m∗ after

√
m∗/ω additional steps. This is the content of Lemma 4:

Lemma 4 (Small Boost). Given constants 0 < θ1 < θ2 < 1, for any sufficiently large n ≥ 1
(depending only on θ1, θ2) and any θ ∈ [θ1, θ2], we have that

m

(
θ +

θ(1 − θ)3

4
√
m∗

, n

)
−m(θ, n) ≤

√
m∗/ω.

Let us assume that Lemma 4 holds for now. We can then prove (2) by iteratively applying
Lemma 4

√
m∗ times to increase the win probability from θ to θ∗ in

√
m∗ ·

√
m∗/ω = m∗/ω

additional steps. We include the details below, and complete the proof of Theorem 1.

Proof of Theorem 1. Let us take n ≥ 1 sufficiently large (as in Lemma 4) and θ ∈ [θ1, θ2]. Recall
that θ∗ := min(θ + θ(1 − θ)3/32, θ2), and we first must show that (2) holds. I.e.,

m
(
min(θ + θ(1 − θ)3/32, θ2), n

)
−m(θ, n) ≤ m/ω. (3)

In order to prove this, we iterate Lemma 4
√
m∗ times. Formally, we define γ0 := θ, and γi+1 :=

γi + γi(1 − γi)
3/(4

√
m∗). Observe then that by Lemma 4, for each i ≥ 0, with γi ≤ θ2,

m(γi+1, n) −m(γi, n) ≤
√
m∗/ω.

In particular, if γi ≤ min(θ + θ(1 − θ)3, θ2) ≤ (1 + θ)/2, then

γi+1 − γi ≥
θ(1 − (1 + θ)/2)3

4
√
m∗

=
θ(1 − θ)3

32
√
m∗

.

Therefore

γ√m∗ ≥ min

(
θ2, θ +

θ(1 − θ)3

32

)
,

and so (3) holds. By iterating (3) a constant number of times in a similar manner, Theorem 1
follows.

2.1 Proving Lemma 4

In this section, we explain the main tools used in the proof of Lemma 4. Fix θ ∈ [θ1, θ2], and
set N := m(θ, n) for convenience. Let us suppose that S is a strategy which satisfies P with
probability at least θ after N steps. Observe that we may assume that S is deterministic without
loss of generality, so that there exists an indicator function f of S, where f(X) := 1 if strategy
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S wins when presented the edge subsets of X := (X1, . . . , XN ) in order. To prove Lemma 4, we

augment S to get another strategy S ′ which wins with probability at least θ∗ := θ + θ(1−θ)3

4
√
m∗ after

m(θ, n) +
√
m∗/ω steps.

We now give an overview of the three main parts to the proof of Lemma 4.

1. ‘Reducing to the free-move D-process’: We introduce a new game which gives slightly more
power to the player called the free-move D-process. The free-move D-process is played in
the same way as the D-process, except that the player has one opportunity to pick the subset
they desire instead of the subset they received (and then select an edge from this subset).
Since P is edge-replaceable, the win probability of any free-move strategy can be matched by
a (regular) strategy, provided the regular strategy is given an additional

√
m∗/ω steps (see

Lemma 5). Thus it suffices to define a free-move strategy F which wins with probability at
least θ∗ after m(θ, n) steps.

2. ‘Defining PotentialBoost’: The free-move strategy PotentialBoost analyzes the Doob-
martingale M = (Mj)

N
j=0 of f(X) with respect to (Xj)

N
j=1. Informally, Mj measures the

probability that S will win, given the first j arriving edge subsets X1, . . . , Xj . Based on this
interpretation, PotentialBoost follows the strategy of S up until the first time τ ≥ 1 that
there is potential to increase its win probability. Specifically, it computes that the value of
Mτ can be increased by at least c by replacing Xτ with a new edge subset Wτ . At this
point, it invokes its free-move to swap Xτ with Wτ , and then follows the strategy S as if
X1, . . . ,Wτ where the first τ subsets to arrive. Conditional on τ ≤ N , this guarantees that
PotentialBoost has a win probability at least c greater than S.

3. ‘Bounding the win probability of PotentialBoost’: In order to prove that PotentialBoost

attains a win probability significantly better than S, we must prove that P[τ ≤ N ] = Ω(1).
We do so by proving a new martingale concentration result (Theorem 12), and then applying
it in a non-standard way. Observe that the function f is {0, 1}-valued, and so since 0 < θ < 1,
f(X) cannot be concentrated about E[f(X)]. On the other hand, we argue that if P[τ ≤ N ] =
o(1), then Theorem 12 would force f(X) to be concentrated. Thus, we can conclude that
P[τ ≤ N ] = Ω(1).

2.1.1 The Free-Move D-Process

The free-move D-process is defined in the same way as the D-process, except that the player can
adaptively choose a time τ ≥ 1, such that if X1, . . . , Xτ were the previously presented subsets of
edges, then they can choose an arbitrary subset Wτ from Supp(D) (the support of D). They then
get to add an edge Yτ ∈ Wτ to Gτ−1, opposed to an edge from Xτ (as in the standard game).

Clearly, any strategy for the standard D-process is a strategy for the free-move D-process. Thus,
satisfying an edge-monotone property P in the latter game is no harder than in the former game.
However, if P is edge-replaceable then the advantage gained by the player is not very significant,
and so this new game is a good approximation of the original game. We extend all the definitions
from the standard D-process to formalize this intuition. Specifically, if F is a strategy for the free-
move D-process, then GF

t is the graph constructed by following F in the first t steps. Moreover,
TF is defined to be the first t ≥ 1 such that GF

t ∈ P (where TF := ∞ if no such t exists.)

Lemma 5. Let F be a strategy for the free-move D-process process for satisfying a property P
which is ω-edge-replaceable. In this case, there exists a strategy F ′ for the (standard) D-process,
such that for each k ≥ 1, P[GF ′

k+
√
m∗/ω

∈ P] ≥
(
1 − o(1/

√
m∗)

)
· P[GF

k ∈ P].
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Proof of Lemma 5. Let us assume that P is ω-edge-replaceable, and F is a strategy for the free-
move D-process process. In order to prove the lemma, it suffices to show that there exists a strategy
F ′ for the (standard) D-process, such that if both strategies are presented the same (random) edge
subsets (Xt)

∞
t=1, then with probability 1 − o(1/

√
m∗) we have that

TF ′ ≤ TF +
√
m∗/ω. (4)

We begin by defining F ′ to follow the same decisions of F up until time TF , where if F invokes a
free-move at some time 1 ≤ τ ≤ TF , then we define F ′ to choose an edge of Xτ arbitrarily. If F
does not invoke a free-move, then τ := ∞, and the strategies execute identically.

Let GTF and G′
TF

be the graphs constructed by F and F ′ after TF steps, respectively. At this
point, GTF ∈ P (by definition of TF ), yet G′

TF
may not satisfy P. Specifically, if τ < ∞, then G′

TF
will be missing the edge e that F added at step τ . Note that G′

TF
+ e ∈ P, so after TF steps we

define F ′ to run the edge-replacement procedure of P to ensure that after another
√
m∗/ω steps,

it will be left with a graph which satisfies P with probability 1 − o(1/
√
m∗). This completes the

proof of (4), and so the lemma is proven.

2.1.2 Defining PotentialBoost

Recall that S is a deterministic strategy which wins with probability at least θ after N := N(θ) =
m(θ, n) steps, and f is its indicator function. Observe that µ := E[f(X)] = P[f(X) = 1] ≥ θ for

X = (X1, . . . , XN ), where each Xi is drawn independently from D. Setting C(θ) := 1+log2

(
1

1−θ

)
,

we define

c :=
µ(1 − µ)√
2C(θ)m∗

. (5)

The dependence of c on θ and µ is for technical reasons which will only become relevant in Section
2.1.3. For now, it suffices to think of c as Θ(1/

√
m∗). Our goal is to identify instantiations of X in

which by using the free-move of PotentialBoost, we can boost the win probability of S by c.
We first consider the Doob-martingale M = (Mj)

N
j=0 of f(X) with respect to (Xj)

N
j=1. That is,

M0 := E[f(X)] and Mj := E[f(X) | X1, . . . Xj ] for j ∈ [N ], where MN = f(X). Moreover, for each
1 ≤ j ≤ N , define the function fj , where for each (r1, . . . , rj) ∈ Supp(D)j ,

fj(r1, . . . , rj) := E[f(X) | (Xi)
j
i=1 = (ri)

j
i=1]. (6)

Equivalently, fj(r1, . . . , rj) is the probability that S wins after N steps, conditional on X1 =
r1, . . . , Xj = rj . Observe that Mj = fj(X1, . . . , Xj) by construction. We say that (r1, . . . , rj) ∈
Supp(D)j has potential, provided there exists wj ∈ Supp(D) such that

fj(r1, . . . , rj) + c < fj(r1, . . . , wj). (7)

In this case, we refer to wj as a witness for (r1, . . . , rj). Note that there may be multiple witnesses
for (r1, . . . , rj). Intuitively, if (r1, . . . , rj) has potential, then S has a better win probability when
X1 = r1, . . . , Xj = wj , opposed to when X1 = r1, . . . , Xj = rj , While we cannot ensure that
Xj = wj in the standard D-process, we can in the free-move D-process.

Algorithm PotentialBoost runs for N steps, and yet has a slightly higher win probability than
S. We assume that the algorithm is presented the subsets X1, . . . , XN in order. We choose the
edges in the same way as S up until the first step 1 ≤ t ≤ N such that (X1, . . . , Xt) has potential.
Let us define 1 ≤ τ ≤ N to be this step, where τ := ∞ if no such step exists. Assuming τ ≤ N ,
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we identify an arbitrary witness Wτ of (X1, . . . , Xτ ). At this point, we invoke our free-move, and
replace Xτ with Wτ . For step τ and each subsequent step, we choose the edges by following the
strategy of S with Xτ replaced by Wτ . Below is a formal description of the algorithm:

Algorithm PotentialBoost Free-move Strategy

Input: G̃0 = ([n], ∅).
Output: G̃N

1: for t = 1, . . . ,min{τ − 1, N} do ▷ follow decisions of S
2: Define Yt to be the edge chosen by S when given (X1, . . . , Xt).
3: G̃t := G̃t−1 ∪ Yt.
4: end for
5: if τ ≤ N then let Wτ be an arbitrary witness of (X1, . . . , Xτ ). ▷ (X1, . . . , Xτ ) has potential
6: Define Yτ be the edge chosen by S when given (X1, . . . ,Wτ ).
7: G̃τ := G̃τ−1 ∪ Yτ . ▷ execute a free-move
8: for t = τ + 1, . . . , N do ▷ follow S with Xτ replaced with Wτ

9: Define Yt be the edge chosen by S when given (X1, . . . ,Wτ , . . . , Xt).
10: G̃t := G̃t−1 ∪ Yt.
11: end for
12: end if
13: return G̃N .

Let GN = GS
N be the graph formed by S when passed edge subsets X1, . . . , XN . We compare

G̃N to GN :

Lemma 6. The graph G̃N satisfies the following properties:

1. If P[τ > N ] > 0, then P[G̃N ∈ P | τ > N ] = P[GN ∈ P | τ > N ].

2. If P[τ ≤ N ] > 0, then P[G̃N ∈ P | τ ≤ N ] > P[GN ∈ P | τ ≤ N ] + c

3. P[G̃N ∈ P] ≥ P[GN ∈ P] + c · P[τ ≤ N ].

Proof. We prove the properties of Lemma 6 in order. First observe that τ ≤ N if and only if
PotentialBoost makes a free-move at some step. Moreover, if PotentialBoost does not make a
free move, then the algorithm simply executes S as the subsets X1, . . . , XN arrive. Thus, G̃N and
GN are the same graph, and so in particular,

P[G̃N ∈ P | τ > N ] = P[GN ∈ P | τ > N ].

Let us now consider the case τ ≤ N . It will be convenient to define R to be those (r1, . . . , rk) ∈
∪N
i=1Supp(D)i, such that (r1, . . . , rk) has potential, yet no proper prefix of (r1, . . . , rk) has potential.

Observe that conditional on τ ≤ N , (X1, . . . , Xτ ) is supported on R. Now, fix (r1, . . . , rk) ∈ R, and
condition on (X1, . . . , Xk) = (r1, . . . , rk). Observe then that G̃N is distributed as GN conditional
on (X1, . . . , Xk) = (r1, . . . , wk). Thus, for each (r1, . . . , rk) ∈ R,

P[G̃N ∈ P | (Xi)
k
i=1 = (ri)

k
i=1] = P[GN ∈ P | (Xi)

k−1
i=1 = (ri)

k−1
i=1 , Xk = wk]

= E[f(X) | (Xi)
k−1
i=1 = (ri)

k−1
i=1 , Xk = wk]

= fk(r1, . . . , wk) > fk(r1, . . . , rk) + c,

8



where second equality uses the definition of f , and the final inequality holds since (r1, . . . , rk) has
potential. By averaging over all the elements of R, property (2) follows. Property (3) is implied by
(1) and (2):

P[G̃N ∈ P] ≥ P[GN ∈ P, τ > N ] + P[GN ∈ P, τ ≤ N ] + c · P[τ ≤ N ] = P[GN ∈ P] + c · P[τ ≤ N ].

2.1.3 Bounding the Win Probability of PotentialBoost

Observe that property (3) of Lemma 6 ensures PotentialBoost has a win probability at least as
large as S. Moreover, by definition, c = Θ(1/

√
m∗). Thus, if we can show that the stopping time τ

of PotentialBoost satisfies P[τ ≤ N ] = Ω(1), then this will prove that PotentialBoost boosts the
win probability of S by Ω(1/

√
m∗), as (roughly) claimed by Lemma 4. Before proceeding with this

lower bound, we state the following upper bound on N(θ), which relies on a standard multi-round
exposure argument to boost the win probability from 1/2 to θ (see Appendix A).

Proposition 7. If C(θ) = 1 + log2

(
1

1−θ

)
, then N(θ) ≤ C(θ)m∗.

Lemma 8. If µ := P[GN ∈ P], P[τ ≤ N ] ≥ 1−µ
2 .

To establish Lemma 8, we invoke a concentration inequality for the Doob martingale of f(X)
with respect to (Xj)

N
j=1 (see Corollary 10). We state and prove the full theorem in Section 3, and

for now just indicate how we apply a special case of this theorem for our specific needs. The rough
idea is as follows. If P[τ ≤ N ] were o(1), then our concentration inequality would imply that f(X)
must be concentrated about its expectation. But f(X) ∈ {0, 1}, and E[f(X)] = µ ≥ θ, so since we
may assume that µ is bounded away from 1, this is not possible. Thus, P[τ ≤ N ] must be Ω(1).

To formalize this intuition, let us say that r = (r1, . . . , rN ) ∈ Supp(D)N is stable if no prefix
of r has potential. That is, for each 1 ≤ j ≤ N and wj ∈ Supp(D),

fj(r1, . . . , wj) − fj(r1, . . . , rj) ≤ c. (8)

Define Γ ⊆ Supp(D)N to be the stable elements of Supp(D)N . We relate Γ to the stopping time τ
of PotentialBoost in the following way:

Proposition 9. X = (X1, . . . , XN ) ∈ Γ if and only if τ > N . In particular, P[X ̸∈ Γ] = P[τ ≤ N ].

We then invoke the following one-sided concentration inequality to lower bound P[X ̸∈ Γ]:

Corollary 10 (of Theorem 12). For each t ≥ 0, P[f(X) ≤ Ef(X) − t] ≤ exp
(
−2t2

Nc2

)
+ P[X ̸∈ Γ].

Proof of Lemma 8. By setting t = µ/2 where µ = P[f(X) = 1] = E[f(X)], Corollary 10 implies
that

1 − µ = P[f(X) = 0] = P[f(X) ≤ µ/2] ≤ exp

(
−µ2

2Nc2

)
+ P[X ̸∈ Γ].

Thus, since c := µ(1−µ)√
2C(θ)m∗ , and N ≤ C(θ)m∗ by Proposition 7, we get that µ2/(2Nc2) ≥ (1−µ)−2.

Now, P[X ̸∈ Γ] = P[τ ≤ N ], by Proposition 9, so it follows that

P[τ ≤ N ] ≥ 1 − µ− exp

(
−1

(1 − µ)2

)
≥ 1 − µ

2
,

where the last step uses the elementary inequality exp(−1/z2) ≤ z/2 for z ∈ (0, 1).

9



2.1.4 Putting it All Together

Proof of Lemma 4. Let us set N ′ := N +
√
m∗/ω for convenience. Observe that by Lemma 5, we

are guaranteed a strategy for the standard D-process which constructs GN ′ such that

P[GN ′ ∈ P] ≥
(

1 − o(1/
√
m∗)

)
· P[G̃N ∈ P].

Now, after applying Lemmas 6 and 8, we get that P[G̃N ∈ P] ≥ µ+ µ(1−µ)2√
8C(θ)m∗ , for µ = P[GN ∈ P].

On the other hand, P[GN ∈ P] ≥ θ, and z → z + z(1−z)2√
8C(θ)m∗ is increasing6 as a function of z, so we

get that

P[G̃N ∈ P] ≥ θ +
θ(1 − θ)2√
8C(θ)m∗

.

However, C(θ) := 1+log2

(
1

1−θ

)
, so C(θ) ≤ 1/(1−θ)2 by the elementary inequality 1+log2(z) ≤ z2

for z ≥ 1. Thus, P[G̃N ∈ P] ≥ θ(1−θ)3√
8m∗ , and so

P[GN ′ ∈ P] ≥
(

1 − o(1/
√
m∗)

)(
θ +

θ(1 − θ)3√
8m∗

)
≥ θ +

θ(1 − θ)3

4
√
m∗

,

where the last inequality holds for sufficiently large n (dependent on θ1 and θ2).

3 On Approximately Balanced Martingales

Let S0, . . . , Sk be finite sets, and suppose that X = (Xj)
k
j=0 is a random variable in S := S0×· · ·×Sk,

where Sj := Supp(Xj). Moreover, assume that M = (Mj)
k
j=0 is a martingale with respect to

(Xj)
k
j=0. Thus, there exists a function mj : S0 × · · · × Sj → R, such that Mj = mj(X0, . . . , Xj).

Given a constant cj ≥ 0, we say that Mj is balanced (with respect to cj), provided for all
(s0, . . . , sj) ∈ S0 × · · · × Sj and s′j ∈ Sj ,

mj(s0, . . . , s
′
j) −mj(s0, . . . , sj) ≤ cj . (9)

From the definition of martingale, we get the following:

Proposition 11. If Mj is balanced, then |Mj −Mj−1| ≤ cj.

If we are given constants c = (cj)
k
j=1, such that each Mj is balanced with respect to cj , then we

say that M is balanced (with respect to c). Observe that if M is balanced, then |Mj −Mj−1| ≤ cj
for all j ∈ [k] (i.e., M is c-Lipschitz). As a result, one can apply the Azuma-Hoeffding inequality
to argue that Mk is concentrated about M0. On the other hand, if M is c-Lipschitz, then M is
(2cj)

k
j=0 balanced. Thus, the balanced property is also necessary to apply the Azuma-Hoeffding

inequality.
This raises the question of what can be done if M is not balanced. We provide a one-sided

concentration inequality which depends on the probability each Mj satisfies (9) on the randomly
chosen point (X0, . . . , Xj−1, Xj), for all s′j ∈ Sj . More formally, we say that (s0, . . . , sk) ∈ S is
stable with respect to M and c, provided for all 1 ≤ j ≤ k and s′j ∈ Sj ,

mj(s0, . . . , s
′
j) −mj(s0, . . . , sj) ≤ cj . (10)

6The derivative of this function is 1 + (3z − 1)(z − 1)/
√

8C(θ)m∗ which is positive since
√

8C(θ)m∗ ≥ 1 and
(3z − 1)(z − 1) ≥ −1/3

10



Define ΓM ⊆ S to be the stable elements of S. We measure the balance of M based on the value
of P[X ∈ ΓM ], where P[X ∈ ΓM ] = 1 indicates that M perfectly satisfies the balanced definition.

Theorem 12. Suppose M = (Mj)
k
j=0 is martingale with respect to a sequence of discrete random

variables X = (Xj)
k
j=0 in S = S0 × · · · × Sk, where Sj := Supp(Xj). Given constants c = (cj)

k
j=1,

let ΓM ⊆ S be the stable elements of S with respect to M and c. In this case, for any t ≥ 0,

P[Mk ≤ M0 − t] ≤ exp

(
−2t2∑k
j=1 c

2
j

)
+ P[X ̸∈ ΓM ].

Remark 13. We can derive an upper tail concentration inequality by negating the left-hand side
of (10) to modify the definition of ΓM . Note that our approach can be seen as a refinement of
the decision tree approach of [8], which was used to prove various concentration inequalities for
martingales which are tolerant to “bad” events.

In order to prove Theorem 12, we couple M = (Mj)
k
j=0 with another martingale M ′ = (M ′

j)
k
j=0

which is balanced and dominated by M on ΓM .

Lemma 14. There exists a coupling of M , and another martingale M ′ = (M ′
j)

k
j=0 with respect to

(Xj)
k
j=0, such that the following properties hold:

(Q1) ‘Initial values’: M ′
0 = M0.

(Q2) ‘Balanced’: M ′ is balanced with respect to c1, . . . , ck.

(Q3) ‘Domination’: If X ∈ ΓM , then M ′
j ≤ Mj for all j ∈ [k].

Proof. In order to prove the lemma for M = (Mj)
k
j=0, we proceed inductively on the value k.

Firstly, observe that if k = 0, then we may set M ′
0 := M0, and so the required properties hold

trivially. Let us now take k ≥ 1, and assume that the lemma holds for k − 1.
In order to simplify the notation below, it will be convenient to assume that X0 is constant,

so that F0 = {∅,Ω}, and M0 is constant. We can recover the general case by applying the below
martingale construction to each element in the support of X0.

As in the base case, we first set M ′
0 := M0 so that (Q1) is satisfied. In order to define M ′

1,
the high level idea is to augment M1 in such a way that M ′

1 is balanced, while maintaining the
martingale property, and by downshifting the value of certain elements (so we can attain the
domination property).

Let us say that s1 ∈ S1 is small, provided M1(s1) < M1(s
′
1) − c1 for some s′1 ∈ S1. Let A be

the small elements of S1, and B := S1 \R. Observe that if A ̸= ∅, then B ̸= ∅. Moreover, for each
b, b′ ∈ B, we have that

|m1(b) −m1(b
′)| ≤ c1. (11)

We refer to B as the large elements of S1. Let us proceed with our construction under the assump-
tion that A ̸= ∅, so that P[X1 ∈ A] > 0 and P[X1 ∈ B] > 0. When A = ∅, the construction follows
easily from the inductive assumption.

Observe that E[M1 | X1 ∈ A] ≤ maxb∈B m1(b). Thus, there exists γ ≥ 0 such that

E[M1 | X1 ∈ A] +
γ

P[X1 ∈ A]
∈
[
min
b∈B

m1(b) −
γ

P[X1 ∈ B]
,max
b∈B

m1(b) −
γ

P[X1 ∈ B]

]
. (12)

Setting γA := γ/P[X1 ∈ A] and γB := γ/P[X1 ∈ B] for convenience, we define

M ′
1 := (E[M1 | X1 ∈ A] + γA) · 1[X1∈A] + (M1 − γB) · 1[X1∈B]. (13)
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Thus, relative to M1, M
′
1 lowers the value of each b ∈ B by γB, and assigns E[M1 | X1 ∈ A] + γA

to every a ∈ A. Observe first that because of (11) and (12), we have that |m′
1(s1) −m′

1(s
′
1)| ≤ c1

for each s1, s
′
1 ∈ S1. In addition, observe that

E[M ′
1 | F0] = E[ (E[M1 | X1 ∈ A] + γA) · 1[X1∈A]] + E[(M1 − γB) · 1[X1∈B]]

= E[M1 · 1[X1∈A]] + γAP[X1 ∈ A] + E[M1 · 1[X1∈B]] − γBP[X1 ∈ B]

= E[M1 · (1[X1∈A] + 1[X1∈B])] + γ − γ

= E[M1] = M0,

where the last line follows from the martingale property of M1. Thus, E[M ′
1 | F0] = M ′

0, and so
M ′

1 also satisfies the martingale property.
We now construct (M ′

j)
k
j=2 and verify the remaining properties. For each j ∈ [k], let

Yj := (E[M1 | X1 ∈ A] + γA) · 1[X1∈A] + (Mj − γB) · 1[X1∈B].

(Note that Y1 = M ′
1). We claim that Y = (Yj)

k
j=1 is a martingale with respect to (Xj)

k
j=1. In order

to see this, fix 2 ≤ j ≤ k, and take expectations with respect to X1 . . . , Xj−1:

E[Yj | Fj−1] = E[(Mj − γB) · 1[X1∈B] | Fj−1] + E[ (E[M1 | X1 ∈ A] + γA) · 1[X1∈A] | Fj−1]

= E[(Mj − γB) | Fj−1] · 1[X1∈B] + (E[M1 | X1 ∈ A] + γA) · 1[X1∈A]

= (Mj−1 − γB) · 1[X1∈B] + (E[M1 | X1 ∈ A] + γA) · 1[X1∈A] =: Yj−1.

The first equality follows since the random variables 1[X1∈B],1[X1∈A] and E[M1 + γ | X1 ∈ A]
are determined by X1, . . . , Xj−1 (and thus can be viewed as constants), and the second uses the
martingale property of M .

Let ΓY be the stable elements of S1×· · ·×Sk with respect to Y and c. By applying the inductive
assumption to Y , we get a martingale which can be coupled with Y , and whose initial term is Y1.
Since Y1 = M ′

1, we can denote this martingale unambiguously by (M ′
j)

k
j=1. Observe that it has the

following properties:

1. (M ′
j)

k
j=1 is balanced with respect to c2, . . . , ck.

2. If (X2, . . . , Xk) ∈ ΓY , then M ′
j ≤ Yj for j = 1, . . . , k.

We claim that M ′ = (M ′
j)

k
j=0 is a martingale which satisfies properties (Q1), (Q2), and (Q3). We

prove these statements in order.
We have already verified that E[M ′

1 | F0] = M ′
0. Moreover, (M ′

j)
k
j=1 satisfies the martingale

property by the inductive assumption. Thus, M ′ = (M ′
j)

k
j=0 is a martingale with respect to (Xj)

k
j=0.

By construction, M ′
0 = M0, and so (Q1) holds. Now, M ′

2, . . .M
′
k are balanced by (1), and we

have already verified that M ′
1 is balanced. Thus, M ′ satisfies (Q2). It remains to verify (Q3).

Observe first that if (X1, X2, . . . , Xk) ∈ ΓM , then (X2, . . . , Xk) ∈ ΓY . Thus, by the inductive
assumption, M ′

j ≤ Yj for j = 1, . . . , k. On the other hand, since (X1, . . . , Xk) ∈ ΓM , X1 is large
(and so X1 ∈ B). Thus, Yj = Mj − γB ≤ Mj , and so M ′

j ≤ Mj for j = 1, . . . , k, which proves that
(Q3) holds.

Proof of Theorem 12. Fix t ≥ 0, and let M ′ = (M ′
j)

k
j=0 be the martingale with respect to (Xj)

k
j=1

guaranteed by Lemma 14. Now, M ′ is balanced, and so |M ′
j − M ′

j−1| ≤ cj for each j ∈ [k] by

12



Proposition 11. Thus, we can apply can apply the (one-sided) Azuma-Hoeffding inequality to
ensure that

P[M ′
k ≤ M0 − t] ≤ exp

(
−2t2∑k
j=1 c

2
j

)
,

where we have used that M ′
0 = M0. Returning to M , observe that

P[Mk ≤ M0 − t] ≤ P[Mk ≤ M0 − t and X ∈ Γ] + P[X ̸∈ Γ].

Moreover, if X ∈ Γ, then M ′
k ≤ Mk. Thus, P[Mk ≤ M0 − t and X ∈ Γ] ≤ P[M ′

k ≤ M0 − t], and so
the theorem follows after combining the above equations.

4 Proving Theorem 3

As an application of Theorem 1, we prove that the properties M and H admit sharp thresholds
in the semi-random graph process (see Section 1.2 for definitions specific to this process). In order
to prove this, we first establish the existence of sharp thresholds for the approximate properties
M′ and H′, and then we transfer these thresholds to M and H, respectively. Note that many of
the definitions we introduce in this section can be easily generalized to the D-process, however we
focus on the semi-random graph process for simplicity.

Given a property P with m := mP(1/2, n), we say that P ′ is an approximate property of P
if P ⊆ P ′, and for any G0 ∈ P ′, we can play the semi-random graph process starting with G0 and
obtain a graph in P in o(m) steps w.h.p. See Appendix B for the proof of the following lemma.

Lemma 15. Let P be a property and let P ′ be an approximate property of P. If m∗ is a sharp
threshold for P ′, then m∗ is also a sharp threshold for P.

Let M′ be the property of containing a matching that saturates n−n0.99 vertices, and let H′ be
the property of containing a path of length n − n0.99. The following “clean-up” algorithm results
of Gao et. al. [14, 13] show that M′ and H′ are approximate properties of M and H, respectively.

Lemma 16 ([14], and [Lemma 2.5, [13]). Suppose G0 is a graph with a matching (respectively, a
path) that saturates n − o(n) vertices. If we start the semi-random graph process with G0, then
there exists a strategy that constructs G′ ∈ M (respectively, G′ ∈ H) in o(n) steps w.h.p.

Remark 17. We state the quantitative versions of the clean-up algorithms in Appendix C, as these
will be useful in the second part of the proof of Theorem 3.

It is not difficult to show that M′ and H′ are edge-replaceable, and hence Theorem 1 and
Lemma 15 together imply that M and H admit sharp thresholds (thus proving the first part of
Theorem 3). To prove the second part of Theorem 3, it remains to show that there is a sharp
threshold of the form CPn for both properties. We prove this via an analytic argument in Sections
4.1 and 4.2.

In Section 4.3, we show that non-trivial local properties do not admit sharp thresholds. Since
Theorem 3 confirms that two of the most extensively studied global properties admit sharp thresh-
olds, our results suggest that the dichotomy between thresholds for local and global properties that
Friedgut [11] observed for the Erdős–Rényi random graph also applies to the semi-random graph
process.
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4.1 Linear Function as a Sharp Threshold

We will now state a few conditions on a property P which guarantee the existence of some constant
C > 0 such that Cn is a sharp threshold for P. We then apply these results to M′ and H′ (as
some of the conditions do not hold for M and H).

For a given property P, let In(P) := In = minSn ETSn where Sn is taken over all possible
strategies. In this section, we will focus on properties P with In = Θ(n), which we refer to as
linear (in n). The restriction to the linear regime is a typical feature of results which guarantee
the existence of certain limits (see, for example, the interpolation method in [1]).

Theorem 18. Let α > 0 be a constant. Let P be an nα-edge-replaceable linear monotone increasing
property satisfying the following conditions for some constant δ ∈ (0, 1):

1. For each i ∈ [n], let G0 be an arbitrary graph on [n] for which the induced graphs G0[1, . . . , i]
and G0[i + 1, . . . , n] each satisfy P. Then there is a strategy with initial graph G0 which
satisfies P after nδ steps in expectation.

2. |In − In+1| < nδ.

Then the limit

lim
n→∞

In
n

=: C (14)

exists. Moreover, Cn is a sharp threshold for P.

First, we note that under some technical assumptions, there exists a strategy that does nearly
as well as In with polynomially small failure probability.

Lemma 19. Suppose P is a linear nα-edge-replaceable property, for some fixed α > 0. Then there
exists constant δ1 ∈ (0, 1) and a strategy Sc

n such that

P(TSc
n
> In + nδ1) = O(nδ1−1).

Remark 20. Lemma 19 can be proven by a very careful refinement of Theorem 1 from Section 2.
In particular, we would have to allow θ1 and θ2 to depend on n and approach 0 and 1, respectively,
sufficiently fast as n → ∞. We instead opt for a self-contained proof that is much simpler.

Proof of Lemma 19. Let Sc
n be a strategy on [n] that minimizes expected number of steps needed

to achieve P. In each step t ≥ 1, the player’s optimal strategy is to choose a circle which minimizes
their expected time to win, conditional on the current square they received and the previous t− 1
added edges. Thus, that we can assume that Sc

n is deterministic w.l.o.g.
Let T = TSc

n
, and U = (Ui)

∞
i=1 be the random sequence of squares the player receives, where

Fj = σ(U1, . . . , Uj) for each j ≥ 1. We will consider the Doob martingale Zj = E[T |Fj ] and show
that |Zj+1 − Zj | ≤ O(n1/2−α).

Let u1, . . . , uj , u
′
j ∈ [n]. Given Ui = ui, i ≤ j, consider the “stolen” strategy obtained by

“pretending” that Uj = u′j , and then proceeding with the Sc strategy until we have a graph G such
that there is an edge e where G + e ∈ P. Note that this will happen by the time we satisfy P if
we actually have Uj = u′j . By our assumption on P, we can afterwards recover a graph in P in

O(n1/2−α) expected steps. Let the time we get from this strategy be T ′. It follows that

E[T ′ | (Ui)i≤j = (ui)i≤j ] − E[T | (Ui)i<j = (ui)i<j , Uj = u′j ] = O(n1/2−α).
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By optimality of S ′
n, we get that

E[T | (Ui)i≤j = (ui)i≤j ] − E[T | (Ui)i<j = (ui)i<j , Uj = u′j ]

≤ E[T ′ | (Ui)i≤j = (ui)i≤j ] − E[T | (Ui)i<j = (ui)i<j , Uj = u′j ] = O(n1/2−α).

By Azuma-Hoeffding inequality we get that for any γ > 0, β > 0

P(|Zβn − ET | ≥ γET ) ≤ exp

(
−Θ

(
γ2(ET )2

βn(n1/2−α)2

))
≤ exp

(
−Θ

(
γ2n2α

β

))
.

Markov’s inequality implies that

P(T ̸= Zβn) ≤ P(T > βn) ≤ ET
βn

= O(1/β).

Combining the two previous equations, we get that

P(|T −ET | ≥ γET ) ≤ P(T ̸= Zβn) +P(|Zβn−ET | ≥ γET ) ≤ O(1/β) + exp

(
−Θ

(
γ2n2α

β

))
(15)

Now, since ET = In, let γ = n−α/4, β = nα/4 to see that

P(T > In + Θ(n1−α/4)) = O(n−α/4),

which proves the theorem for δ1 = 1 − α/4.

The following technical result on In will be key in proving the existence of limn→∞ In/n.

Lemma 21. Suppose P satisfies the conditions in Theorem 18. Then there exists δ2 ∈ (0, 1) such
that

In
n

≤ max

(
Ii
i
,
In−i

n− i

)
+ O(nδ2−1) (16)

for all i ∈ [n] such that min(i, n− i) ≥ nδ2.

Proof. Recall that in the semi-random graph process, in each step t ≥ 1, we are presented a vertex
ut ∈ [n] drawn u.a.r. (referred to as a square), and we get to choose a vertex vt ∈ [n]\{ut} (referred
to as a circle), and then add (ut, vt) to our current graph.

We now describe construct a strategy S to be played on [n]. First, partition [n] into A =
{1, . . . , i} and B = {i + 1, . . . , n}. Let Sc

A (respectively, Sc
B) be the strategy on vertex set A

(respectively, B) guaranteed from Lemma 19, and define

N := max

(
n

i
Ii,

n

n− i
In−i

)
+ n1−x

where x = δ2(1 − δ1)/2 and δ2 ∈ (0, 1) is a constant to be specified later. During the first N steps,
we define S to essentially play two games at once: Each time we are given a square in A, we choose
a circle of A via strategy Sc

A, and similarly if we are given a square in B, we choose a circle of B
via strategy Sc

B.
For i ≥ nδ2 the number of steps where we play on A is Bin(N, i/n), so

P(Bin(N, i/n) ≤ Ii + iδ1) ≤ exp

(
−Θ

(
(n−xi− iδ1)2

Ni/n

))
≤ exp

(
−Θ

(
(n−xi)2

i

))
= exp(−Θ(nδ2−2x)) = O(1/n).
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where the first inequality follows from Chernoff bound, the second inequality follows from iδ1 ≪
n−xi, the first equality follows from i ≥ nδ2 and the last equality follows from δ2 > 2x. Therefore,
by Lemma 19 the probability that we did not finish the game on A is at most O(1/n + iδ1−1).
Similarly when n − i ≥ nδ2 , the probability that we did not finish the game on B is at most
O(1/n + (n − i)δ1−1). If we finish the game on A and B, then by the assumption in the theorem
there exists some δ > 0 such that we can construct a graph in P on the vertex set [n] in nδ expected
steps. Otherwise, using the linearity assumption, we just play the game as if the graph is empty
and finish in an additional In = O(n) expected steps.

Therefore, for an appropriate choice of δ2 ∈ (0, 1) sufficiently close to 1, if min(i, n − i) ≥ nδ2

then the total expected number of steps for our strategy is at most

N + nδ + In ·O
(

1

n
+ iδ1−1 + (n− i)δ1−1

)
≤ max

(
nIi
i
,
nIn−i

n− i

)
+ O(nδ2),

which establishes (16).

Lemma 22. Let (an)n be a sequence of numbers with an ≤ C for all n. Suppose there exists
δ ∈ (0, 1) with

an ≤ max(ai, an−i) + O(n−δ) (17)

when min(i, n− i) ≥ n1−δ, and
|nan − (n + 1)an+1| ≤ nδ. (18)

Then limn→∞ an exists.

We shall remark the similarity between Lemma 22 with Fekete’s lemma [9], which states that
if for all i < n,

an ≤ i

n
ai +

n− i

n
an−i

holds, then the limit limn→∞ an exists. Indeed the proof of both results are quite similar, and as
such we defer it to Appendix B. We will now prove Theorem 18 assuming Lemma 21.

Proof of Theorem 18. Let an = In/n for all n ≥ 1. Then by Lemma 21 and 22, and the assumptions
in the theorem, the limit limn→∞ an = C exists.

We will now show that Cn is a sharp threshold for P. Fix an arbitrary constant ϵ > 0. By
picking a large enough n such that Cn/In < (1 + ϵ)/(1 + ϵ/2), from Lemma 19 we know that there
is a strategy Sc

n such that

P(TSc
n
> (1 + ϵ)Cn) ≤ P(TSc

n
> (1 + ϵ/2)In) = o(1),

which establishes the first part of the sharp threshold definition.
We now verify the second part of the sharp threshold definition. Let γ > 0 be a constant to be

specified later. By definition, there is a strategy which wins in m(1 − γ, n) steps with probability
1 − γ. In case of failure, we can execute the strategy from Lemma 19 (as just applied) for an
additional (C + ϵ)n steps in expectation. This implies that

In ≤ (1 − γ)m(1 − γ, n) + γ · (m(1 − γ, n) + (C + ϵ)n) = m(1 − γ, n) + γ · (C + ϵ)n.

Since P is a linear property, there exists a constant c (not depending on γ) such that m(1−γ, n) ≥ cn
for large enough n (depending on γ)7. Therefore, it is possible to pick γ small enough such that

7If m(1 − γ, n) ≥ In then this holds. Otherwise, we consider the strategy that succeeds with probability at
least 1 − γ in m(1 − γ, n) steps followed up by the strategy corresponding to In in case of failure. It follows that
m(1− γ, n) + γIn ≥ In.
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for all sufficiently large n, we have that m(1 − γ, n) ≥ γ · (C + ϵ)/ϵ, and so

Cn ≤ In + o(n) ≤ m(1 − γ, n) + γ · (C + ϵ)n + o(n) ≤ (1 + ϵ)m(1 − γ, n).

On the other hand, by Theorem 1, we know that m(1 − γ, n) is a sharp threshold. Therefore, for
any strategy Sn,

P(TSn < (1 − ϵ)Cn) = P(TSn < (1 − ϵ2)m(1 − γ, n)) = o(1),

which completes our proof.

4.2 Proving Theorem 3

Proof of Theorem 3. We will show that the property M′ satisfies the condition of Theorem 18.
First, it is a linear property since it is known that In/n ∈ [1/2, 2] (as first observed in [5]). For any
matching that saturates less than n−n0.99 vertices, with probability 1− o(1/

√
n), one of the given

squares will land on an unsaturated vertex in at most n0.02 steps, and we can then form an edge
between two unsaturated vertices to form a larger matching. Therefore, M′ is n0.48-edge-replaceable
and we can take α = 0.48.

It follows from Lemma 27 of Appendix C (the quantitative version of the perfect matching
clean-up algorithm) that Property 1 holds for an appropriate δ.

Property 2 is routine to check, but we include the argument here for the sake of completeness.
To show In+1 < In + nδ for any δ > 0.01 and large enough n, we simply use the strategy that
obtains a matching that saturates n − n0.99 vertices on the first n vertices in In + O(1) expected
steps (there are O(1) expected steps where the given square is vertex n+ 1). To obtain a matching
that saturates n + 1 − (n + 1)0.99 vertices, we simply wait until we are given a square on a vertex
that is not saturated by a matching on n−n0.99 vertices, which happens in O(n0.01) expected steps.
Similarly we can show In < In+1 + nδ by analyzing the optimal strategy that obtains In+1, while
ignoring steps that involved vertex n + 1. Therefore limn→∞ In/n =: CM exists and CMn is a
sharp threshold for the property M′. Since M′ is an approximate property of M, it follows from
Lemma 15 that m∗

M = (1 + o(1))CM.
The proof that H′ satisfies the condition of Theorem 18 is similar, and we will only sketch the

argument. First, it is a linear property since In/n ∈ [1, 3] (as first observed in [5]). We will show
that if G0 contains a vertex-disjoint union of 2 paths P1, P2 with total length ℓ− 1 := n−n0.99− 1,
then we can obtain a path P with length ℓ in O(n2/5) steps. Without loss of generality, suppose
that P1 is the longer path. It is routine to check that in n2/5 steps, with probability 1 − o(1/

√
n),

we will receive 2 squares with distance at most n1/4 in P1. Therefore, we can consider the strategy
that matches all given squares in P1 with one endpoint of P2 if all previous squares are of distance
at least n1/4 in P1, and then match the first square in P1 that does not satisfy that property with
the other endpoint of P2. This strategy will construct a path of length at least ℓ − 1 − n1/4 in
O(n2/5) steps with probability at least 1−o(1/

√
n). To extend this to a path of length ℓ, we simply

attached any given unsaturated square with an endpoint of our path. We need to do so n1/4 + 1
times and the expected number of round between receiving unsaturated squares is at most O(n0.01).
It routinely follows that in, say, n0.27 steps we can obtain a path of length ℓ with probability at least
1−o(1/

√
n). Therefore, H′ is n0.1-edge-replaceable (with room to spare). It follows from Lemma 26

of Appendix C (quantitative version of Hamiltonian cycle clean-up algorithm) that Property 1 of
Theorem 18 holds for an appropriate δ. By an argument similar to the one seen for M′, it can be
seen that Property 2 of Theorem 18 holds. Therefore, by Theorem 18 and Lemma 15, there exists
a constant CH > 0 such that m∗

H = (1 + o(1))CHn
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4.3 Sharp Thresholds Do Not Exist for Local Properties

In this section we make some brief observations regarding thresholds for local properties. Given a
list of fixed graphs, none of which are forests, we prove that a sharp threshold does not exist for the
property of containing at least one of these fixed graphs. The results in this section are immediate
from the below result of Behague et al. [2], and we include the proofs for completeness.

Theorem 23 (Theorem 1.2 of [2]). Let H be a fixed subgraph of degeneracy d ≥ 2. Then for any
strategy Sn, if TSn is the number of rounds needed for Sn to build a copy of H, then

P(TSn ≤ n(d−1)/d/ω) = o(1)

for any ω → ∞.

Theorem 24. Let L be a fixed (finite) list of fixed graphs, none of which are forests. Suppose d is
the minimum degeneracy of graphs in L. Let P be the property of containing a graph in L. Then

1. There exists constant α such that for any strategy S,

P(GS
αn(d−1)/d ∈ P) ≤ 1/2

2. For any constant β, there exists a constant δ = δ(β) > 0 such that

P(GS
βn(d−1)/d ∈ P) ≥ δ

Proof. To prove 1., observe that by Theorem 23 there must exist some α > 0 such that for any
graph H ∈ L and any strategy S, we have that

P(H ∈ GS
αn(d−1)/d) ≤ 1

2|L|
.

The proof now immediately follows from an application of union bound over all H ∈ L.
Proving 2. is slightly more involved. We first describe the strategy from [2]. Since H is d-

degenerate, we may consider an ordering of the vertices of H (say, (v1, . . . , vk)) such that vi has at
most d neighbours in {v1, . . . , vi−1}. We divide the game into k phases, where in phase i we build
the induced graph H[v1, . . . , vi]. Suppose vi is adjacent to vi1 , . . . , viℓ where ℓ ≤ d, and we have a
copy of H[v1, . . . , vi−1]. To complete phase i, if a vertex v ̸= v1, . . . , vi−1 is given as a square for
the jth time, we match it with vij . Therefore, if one of such v is given as a square at least d times,
then we have successfully built a copy of H[v1, . . . , vi]. By a standard analysis, this succeeds in
β
kn

(d−1)/d steps with probability Ω(1).

Therefore, the probability that this strategy will succeed in βn(d−1)/d steps is Ω(1).

Remark 25. The case d = 1 i.e. H is a forest, is trivial. If H is a fixed graph of degeneracy d = 1,
then for any strategy Sn

P(TSn < |V (H)| − 1) = o(1),

and there exists a strategy Sn such that

P(TSn = |V (H)| − 1) = 1 − o(1).
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5 Conclusion

Our result allows us to prove the existence of sharp thresholds for edge-replaceable properties in
adaptive random graph processes. As we have seen in this paper, being edge-replaceable is a strong
enough restriction that natural properties such as M and H do not satisfy it in the semi-random
graph process. We resolved this issue by proving that the properties of interest can be approximated
by weaker properties which are edge-replaceable.

It would be of great interest if one can develop more powerful tools to establish sharp thresh-
olds in adaptive random graph processes (or adaptive random processes in general) when edge-
replaceable properties do not hold even in the approximate sense. A starting point would be to
fully resolve the following problem proposed by Ben-Eliezer et al. [4]:

Question 1. For all r ≥ 2, does the property of having a Kr-factor admit a sharp threshold in the
semi-random graph process?

We resolved this for r = 2, and it would be interesting to solve this for all constant r or
r = r(n) which grows slowly with n. More generally, one could ask for a sharp threshold result
for the property of containing a certain spanning graph with large minimum degree. This may
require new techniques, as it seems like such properties are generally not edge-replaceable, even in
the approximate sense.

For each property P ∈ {M,H}, we have shown that there exists a constant CP such that CPn
is a sharp threshold in the semi-random graph process. That being said, currently only upper and
lower bounds are known for CP (as implied in [14, 13]).

Question 2. What is the exact value of CP in Theorem 3?

This question currently appears out of reach, as it seems to necessitate designing an asymptot-
ically optimal strategy for P. Our sharp threshold results indicate that in order to identify CP , it
suffices to find an optimal strategy which satisfies P with (small) constant probability. We hope
that this reduction may prove useful in later works.
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A Deferred Proofs from Section 2

Proof of Proposition 7. Suppose S ′ is a strategy that succeed with probability at least 1/2 in m
steps. For any integer k, consider a strategy that runs for km steps where ,for any i = 0, . . . , k− 1,
in steps {im + 1, im + 2, . . . , (i + 1)m} we run the strategy S ′ as if the graph is empty. Then the
probability of failure after kN(1/2) steps is at most (1/2)k. By letting k = ⌈log2(1/(1 − θ))⌉ and
noting that 1 − (1/2)k ≥ θ, we get that

N(θ) ≤ km ≤
(

1 + log2

(
1

1 − θ

))
m

as desired.
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B Deferred Proofs from Section 4

Proof of Lemma 15. For any strategy S, clearly TS,P ′ ≤ TS,P . Therefore for any fixed ϵ > 0,

P[TS,P ≤ (1 − ϵ)m∗] ≤ P[TS,P ′ ≤ (1 − ϵ)m∗] = o(1). (19)

Now consider a strategy S ′ for P ′ such that

P[TS′,P ′ ≤ (1 + ϵ/2)m∗] = 1 − o(1).

Then consider the strategy S that follows S ′ until we obtain a graph in P ′, then obtain a graph in
P in o(m) steps w.h.p.(which is possible from the definition of approximate property). It follows
that

P[TS,P ≤ (1 + ϵ/2)m∗ + o(m)] ≥ (1 − o(1))P[TS′,P ′ ≤ (1 + ϵ/2)m∗] = 1 − o(1), (20)

which combined with (19) implies m = m∗ + o(m∗). Hence (20) implies

P[TS,P ≤ (1 + ϵ)m∗] = 1 − o(1).

Therefore m∗ is a sharp threshold for P.

Proof of Lemma 22. Let lim infn→∞ an = L. For convenience let an = a⌊n⌋ for non-integer n. We
note that the inequalities are still true when i, n are not integers (possibly changing δ and the
implicit constants if necessary). Given any ϵ > 0, we will pick some large N0 and k to be specified
later. Then for any N ≥ kN0, we get that there exists an integer r and i ∈ {0, . . . , k− 1} such that

(k + i)N0 ≤
N

2r
≤ (k + i + 1)N0

We will then show that

aN0 ≤ L + ϵ (21)

aN ≤ aN/2r + O(N−δ
0 ) (22)

aN/2r ≤ a(k+i+1)N0
(1 + O(1/k)) + O

(
N1−δ3

0

kδ3

)
(23)

a(k+i+1)N0
≤ aN0 + O((log k)N−δ

0 ) (24)

By picking N0 large enough which satisfies (21) (which is possible by definition of L) and k =

N
(1+δ3)/(1−δ3)
0 , combining all four inequalities gives us

aN ≤ L + 2ϵ

for all N ≥ kN0.

Proof of (22). We simply use (17) iteratively, dividing the current index by 2 each time to get that

aN/2ℓ ≤ aN/2ℓ+1 + O((N/2ℓ)−δ)

for all ℓ = 0, . . . , r − 1. Hence

aN ≤ aN/2r + O

 ∑
0≤ℓ≤r−1

(N/2ℓ)−δ

 = aN/2r + O

∑
i≥0

(N02
i)−δ

 = aN/2r + O(N−δ
0 ).
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Proof of (23). We will use (18) iteratively. We have

a(k+i+1)N0−1 ≤
(k + i + 1)N0

(k + i + 1)N0 − 1
a(k+i+1)N0

+
ω3((k + i + 1)N0 − 1)

(k + i + 1)N0 − 1
.

By iterating, we have

a(k+i+1)N0−t ≤
(k + i + 1)N0

(k + i + 1)N0 − t
a(k+i+1)N0

+ t
ω3((k + i + 1)N0 − 1)

(k + i + 1)N0 − t

By letting t = (k + i + 1)N0 −N/2r, where we note t ≤ N0, we have

aN/2r ≤ a(k+i+1)N0
(1 + O(1/k)) + O

(
N1−δ3

0

kδ3

)
.

Proof of (24). For any natural number j, we will invoke the following inequalities derived from
(17) : if j is even, then

ajN0 ≤ ajN0/2 + O(N−δ
0 ),

and if j is odd, then
ajN0 ≤ max(a(j−1)N0

, aN0) + O(N−δ
0 ).

We will start with j0 = k + i + 1. Given ji, if ji is odd let ji+1 = ji − 1, and if ji is even let
ji+1 = ji/2. Clearly j⌈log(2k)⌉ = 0. We get that

ajℓN0 ≤ max(ajℓ+1N0 , aN0) + ℓO(N−δ
0 )

Therefore
aj0N0 ≤ aN0 + log(2k)O(N−δ

0 )

as desired.

C Clean-up Algorithms

C.1 Hamiltonian Cycles

We first state the explicit guarantee of the Hamiltonian cycle clean-up algorithm proven by Gao et
al. [13]:

Lemma 26 (Lemma 2.5, [13]). Let 0 < ϵ = ϵ(n) < 1/1000, and suppose that P is a path on
(1 − ϵ)n vertices of [n]. Then, given P initially, there exists a strategy for the semi-random graph
process which builds a Hamiltonian cycle from P in O(

√
ϵn + n3/4 log2 n) steps w.h.p. Note that

the constant hidden in the O(·) notation does not depend on ϵ.
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C.2 Perfect Matchings

Gao et al. [14] provide a clean-up algorithm with the following guarantee. For ϵ = 10−14, if the
algorithm is presented a matching M on at least (1 − ϵ)n vertices of [n], then M can be extended
to a perfect matching in at most 100

√
ϵn steps w.h.p. It is not hard to verify that the analysis of

[14] holds for all 0 < ϵ < 1, as well as when ϵ = ϵ(n) satisfies ϵ(n) → 0 as n → ∞.

Lemma 27 ([14]). Let 1/n ≤ ϵ = ϵ(n) < 1, and suppose that M is a matching on (1− ϵ)n vertices
of [n]. Then, given M initially, there exists a strategy for the semi-random graph process which
builds a perfect matching from M in O(

√
ϵn) steps w.h.p. Note that the constant hidden in the O(·)

notation does not depend on ϵ.
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