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Abstract

We present new results for online contention resolution schemes for the matching polytope
of graphs, in the random-order (RCRS) and adversarial (OCRS) arrival models. Our results
include improved selectability guarantees (i.e., lower bounds), as well as new impossibility results
(i.e., upper bounds). By well-known reductions to the prophet (secretary) matching problem,
a c-selectable OCRS (RCRS) implies a c-competitive algorithm for adversarial (random order)
edge arrivals. Similar reductions are also known for the query-commit matching problem. For
the adversarial arrival model, we present a new analysis of the OCRS of Ezra et al. (EC, 2020).
We show that this scheme is 0.344-selectable for general graphs and 0.349-selectable for bipartite
graphs, improving on the previous 0.337 selectability result for this algorithm. We also show
that the selectability of this scheme cannot be greater than 0.361 for general graphs and 0.382
for bipartite graphs. We further show that no OCRS can achieve a selectability greater than
0.4 for general graphs, and 0.433 for bipartite graphs.

For random-order arrivals, we present two attenuation-based schemes which use new at-
tenuation functions. Our first RCRS is 0.474-selectable for general graphs, and our second is
0.476-selectable for bipartite graphs. These results improve upon the recent 0.45 (and 0.456)
selectability results for general graphs (respectively, bipartite graphs) due to Pollner et al. (EC,
2022). On general graphs, our 0.474-selectable RCRS provides the best known positive result
even for offline contention resolution, and also for the correlation gap. We conclude by proving
a fundamental upper bound of 0.5 on the selectability of RCRS, using bipartite graphs.
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1 Introduction
Contention resolution schemes provide a useful tool for selecting a subset of elements, originally
motivated by constrained submodular optimization [11]. This paper studies contention resolution
schemes for selecting a subset of edges forming a matching in a graph G = (V,E). Initially, each
edge e ∈ E is either active or not, independently according to a known probability xe. The scheme
must then select a subset of active edges forming a matching, which has no two edges incident
to the same vertex. The goal of the contention resolution scheme is to select every edge e with
probability at least c conditional on it being active, for a constant c as large as possible, over both
the randomness in the active edges and any randomness in the algorithm’s selection.

Put another way, the scheme must select every edge e with (unconditional) probability at least
cxe. Letting ∂(v) denote the set of edges incident to a vertex v, note that c must be arbitrarily small
if
∑

e∈∂(v) xe can be arbitrarily large, because many e ∈ ∂(v) will be active while only one of them
can be selected. Therefore, contention resolution schemes typically impose the vector x = (xe)e∈E
to be feasible in a fractional relaxation, which in this case means lying in the matching polytope

PG := {x ∈ [0, 1]E :
∑

e∈∂(v) xe ≤ 1 ∀v ∈ V }. (1.1)

A contention resolution scheme is then said to be c-selectable if for any graph G and any vector
x ∈ PG, it selects each edge e with probability at least cxe, where c is a constant in [0,1].

Fractional constraints akin to (1.1) hold in many contexts: in auctions/pricing, if xe denotes the
ex-ante probability that an optimal mechanism sells to e; in prophet inequalities, if xe denotes the
probability that e has a high enough value worth accepting; and in stochastic probing, if xe denotes
the probability that edge e ends up matched. Broadly speaking, in these contexts xe represents the
decisions of an optimal clairvoyant algorithm, whereas real decisions have to be made sequentially,
without knowing the stochastic realizations associated with future elements (but assuming them to
be independent). In the language of contention resolution schemes, this translates to the elements e
arriving one by one, with their activeness states revealed upon arrival (to 1 with probability xe and
0 otherwise), and for elements that are active and feasible to select, the algorithm must make an
irrevocable decision whether to actually select it. Contention resolution schemes of this sequential
nature directly translate to approximation/competitive ratio guarantees for pricing [25], prophet
[19, 14], and probing [5, 1, 6, 9] problems, with all of these papers focused on matchings in graphs.

Therefore, improving these sequential contention resolution schemes for graph matchings is
of fundamental interest with direct implications, which is the focus of this paper. Two types
of schemes have been defined in the literature depending on the order in which elements arrive:
online contention resolution schemes (OCRS) [15], where this order is chosen by an adversary; and
random-order contention resolution schemes (RCRS) [2, 23], where this order is chosen uniformly
at random. OCRS and RCRS specifically for the matching polytope (1.1) have been considered by
[14] and [9, 25] respectively. Like in [14], for OCRS we assume the adversary is oblivious, in that it
fixes the arrival order based on the algorithm and cannot change the order based on realizations.

1.1 Contributions and Techniques

We improve state-of-the-art OCRS and RCRS for both general graphs and the special case of
bipartite 1 graphs. We also derive many new impossibility results, and believe another contribution
of this paper to lie in elucidating the limitations of different algorithms or analyses.

To describe our results, we define selectability as the maximum value of c for which an OCRS
or RCRS is c-selectable, evaluated on the worst case graph G and vector x ∈ PG for the algorithm.

1Our OCRS positive result holds more generally for triangle-free graphs, which do not contain any 3-cycles.

2



Without further specification, selectability considers the best possible algorithm and takes a worst
case over general graphs, although we also refer to the selectability of a specific algorithm or the
selectability taken over bipartite graphs. By definition, the selectability of a specific algorithm is
worse (smaller) than that of the best algorithm; the selectability for general graphs is worse than
that for bipartite graphs; and the selectability of OCRS is worse than that of RCRS.

Given this understanding, our results are summarized in Table 1. We now describe each result
individually, its significance, and the new techniques required to derive it.

Selectability Bounds General Graphs Bipartite Graphs
OCRS of [14] ≥ 0.337 [14]→ ≥ 0.344 [§2.1] ≥ 0.337 [14]→ ≥ 0.349 [§2.2]

≤ 0.361 [§2.3] ≤ 0.382 [§2.3, folklore]
Any OCRS ≤ 0.4 [§2.3] ≤ 4/9 [19]→ ≤ 0.433 [§2.3]

RCRS ≥ 0.45 [25]→ ≥ 0.474 [§3.1] ≥ 0.456 [25]→ ≥ 0.476 [§3.2]
≤ 0.544 [21]→ ≤ 0.5 [§3.3]

Table 1: New results are bolded. “≥” refers to lower bounds on c (algorithmic results), “≤” refers
to upper bounds (impossibility results), and arrows indicate improvement from state of the art.

Recall that the algorithm must select each edge e with probability at least cxe. The algorithm
is not rewarded for selecting e with probability greater than cxe, so a common idea behind both
OCRS and RCRS is to attenuate this probability, by only considering an edge e for selection when
its activeness state and another independent random bit Ae both realize to 1. In this case, we say
that e “survives”, which occurs with a probability that can be calibrated to any value less than xe.
The algorithms we study are all greedy with respect to some appropriately-defined attenuation, i.e.
they select any surviving edge that is feasible to select at its time of arrival.

Existing c-selectable OCRS. For OCRS the state of the art is a greedy OCRS that calibrates
the survival probabilities so that every edge e is selected with probability exactly cxe (the calibration
is done by resampling the activeness of past edge arrivals) [14]. For this OCRS to be valid, when
any edge e = (u, v) arrives, it must be feasible to select (i.e. neither vertices u, v have already been
matched) with probability at least c, so that there is the possibility of selecting e with probability
at least cxe. [14] show that c = 1/3 ≈ 0.333 easily yields a valid algorithm. Then by arguing that
the bad events of u being matched and v being matched cannot be perfectly negatively correlated,
or equivalently by providing a non-trivial lower bound on the probability of both u and v being
matched (not to each other), [14] show that the improved value of c = 0.337 is also valid.

Our improvements to OCRS. We analyze the same OCRS as [14] and provide substantial
further improvements. First we show that c = 0.349 is valid for bipartite graphs. Note that when
edge e = (u, v) arrives, u is guaranteed to be matched if it has a neighbor u′ such that: (i) edge
(u, u′) already arrived and survived; and (ii) no edge incident to u′ that arrived before (u, u′)
survived. A neighbor v′ of v satisfying (i)–(ii) can be defined analogously. Our result for bipartite
graphs involves using the FKG inequality to show that u having such a neighbor u′ is positively
correlated with v having such a neighbor v′, and moreover, whether two neighbors u1, u2 of u satisfy
condition (ii) are independent (because there cannot be an edge between u1 and u2). Ultimately
this reveals that the worst case for the existence of both u′ and v′ occurs when u, v are surrounded
by edges with infinitesimally-small x-values, implying that c = 0.349 yields a valid algorithm.

Unfortunately, the preceding argument breaks down for general graphs, both because u′ could
be the same vertex as v′, and because satisfying condition (ii) is no longer independent. To rectify
this argument, we take an approach motivated by [14]—u and v will each randomly choose up to one
neighbor satisfying (i), and hope that they end up choosing distinct vertices that also satisfy (ii),
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which would again certify both u and v to be matched. Our choice procedure is quite different2

from [14], and designed so that the probabilities of two good events (u, v choosing any neighbors
at all, and (ii) being satisfied) cannot be simultaneously minimized3 in a worst-case configuration.
Interestingly, this leads to a “hybrid” worst case for general graphs, in which both endpoints u, v
of the arriving edge e neighbor a “large” vertex w with xuw = xvw = 1/2, but otherwise u, v are
surrounded by edges with infinitesimally-small x-values. To prove that this hybrid is the worst
case, we bound an infinite-dimensional optimization problem using a finite one with vanishing loss,
and solve the finite one numerically. This worst case implies that c = 0.344 is valid.

Negative results for OCRS. To complement our positive results, we construct a simple
example on which no OCRS can be more than 0.4-selectable, and the OCRS of [14] in particular is
no more than 0.361-selectable. This example is related to the worst case from our analysis of general
graphs above, in that it has an edge e connected to two “large” vertices w. Performance on this
example also demonstrates the shortcoming of the greedy OCRS of [14]—it does not discriminate4

between different states in which an arriving edge could be feasibly selected. We also derive negative
results for OCRS on bipartite graphs—one showing that no OCRS can be more than 0.433-selectable
(improving upon the upper bound of 4/9 ≈ 0.444 from [19]), and a simple one showing that the
OCRS of [14] is no more than 0.382-selectable.

Existing c-selectable RCRS. For RCRS the state of the art also uses the attenuation frame-
work, with the attenuation bit Ae in this case being set a priori to some value a(e) ∈ [0, 1], where a
is a function of the edge e. The challenge again lies in lower-bounding the probability of an arriving
edge e being feasible for selection, in this case by c/a(xe). [9] lower-bound this probability using
a condition similar to (ii) above—when e = (u, v) arrives, if there are no edges incident to u or v
that arrived before e and survived (i.e. are active with Ae = 1), then e must be feasible to select.
We refer to these bad edges incident to u or v as early. [9] show for many attenuation functions a,
in all of which a(e) depends only on xe, that the probability of e having no early edges is at least
c/a(xe), with c = (1 − e−2)/2 ≈ 0.432. [25] later identify a barrier of (1 − e−2)/2 for the analysis
method of [9], and overcome it by deriving a lower bound on the probability of e having exactly
one early edge, say f = (u,w), but f being blocked, in that w was already matched when f arrived.
Of course, this lower bound must be 0 if w is only incident to f , so [25] also use a more elaborate
a function that heavily attenuates f in this case where ∂(w) = {f}. Combining these ingredients,
[25] derive a 0.45-selectable RCRS, that is 0.456-selectable for bipartite graphs.

Our improvements to RCRS. We provide a substantially improved 0.474-selectable RCRS
for general graphs. Our algorithm must slightly deviate from the attenuation framework by running
the greedy RCRS on the 1-regularized version of the graph G, which means that “phantom” edges
and vertices are added to make

∑
e∈∂(v) xe equal to 1 for all v. These phantom edges serve only

the purpose of blocking early edges, and allow us to return to simpler attenuation functions based
only on xe (which would have been stuck at (1− e−2)/2 without 1-regularity).

Restricting to these simple functions a that map xe to a probability, our technique is to identify
analytical properties of a : [0, 1] → [0, 1] that lead to characterizable worst-case configurations for
the arriving e = (u, v) having early edges and for these edges being blocked. First, conditioning

2The procedure in [14] uses a “sampler” under which each vertex u, v has a 1− c probability of not choosing any
neighbor at all. We instead design random bits Ru,ui for the neighbors ui of u, such that Ru,ui implies condition (i),
and u only chooses no neighbor in the unlikely event that all of these random bits realize to 0 (see Subsection 2.1).

3That is, the probability of random bit Ru,ui realizing to 1 (which would ensure that u chooses a neighbor) is
increasing in variable xui(u, ui), while the lower bound on aloneui(u, ui) (corresponding to condition (ii)) is decreasing
in xui(u, ui) (see Subsection 2.1).

4Contrast this with the tight OCRS for k-uniform matroids [20], which works similarly in that it selects every
element e with probability exactly cxe, but must prioritize selecting e on feasible states with fewer elements selected.
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on the only early edge being say f = (u,w), we formulate analytical constraints on function a
under which the worst case (minimum probability) for f being blocked arises when w is incident
to a single edge other than (u,w) and (v, w). Given this worst case for f being blocked, we can
formulate further constraints on a under which the worst case for e having zero early edges or one
blocked early edge arises when u, v are surrounded by edges f with infinitesimally-small xf . We
show that there exist functions a : [0, 1] → [0, 1] satisfying both sets of constraints, and taking
the best one yields a 0.474-selectable RCRS for general graphs. Moreover, for bipartite graphs our
constraints on a get looser (since the optimization for the worst case is more restricted), allowing
us to push the envelope of feasible functions and find one that yields a 0.476-selectable RCRS.

We note that in essence, our 1-regularity reduction achieves the same goals as the elaborate5 at-
tenuation function from [25], but due to reduction of parameters it allows, we can better “engineer”
worst-case configurations through the design of a : [0, 1] → [0, 1]. We also find it interesting that
our technique leads to the best-known RCRS despite using attenuation functions that do not take
arrival time into account (as is required in [23, 25]). In fact, our 0.474-selectable RCRS based on
these simple a functions improves the state of the art even for offline contention resolution schemes
and correlation gaps on general graphs (see Subsection 1.2).

Negative result for RCRS. We show that no RCRS can be more than 1/2-selectable, on
the complete bipartite graph with n vertices on each side and all edge values equal to 1/n, as
n → ∞. This represents a fundamental barrier for RCRS which requires a non-trivial random
graphs analysis, and to our knowledge was missing from the literature (the best existing upper
bound implied for RCRS comes from the expected offline maximum matching in this complete
bipartite graph being less than 0.544n as n→∞ [21]). We also note that no better construction is
known for general graphs.

The main challenge lies in quantifying for this complete bipartite graph that the information
gained by the RCRS from knowing which edges have already arrived (and hence won’t arrive again
in the future) has negligible benefit as n → ∞. This allows us to essentially reduce to a problem
where each edge is drawn independently with replacement uniformly from the n2 possibilities, on
which a greedy policy is optimal, and then through a differential equation based method prove that
the selectability is at most 1/2.

1.2 Related Work

Our paper studies both OCRS and RCRS for the matching polytope and provides a comprehensive
set of positive and negative results, making improvements on all fronts (see Table 1). The interest
in OCRS and RCRS and their applications for auctions/pricing, prophet inequalities, stochastic
probing, etc. have already been discussed in the introduction, and we refer to the literature cited
there. We now mention some further connections, and other feasibility constraints on the selected
subset for which OCRS and RCRS have been studied.

Offline contention resolution and correlation gap for the matching polytope. A more
lenient form of contention resolution than OCRS or RCRS is the offline setting, where all of the
activeness states are revealed before selections have to be made. The best-possible selectability
of an offline contention resolution scheme is equal to the correlation gap [11], a related concept.
Surprisingly, the best known offline contention resolution scheme for general graphs was actually the
0.45-selectable RCRS of [25], which improved upon the selectability of 0.4326 from [10]. Therefore,
our 0.474-selectable RCRS represents the state of the art for both offline contention resolution and
correlation gap, when it comes to general graphs.

5On 1-regular graphs, the term “se” from their function which penalizes large neighborhoods always equals xe.
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For bipartite graphs, a 0.4762-selectable offline contention resolution scheme is known, and in
fact best-possible if the scheme has to be monotone [10]. Our 0.476-selectable RCRS is slightly
worse, but the fact that 0.4762 is tight and our analysis could potentially be further improved
suggests that RCRS is likely easier than monotone offline contention resolution on bipartite graphs.
We should acknowledge that our OCRS and RCRS are generally not monotone, a property of
interest in the papers [11, 10, 15] that is relevant for submodular optimization.

Other feasibility constraints. For general matroids, a 1/2-selectable OCRS [22, 23] and
(1 − 1/e)-selectable RCRS [13, 23] are known, and both of these selectabilities are tight in the
special case of a 1-uniform matroid. The selectability improves in the case of a k-uniform matroid.
For k > 1, a tight γ∗k-selectable OCRS was recently derived [20], where γ∗k is a constant greater
than a well-known lower bound of 1− 1/

√
k + 3 [3]. Meanwhile, for RCRS the greater selectability

of (1− e−kkk/k!) is possible [4], which matches the correlation gap constant from [29]. That is, for
k-uniform matroids there is no separation between random-order vs. offline contention resolution,
but the selectability does degrade under adversarial order.

The knapsack polytope is another well-studied object that captures k-uniform matroids (but is
orthogonal to general matroids). For the knapsack polytope, a tight 1/(3+ e−2) ≈ 0.319-selectable
OCRS [20] is known and no improved RCRS is known.

The matching polytope also happens to (orthogonally) capture k-uniform matroids in the special
case of a complete bipartite graph. For general matching polytopes, a distinguishing challenge is
that flipping whether a single edge is active can set off a domino effect on which edges get matched,
and tight results for OCRS and RCRS are not known. We note however that under the vertex-
arrival matching model, a tight 1/2-selectable OCRS [14] is known, as is an 8/15-selectable RCRS
[18].

2 Online Contention Resolution Schemes
Definition 1 (Terminology and Notation). Let G = (V,E) be a graph. An edge e = (u, v) is said
to be incident to vertices u and v, and v is said to be a neighbor of u (and vice versa). For any
vertex v ∈ V , let ∂(v) ⊆ E denote the set of edges incident to v, and for any e = (u, v) ∈ E, let
∂(e) := ∂(u) ∪ ∂(v) \ {e}. A matching M is a subset of edges no two of which are incident to the
same vertex, i.e. satisfying |M ∩ ∂(v)| ≤ 1 for all v ∈ V . A vector x ∈ [0, 1]E lies in the matching
polytope if

∑
e∈∂(v) xe ≤ 1 for all v ∈ V . In this case, we refer to x as a fractional matching for G.

Fixing a fractional matching x = (xe)e∈E , each edge e has an activeness state Xe that realizes
to 1 with probability (w.p.) xe and 0 w.p. 1− xe, independent of everything else. We denote this
random draw as Xe ∼ Ber(xe), where Ber(x) represents an independent Bernoulli random variable
of mean x for any x ∈ [0, 1]. Edges e with Xe = 1 are called active, and only these edges can be
selected, under the additional constraint that the selected subset must form a matching.

At the time an edge e ∈ E arrives, we say that a vertex v ∈ V is matched if an edge incident
to v that has already arrived has been selected. We denote this event using matchedv(e), noting
that it depends on the random active states of edges arriving before e and any randomness in the
algorithm. We say that an edge e = (u, v) is blocked if either u or v has been matched by the time
e arrives, and denote this event using blocked(e). Blocked edges, even if active, cannot be selected.

Our improved lower bound for OCRS is based on a new analysis of the algorithm of [14], which
we restate below using our terminology.
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Algorithm 1 OCRS of [14]
Input: G = (V,E), x = (xe)e∈E , and c ∈ [0, 1] a constant to be determined later
Output: subset of active edges forming a matching M

1: M← ∅
2: for arriving edges e do
3: Let αe := c/P[blocked(e)], where the denominator is the probability that edge e is not

blocked, taken over the randomness in the activeness of past edges and the algorithm
4: Draw Ae ∼ Ber(αe)
5: if e is active, not blocked, and Ae = 1 then
6: M←M∪ {e}
7: return M

Remark 2.1. In Algorithm 1, αe is a probability over the hypothetical scenarios that could have
occurred, based on what the OCRS knows about the edges that have arrived so far. Computing
these probabilities exactly requires tracking exponentially many scenarios, but fortunately sampling
these scenarios yields an ε loss in selectability given O(1/ε) runtime [14]. We also note that the
values of αe used by Algorithm 1 are fixed once the graph and order of edge arrival are determined.
This is where the assumption that the adversary is oblivious comes in—the order, and hence the
values of αe, must be independent of any realizations.

We now define some further concepts specific to Algorithm 1. We say that an edge e survives
if both Xe and Ae realize to 1, and we let Se = XeAe indicate this event, which is an independent
Bernoulli random variable with mean xeαe. The OCRS of [14] can then be concisely described as
“select every surviving unblocked edge”. The survival probabilities are calibrated so that

P[e ∈M] = xeαeP[blocked(e)] = cxe ∀e ∈ E (2.1)

(by definition of αe), resulting in a c-selectable OCRS.
However, Algorithm 1 only defines a valid OCRS if αe is a probability in [0,1] for all e ∈ E.

Put another way, constant c must be small enough such that

P[blocked(e)] ≥ c (2.2)

for every graph G, fractional matching x, and arriving edge e (which would ensure that αe ≤ 1).
Following [14], validity can be inductively established by assuming (2.2) holds for all e under a
given G, x, and arrival order, and then proving that it also holds for an arbitrary edge e /∈ E which
could arrive next. Ezra et al. [14] further observe that if this newly arriving edge is e = (u, v), then

P[blocked(e)] = 1− P[matchedu(e) ∪matchedv(e)]

= 1− P[matchedu(e)]− P[matchedv(e)] + P[matchedu(e) ∩matchedv(e)] (2.3)
= 1− c

∑
f∈∂(u) xf − c

∑
f∈∂(v) xf + P[matchedu(e) ∩matchedv(e)]

(where the final equality holds by (2.1) and the induction hypothesis). Therefore, the real challenge
and intricacy of the problem lies in bounding the term P[matchedu(e)∩matchedv(e)], which is related
to the correlation between u and v being matched (to different partners) in the past.

2.1 New Analysis of Algorithm 1 for General Graphs

We present a new way of analyzing, given a newly arriving edge (u, v), the probability of both u, v
being matched. This will allow us to show that Algorithm 1 remains valid for c = 0.344.
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We consider the following sufficient condition for both u, v being matched. Suppose u inspects
all its surviving incident edges, and chooses one (if any exist), and v (independently) does the
same. If these chosen edges are (u, u′) and (v, v′), where u′ and v′ are vertices in V \ {u, v}, then
we call u′ and v′ the candidates of u and v, respectively. Now, if candidate u′ was alone in that
it had no surviving incident edges at the time of arrival of (u, u′), then this guarantees vertex u
to be matched, either to u′, or via a surviving incident edge that arrived before (u, u′). A similar
argument can be made for candidate v′ of vertex v. Therefore, if u′ and v′ are distinct candidates,
and both alone at the arrival times of (u, u′) and (v, v′) respectively, then this guarantees both u
and v to be matched.

We note that [14] take a similar approach, but our procedure for choosing candidates is quite
different from their “sampler”, and generally more likely to choose any candidate at all. Let
u1, . . . , uk be vertices in V \ {u, v} such that (u, u1), . . . , (u, uk) are the edges in E incident to u
(recall that E does not include the newly arriving edge (u, v)). If u has multiple surviving edges
(u, ui) it will prioritize choosing the one with the smallest index i; however, it adds some noise to
reduce the likelihood that v (after defining an analogous procedure) will choose the same candidate.
The ordering of vertices u1, . . . , uk will be specified later based on the analysis.

To add this noise, we define a random bit Ru,ui for each i = 1, . . . , k. We couple Ru,ui with Su,ui

(the random bit for edge (u, ui) surviving) so that Ru,ui and Su,ui are perfectly positively correlated.
Vertex u then chooses ui as its candidate if i is the smallest index for which Ru,ui realizes to 1. We
let candidateuui

denote this event, noting that u can have at most one candidate, and possibly none.
Now, although the random bits Ru,ui are coupled with Su,ui , the bits Su,ui are independent from
everything else, so we can use independence to deduce that

P[candidateuui
] = E[Ru,ui ]

∏
i′<i

(1− E[Ru,ui′ ]) ∀i = 1, . . . , k. (2.4)

We define an analogous procedure for the edges (v, v1), . . . , (v, v`) incident to v. We will specify
the means of the random bits Ru,ui and Rv,vj later, after proving some lemmas that bound the
probabilities of edges surviving.

Definition 2. Let e = (u′, v′) be an edge that has already arrived, with u′, v′ being generic
vertices in V \ {u, v} (not necessarily candidates). Let xu′(e) :=

∑
f∈∂(u′):f≺e xf , where f ≺ e

indicates that the edge f arrived before e (the sum does not include edge e itself). Similarly, let
xv′(e) :=

∑
f∈∂(v′):f≺e xf .

Meanwhile, let aloneu′(u′, v′) (respectively alonev′(u
′, v′)) denote the event that u′ (respectively

v′) does not have any surviving incident edges at the time of arrival6 of edge (u′, v′).

Proposition 2.2. For any edge e = (u′, v′), the probability of it surviving satisfies

cxe
1− c ·max{xu′(e), xv′(e)}

≤ P[Se = 1] ≤ cxe
1− cxu′(e)− cxv′(e)

.

Proof of Proposition 2.2. The proof follows easily from (2.3): the induction hypothesis implies that

1− cxu′(e)− cxv′(e) ≤ P[blocked(e)] ≤ 1−max{cxu′(e), cxv′(e)},

where we note that P[matchedu′(e) ∪ matchedv′(e)] ≥ max{P[matchedu′(e)],P[matchedv′(e)]}. Re-
calling that P[Se = 1] = xeαe with αe defined to equal c/P[blocked(e)], this completes the proof.

6We note that [14] use a similar notion in their definition of “witness”, but without the qualifier “at time of arrival
of (u′, v′)”. We need this qualifier in order to make our subsequent argument.
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Proposition 2.3. For any edge e = (u′, v′), the probability of a vertex u′ being alone satisfies

P[aloneu′(e)] ≥ 1− c− cxu′(e)

1− c
.

Proof of Proposition 2.3. Let (u′, w1), . . . , (u
′, wm) be the edges incident to u′ arriving before (u′, v′),

in that order. Note that xu′(e) =
∑m

i=1 xu′,wi
. We can use independence to derive

P[aloneu′(e)] =

m∏
i=1

(1− P[Su′,wi
])

≥
m∏
i=1

(
1−

cxu′,wi

1− cxu′(u′, wi)− cxwi(u
′, wi)

)

≥
m∏
i=1

(
1−

cxu′,wi

1− c
∑

j<i xu′,wj
− c

)

=

m∏
i=1

1− c− c
∑

j≤i xu′,wj

1− c− c
∑

j<i xu′,wj

=
1− c− cxu′(e)

1− c

where the first inequality uses the upper bound in (2.2), and the second inequality uses the definition
that xu′(u′, wi) =

∑
j<i xu′,wj

and the fact that xwi(u
′, wi) ≤ 1. This leads to the desired result.

The lower bound in Proposition 2.2 allows us to define the probabilities for the random bits
Ru,ui . We would like to ensure that whenever u chooses vertex ui as its candidate, edge (u, ui)
actually survives. This will be the case whenever E[Ru,ui ] ≤ E[Su,ui ], since the bits Ru,ui , Su,ui are
coupled using perfect positive correlation. By Proposition 2.2, this is ensured if we set

E[Ru,ui ] :=
cxu,ui

1− cxui(u, ui)
(2.5)

for all i = 1, . . . , k, and similarly set E[Rv,vj ] :=
cxv,vj

1−cxvj (v,vj)
for all j = 1, . . . , `. These values are

set so that if xui(u, ui) is large, which worsens the lower bound of 1−c−cxui (u,ui)

1−c on the probability
of ui being alone, then at least we have the consolation prize that E[Ru,ui ] is large, making it more
likely that u has a candidate. This will prevent a worst-case configuration from simultaneously
minimizing the two good events of ui being alone and u having a candidate, which is precisely the
motivation behind our choice procedure and definition of aloneui(u, ui) that differs from [14].

Having defined these random bits, we are ready to state and prove our main result, which
lower-bounds the selectability of Algorithm 1 using an elementary optimization problem.
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Definition 3. For any positive integer k and non-negative real number b, let

AdvMink(b) := inf b2

(
k∑

i=1

yi − byi + by2i
1 + byi

∏
i′<i

1

1 + byi′

)(
k∑

i=1

zi − bzi + bz2i
1 + bzi

∏
i′<i

1

1 + bzi′

)

− b2
k∑

i=1

yi − byi + by2i
1 + byi

zi − bzi + bz2i
1 + bzi

∏
i′<i

1

1 + byi′

1

1 + bzi′

s.t.
k∑

i=1

yi =

k∑
i=1

zi = 1

yi + zi ≤ 1 ∀i = 1, . . . , k

yi−1 ≥ yi ∀i = 4, . . . , k

zi−1 ≥ zi ∀i = 4, . . . , k

yi, zi ≥ 0 ∀i = 1, . . . , k.

Theorem 2.4.

(i). Algorithm 1 is c-selectable for any c satisfying 1− 3c+ infk AdvMink(
c

1−c) ≥ 0.

(ii). c = 0.3445 satisfies 1− 3c+ infk AdvMink(
c

1−c) ≥ 0.

Therefore, Algorithm 1 provides a 0.3445-selectable OCRS for general graphs.

Note that for fixed b, AdvMink(b) is decreasing in k, so infk AdvMink(b) = limk→∞AdvMink(b).

Remark 2.5. Part (ii) of Theorem 2.4 is proved with the aid of computational verification, after
bounding the difference between limk→∞AdvMink(b) and an optimization problem with 2K vari-
ables as O(1/K). We then use Non-Linear Programming (NLP) solver COUENNE, modeled with
JuMP [12], providing a link to the code. The NLP solver establishes a provable lower bound on
the infimum value of this finite-dimensional NLP, allowing us to finish the proof. Interestingly, the
optimal solution suggested by the solver for a large K is a “hybrid” in which y1 = z1 = 1/2, and
all other values of yi, zi are infinitesimally-small.

Proof of Theorem 2.4, (i). Recall from (2.2) and (2.3) that it suffices to show that P[matchedu(u, v)∪
matchedv(u, v)] ≤ 1 − c for the newly arriving edge (u, v). Note that if

∑
f∈∂(u) xf < 1, then

P[matchedu(u, v) ∪ matchedv(u, v)] can only be increased after adding a dummy edge between u
and a new vertex that is active with probability 1 −

∑
f∈∂(u) xf , which arrives right before (u, v).

The same argument can be made if
∑

f∈∂(v) xf < 1. Therefore, we can without loss of generality
assume that

∑
f∈∂(u) xf =

∑
f∈∂(v) xf = 1, which represents the hardest case for P[matchedu(u, v)∪

matchedv(u, v)] ≤ 1−c to be satisfied. Rewriting P[matchedu(u, v)∪matchedv(u, v)] following (2.3),
it suffices for c-selectability to show that

0 ≤ 1− 3c+ P[matchedu(u, v) ∩matchedv(u, v)].

Therefore, we must show P[matchedu(u, v) ∩ matchedv(u, v)] ≥ infk AdvMink(
c

1−c), where we
have assumed that

∑
f∈∂(u) xf =

∑
f∈∂(v) xf = 1. Recall that matchedu(u, v) ∩ matchedv(u, v)

occurs whenever all four events candidateuui
, candidatevvj , aloneui(u, ui), and alonevj (v, vj) occur, for

any choice of indices i ∈ {1, . . . , k}, j ∈ {1, . . . , `} such that the vertices ui, vj do not coincide. This
is because candidateuui

implies Ru,ui = 1, which implies edge (u, ui) survives (see (2.5)), and this in
conjunction with aloneui(u, ui) ensures that matchedu(u, v) occurs. An analogous argument ensures
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that matchedv(u, v) occurs, assuming ui is not the same vertex as vj . Finally, we note that since
u and v each choose at most one candidate, the events candidateuui

∩ candidatevvj ∩ aloneui(u, ui) ∩
alonevj (v, vj) are disjoint across the different combinations of i, j. Therefore, we can derive

P[matchedu(u, v) ∩matchedv(u, v)]

≥
∑

i,j:ui 6=vj

P[candidateuui
∩ candidatevvj ∩ aloneui(u, ui) ∩ alonevj (v, vj)]. (2.6)

The next step consists in showing that for any combination of i, j such that ui 6= vj , the
probability term on the r.h.s. is lower-bounded by the independent case, i.e.

P[candidateuui
∩ candidatevvj ∩ aloneui

(u, ui) ∩ alonevj (v, vj)]

≥ P[candidateuui
]P[candidatevvj ]P[aloneui(u, ui)]P[alonevj (v, vj)]. (2.7)

We argue this using the FKG inequality. Consider the bits {Se : e ∈ E} about the survival of
the edges. Note that all four events candidateuui

, candidatevvj , aloneui(u, ui), alonevj (v, vj) are fully
determined by these bits, and moreover are increasing in the bits Su,ui , Sv,vj (they must nec-
essarily be 1 for candidateuui

, candidatevvj to be 1, and note that this does not adversely affect
aloneui(u, ui), alonevj (v, vj) since ui 6= vj), and decreasing in all bits Se when e is not (u, ui) or
(v, vj). Since the bits Se are independent across e, we have that (2.7) holds, for any i, j such that
ui 6= vj .

Now, we can use (2.4) and Proposition 2.3 to lower-bound P[candidateuui
] and P[aloneui(u, ui)]

respectively. Therefore, we derive

P[candidateuui
]P[aloneui(u, ui)] ≥

1− c− cxui(u, ui)

1− c
cxu,ui

1− cxui(u, ui)

∏
i′<i

(1−
cxu,ui′

1− cxui′ (u, ui′)
)

≥ 1− c− c(1− xu,ui)

1− c
cxu,ui

1− c(1− xu,ui)

∏
i′<i

(1−
cxu,ui′

1− c(1− xu,ui′ )
)

=
1− 2c+ cxu,ui

1− c+ cxu,ui

cxu,ui

1− c
∏
i′<i

1− c
1− c+ cxu,ui′

(2.8)

where the second inequality holds because the first expression is decreasing in both xui(u, ui) and
xui′ (u, ui′), which must satisfy xui(u, ui) ≤ 1− xu,ui and xui′ (u, ui′) ≤ 1− xu,ui′ respectively.

Combining the derivations in (2.6), (2.7), and (2.8) (and lower bounding the analogous expres-
sion P[candidatevvj ]P[alonevj (v, vj)]), we see that P[matchedu(u, v) ∩matchedv(u, v)] is at least

∑
i,j:ui 6=vj

(
1− 2c+ cxu,ui

1− c+ cxu,ui

cxu,ui

1− c
∏
i′<i

1− c
1− c+ cxu,ui′

)1− 2c+ cxv,vj
1− c+ cxv,vj

cxv,vj
1− c

∏
j′<j

1− c
1− c+ cxv,vj′

 .

(2.9)

Finally, to relate to infk AdvMink(
c

1−c), let U(i) denote the first expression in large parentheses
in (2.9), and let V (j) denote the second expression in large parentheses in (2.9). We can assume
without loss that k = ` = |V | − 2, by adding edges with xu,ui = 0 or xv,vj = 0 as necessary, in
which case U(i) = 0 or V (j) = 0 respectively. This allows us to rewrite (2.9) as

k∑
i=1

U(i)

k∑
j=1

V (j)−
∑

i,j:ui=vj

U(i)V (j). (2.10)
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This is where we specify the ordering of the vertices u1, . . . , uk and v1, . . . , vk in a way that
aids our analysis. We specify u1 so that xu,u1 = maxi xu,ui , and similarly specify v1 so that
xv,v1 = maxj xv,vj . We let v2 = u1, and similarly u2 = v1; if u1 = v1 then we instead let u2 = v2
be any other vertex in V \ {u, v, u1}. We have completed the specification of u1, u2, v1, v2 in a
way such that {u1, u2} = {v1, v2}. Hence, both u3, . . . , uk and v3, . . . , vk must be orderings of the
vertices in V \ {u, v, u1, u2}. We define these orderings in such a way so that xu,u3 ≥ · · · ≥ xu,uk

and xv,v3 ≥ · · · ≥ xv,vk . This implies U(3) ≥ · · · ≥ U(k) and V (3) ≥ · · · ≥ V (k).
We have completed the specification of the orderings u1, . . . , uk and v1, . . . , vk. Now, consider

an adversary trying to design the values of xu,u1 , . . . , xu,uk
, xv,v1 , . . . , xv,vk to minimize expres-

sion (2.10), subject to all aforementioned constraints. By the rearrangement inequality, the sum
being subtracted is maximized if the largest values of U(i) are paired with the largest values of
V (j). That is, the adversary wants ui = vi for all i = 3, . . . , k. Moreover, this assignment of
vertices is guaranteed to feasibly satisfy xu,ui +xv,vi ≤ 1, since both xu,ui and xv,vi must be at most
1/2 (recall that xu,ui ≤ xu,u1 and xu,ui + xu,u1 ≤ 1). Therefore, if we assume that ui = vi for all
i = 3, . . . , k, then this only provides a lower bound on expression (2.10).

To finish, let b := c
1−c . We define shorthand notation yi := xu,ui and zi := xv,vi for all

i = 3, . . . , k, as well as y1, y2, z1, z2 such that y1 and z1 correspond to the same vertex (and y2
and z2 correspond to the same vertex). We drop the constraint that at least one of y1, y2 must
correspond to a maximal value of xu,ui (and similarly for z1, z2). Noting that U(i) can be rewritten
as 1−b+byi

1+byi
byi
∏

i′<i
1

1+byi′
under the new notation (and similarly for V (j)), we can express the

adversary’s optimization problem as minimizing(
k∑

i=1

1− b+ byi
1 + byi

byi
∏
i′<i

1

1 + byi′

)(
k∑

i=1

1− b+ bzi
1 + bzi

bzi
∏
i′<i

1

1 + bzi′

)

−
k∑

i=1

1− b+ byi
1 + byi

byi
1− b+ bzi
1 + bzi

bzi
∏
i′<i

1

1 + byi′

1

1 + bzi′

subject to constraints
∑k

i=1 yi =
∑k

i=1 xu,ui = 1 =
∑k

i=1 zi =
∑k

i=1 xv,vi (recall the assumption
that

∑
f∈∂(u) xf =

∑
f∈∂(v) xf = 1), constraint yi + zi ≤ 1 for all i = 1, . . . , k, and constraints

y3 ≥ · · · ≥ yk, z3 ≥ · · · ≥ zk (due to the ordering chosen by the algorithm) as well as non-negativity
constraints. This is a lower bound on the original expression in (2.9), and is exactly the AdvMink(b)
optimization problem. Therefore, P[matchedu(u, v)∩matchedv(u, v)] ≥ AdvMink(b) where k denotes
the number of vertices in V \ {u, v}. To ensure 1− 3c+ P[matchedu(u, v) ∩matchedv(u, v)] ≥ 0, it
suffices to ensure 1− 3c+ infk AdvMink(b), completing the proof of Theorem 2.4, part (i).

Proof of Theorem 2.4, (ii). Fix a large positive integer “cutoff” K and consider any k ≥ K. Since
any term subtracted in the latter sum in the objective of AdvMink(b) also appears when the first
two large parentheses are expanded, the objective can only be reduced if we reduce the term

yi − byi + by2i
1 + byi

∏
i′<i

1

1 + byi′
(2.11)

for any index i. To reduce this term, note that yi−byi+by2i
1+byi

= 1−b+byi
1+byi

yi ≥ (1 − b)yi and 1
1+byi′

≥
1 − byi′ , which allows us to reduce (2.11) to (1 − b)yi

∏
i′<i(1 − byi′). We can similarly lower

bound zi−bzi+bz2i
1+bzi

∏
i′<i

1
1+bzi′

by (1− b)zi
∏

i′<i(1− bzi′). Therefore, the objective of AdvMin(k) is
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lower-bounded by the following:

b2

(
K∑
i=1

yi − byi + by2i
1 + byi

∏
i′<i

1

1 + byi′
+
∑
i>K

(1− b)yi
∏
i′<i

(1− byi′)

)
·

(
K∑
i=1

zi − bzi + bz2i
1 + bzi

∏
i′<i

1

1 + bzi′
+
∑
i>K

(1− b)zi
∏
i′<i

(1− bzi′)

)

− b2
K∑
i=1

yi − byi + by2i
1 + byi

zi − bzi + bz2i
1 + bzi

∏
i′<i

1

1 + byi′

1

1 + bzi′
− b2

∑
i>K

(1− b)2yizi
∏
i′<i

(1− byi′)(1− bzi′)

≥ b2
(

K∑
i=1

yi − byi + by2i
1 + byi

∏
i′<i

1

1 + byi′
+

1− b
b

K∏
i′=1

(1− byi′)
k∑

i=K+1

byi

i−1∏
i′=K+1

(1− byi′)

)

·

(
K∑
i=1

zi − bzi + bz2i
1 + bzi

∏
i′<i

1

1 + bzi′
+

1− b
b

K∏
i′=1

(1− bzi′)
k∑

i=K+1

bzi

i−1∏
i′=K+1

(1− bzi′)

)

− b2
K∑
i=1

yi − byi + by2i
1 + byi

zi − bzi + bz2i
1 + bzi

∏
i′<i

1

1 + byi′

1

1 + bzi′
− b2

∑
i>K

(1− b)2 1

(i− 2)2

≥ b2
(

K∑
i=1

yi − byi + by2i
1 + byi

∏
i′<i

1

1 + byi′
+

1− b
b

K∏
i=1

(1− byi)

(
1−

k∏
i=K+1

(1− byi)

))

·

(
K∑
i=1

zi − bzi + bz2i
1 + bzi

∏
i′<i

1

1 + bzi′
+

1− b
b

K∏
i=1

(1− bzi)

(
1−

k∏
i=K+1

(1− bzi)

))

− b2
K∑
i=1

yi − byi + by2i
1 + byi

zi − bzi + bz2i
1 + bzi

∏
i′<i

1

1 + byi′

1

1 + bzi′
− b2(1− b)2

∫ ∞

K−2

1

x2
dx

≥

(
K∑
i=1

byi

(
1− b

1 + byi

)∏
i′<i

1

1 + byi′
+

1− b
b

K∏
i=1

(1− byi)

(
1− exp(−b(1−

K∑
i=1

yi))

))
(2.12)

·

(
K∑
i=1

bzi

(
1− b

1 + bzi

)∏
i′<i

1

1 + bzi′
+

1− b
b

K∏
i=1

(1− bzi)

(
1− exp(−b(1−

K∑
i=1

zi))

))
(2.13)

−
K∑
i=1

(
1− b

1 + byi

)(
1− b

1 + bzi

)∏
i′<i

1

1 + byi′

1

1 + bzi′
− b2(1− b)2

K − 2
. (2.14)

We explain each inequality. The first inequality rewrites terms in the first two lines and applies
the bounds yi ≤ 1

i−2 and zi ≤ 1
i−2 on the final subtracted term, which hold because

∑k
i=1 yk =

1 and y3 ≥ · · · ≥ yk ≥ 0 (and similarly for the zi’s). For the second inequality, note that∑k
i=K+1 byi

∏i−1
i′=K+1(1 − byi′) is equivalent to the probability that at least one of independent

Bernoulli random variables with means byi for i = K +1, . . . , k realizes to 1 (similarly for the zi’s).
Moreover, we have

∑
i>K

1
(i−2)2

≤
∫∞
K−2

1
x2dx by Riemann sums. For the final inequality, we have

applied the fact 1 − byi ≤ exp(−byi) and the constraint that
∑K

i=1 yi = 1 (similarly for the zi’s)
and evaluated the integral.

Since this holds for all k ≥ K, we have proven that for any positive integerK > 2, infk AdvMink(b)
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is lower-bounded by the auxiliary optimization problem defined by

AdvMinAuxK(b) := inf (2.12)–(2.14)

s.t.
K∑
i=1

yi ≤ 1

K∑
i=1

zi ≤ 1

yi + zi ≤ 1 ∀i = 1, . . . ,K

yi, zi ≥ 0 ∀i = 1, . . . ,K

(note that we have relaxed the constraints y3 ≥ · · · ≥ yK and z3 ≥ · · · ≥ zK on the adversary). That
is, we have 1− 3c+ infk AdvMink(

c
1−c) ≥ 1− 3c+AdvMinAuxK( c

1−c). The proof of Theorem 2.4,
part (ii) is then completed by computationally verifying7 that for c = 0.3445 and K = 80 (a finite
optimization problem), 1− 3c+AdvMinAuxK( c

1−c) ≥ 0.

2.2 Improvement for Bipartite Graphs

We improve the analysis of Algorithm 1 in the special case where G = (V,E) is a bipartite graph.
Adopting the same proof skeleton and terminology, our goal is to lower-bound, given a newly
arriving edge (u, v) /∈ E, the probability that vertices u and v have both been matched.

In Subsection 2.1, we analyzed the probability of the sufficient condition that u and v “randomly
chose” distinct candidates who were alone. In this subsection, we can analyze the easier-to-satisfy
condition of u and v both having candidates who are alone. The reason for this is twofold: the
neighbors u1, . . . , uk of u (i.e. the potential candidates) are clearly distinct from the neighbors of v,
because edge (u, v) cannot form a 3-cycle; and, the neighbors u1, . . . , uk being alone are independent
events, because there cannot be any edges between them (which again would form a 3-cycle).

By lower-bounding the probability of this easier-to-satisfy condition, we show that Algorithm 1
is 0.349-selectable for all graphs without a 3-cycle (which includes all bipartite graphs), improving
upon the earlier guarantee of 0.344 for general graphs.

Theorem 2.6. On bipartite graphs, Algorithm 1 provides a c-selectable OCRS for any value of
c ∈ [0, 1/2] satisfying 1−3c+

(
1− exp(− c(1−2c)

(1−c)2
)
)2
≥ 0. Therefore, Algorithm 1 is 0.349-selectable.

Proof of Theorem 2.6. By the same argument as in the start of the proof of Theorem 2.4 part (i),
we can without loss of generality assume that

∑
f∈∂(u) xf =

∑
f∈∂(v) xf = 1, after which it suffices

to show that 1− 3c+P[matchedu(u, v)∩matchedv(u, v)] ≥ 0. We will show that P[matchedu(u, v)∩
matchedv(u, v)] ≥

(
1− exp(− c(1−2c)

(1−c)2
)
)2
. To do so, recall that matchedu(u, v) ∩matchedv(u, v) oc-

curs whenever u and v both have a neighbor that survives (i.e. can be a candidate) and is alone.
Letting u1, . . . , uk be the vertices in V \{u, v} such that {(u, ui) : i = 1, . . . , k} = ∂(u) are the edges
in E incident to u, and respectively v1, . . . , v` be the vertices (which are distinct from u1, . . . , uk)

7Code can be found at https://github.com/Willmasaur/OCRS_matching/blob/main/ocrs.jl, which uses the
JuMP [12] and COUENNE packages.
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such that {(v, vj) : j = 1, . . . , `} = ∂(v), we have that

P[matchedu(u, v) ∩matchedv(u, v)]

≥ P

(⋃
i

(Su,ui ∩ aloneui(u, ui))

)⋂⋃
j

(Sv,vj ∩ alonevj (v, vj))

 .
We argue that the r.h.s. of the preceding inequality is lower-bounded by the independent case, i.e.

P[matchedu(u, v) ∩matchedv(u, v)] ≥ P

[⋃
i

(Su,ui ∩ aloneui(u, ui))

]
P

⋃
j

(Sv,vj ∩ alonevj (v, vj))

 ,
(2.15)

again using the FKG inequality. To see this, consider the bits {Se : e ∈ E}, and note that the events
Su,ui ∩ aloneui(u, ui) and Sv,vj ∩ alonevj (v, vj) are fully determined by these bits, and moreover are
increasing in the bits {Se : e ∈ ∂(u) ∪ ∂(v)} (such bits affect only Su,ui and Sv,vj ) and decreasing
in the bits {Se : e /∈ ∂(u) ∪ ∂(v)} (such bits affect only aloneui(u, ui) and alonevj (v, vj)). Since the
bits Se are independent across e, we have that (2.15) holds.

Now, we can derive that

P

[⋃
i

(Su,ui ∩ aloneui(u, ui))

]
= 1−

∏
i

(1− P[Su,ui ]P[aloneui(u, ui)])

≥ 1−
∏
i

(
1− cxu,ui

1− cxui(u, ui)

1− c− cxui(u, ui)

1− c

)
≥ 1−

∏
i

(1− c(1− 2c)

(1− c)2
xu,ui)

≥ 1− exp

(
−c(1− 2c)

(1− c)2
∑
i

xu,ui

)
.

To explain the equality, note that event aloneui(u, ui) depends only on the independent bits
{Se : e ∈ ∂(ui) \ (u, ui)}, which must be disjoint from {Se : e ∈ ∂(ui′) \ (u, ui′)} for any i′ 6= i,
since otherwise ui and ui′ would form a 3-cycle with u. Therefore, the 2k events Su,u1 , · · · , Su,uk

,
aloneu1(u, u1), . . . , aloneuk

(u, uk) are mutually independent, allowing us to decompose the proba-
bility P [

⋃
i(Su,ui ∩ aloneui(u, ui))] into the product in the first line. After that, the first inequality

holds by Propositions 2.2 and 2.3, the second inequality holds because xui(u, ui) ≤ 1 and c ≤ 1/2,
and the final inequality holds elementarily. Finally, applying the assumption that

∑k
i=1 xu,ui = 1,

we conclude that P [
⋃

i(Su,ui ∩ aloneui(u, ui))] ≥ 1− exp(− c(1−2c)
(1−c)2

).

After an analogous lower bound for P
[⋃

j(Sv,vj ∩ alonevj (v, vj))
]

and substituting into (2.15), we

have shown that P[matchedu(u, v) ∩matchedv(u, v)] ≥ (1− exp(− c(1−2c)
(1−c)2

))2. It can be numerically
verified that c = 0.349 satisfies 1 − 3c + (1 − exp(− c(1−2c)

(1−c)2
))2 ≥ 0, completing the proof that

Algorithm 1 is 0.349-selectable.

2.3 Impossibility Results for OCRS

We present the following construction here which is new. The other constructions are deferred to
the proofs since they are standard, although the analysis is still new.
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Example 2.7. Let G be a complete graph on vertices V = {1, 2, 3, 4}, and consider the fractional
matching whose edge values are x12 = x23 = x34 = x41 = (1−ε)/2 along a 4-cycle and x13 = x24 = ε
on the diagonals. ε is a small positive constant that we will take to 0. The arrival order of edges,
known in advance, is: (1, 2), (3, 4) (a diametrically opposite pair of edges), followed by (2, 3), (4, 1)
(another diametrically opposite pair), followed by (1, 3), (2, 4) (the diagonal edges).

Proposition 2.8. On the G,x given in Example 2.7, any OCRS is no more than 0.4-selectable.

Proof of Proposition 2.8. Since edge (3,4) comes after (1,2), the probability of it being selected
conditional on (1,2) being selected is at most x34 = 1−ε

2 . That is, P[(1, 2) ∈ M ∩ (3, 4) ∈ M] ≤
1−ε
2 P[(1, 2) ∈M]. Thus,

P[(1, 2) ∈M∪ (3, 4) ∈M] ≥ P[(1, 2) ∈M] + P[(3, 4) ∈M]− 1− ε
2

P[(1, 2) ∈M]

=
1 + ε

2
P[(1, 2) ∈M] + P[(3, 4) ∈M].

≥
(
1 + ε

2
+ 1

)
c
1− ε
2

where the final inequality must hold if we were to have a c-selectable OCRS. We can similarly
derive that P[(2, 3) ∈ M ∪ (4, 1) ∈ M] ≥ 3+ε

2 c1−ε
2 . Now, note that (1, 2) ∈ M ∪ (3, 4) ∈ M

and (2, 3) ∈ M ∪ (4, 1) ∈ M are disjoint events. Hence, the probability that any of the edges
(1,2),(2,3),(3,4),(4,1) is selected is at least (3+ε)(1−ε)

2 c. If any such edges are selected, then the
diagonal edges (1,3),(2,4) cannot be selected. Therefore, the probability that (1,3) can be selected
is at most (1 − (3+ε)(1−ε)

2 c)ε, which must be at least cε in order to have a c-selectable OCRS.
Consequently we have 1− (3+ε)(1−ε)

2 c ≥ c, and taking ε→ 0 implies c ≤ 0.4.

Proposition 2.9. On Example 2.7, the OCRS of [14] is no more than 0.361-selectable.

Proof of Proposition 2.9. First, note that when the first two edges (1, 2) and (3, 4) arrive, they
cannot be blocked. Therefore, P[blocked(1, 2)] = P[blocked(3, 4)] = 1. Therefore, α(1,2) = α(3,4) = c,
and matched with probability c(1− ε)/2 (and independently of each other).

Next, each of the next two edges (i.e., (2, 3) and (4, 1)) are blocked if either of the first two
edges was matched. We have:

P[blocked(2, 3)] = P[blocked(4, 1)] = P[(1, 2) /∈M∩ (3, 4) /∈M]

= (1− c(1− ε)/2)2

which further gives that α(2,3) = α(4,1) = c(1− c(1− ε)/2)−2.
Finally, consider the final two arrivals, the diagonal edges. Edge (1, 3) is not blocked as long as

none of the previous arrivals was matched. That is, both of edges (1, 2) and (3, 4) must have been
left unmatched (each with probability 1−c(1−ε)/2), and then each of the next two edges (i.e., (2, 3)
and (4, 1)) must have failed to survive (which occurs with probability 1−c(1−ε)(1−c(1−ε)/2)2/2).
The same holds for edge (2, 4). This gives us:

P[blocked(1, 3)] = P[blocked(2, 4)] =
(
1− c1− ε

2

)2(
1− c(1− ε)

2(1− c(1− ε)/2)2

)2

As per (2.2), we want this probability to be at least c. As ε→ 0, we get(
1− c

2

)2(
1− c

2(1− c/2)2

)2

≥ c
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which is satisfied only if c ≤ 0.3602. Thus, on this graph, we must have c < 0.361, and the OCRS
cannot be better than 0.361-selectable.

Proposition 2.10. Any OCRS is no more than c-selectable for bipartite graphs, where c ≤ 0.433
is the real number satisfying 1− c− e−(1−c) = 0.

Proof of Proposition 2.10. Given n ≥ 2, let G = (U, V,E) be a bipartite graph with |U | = |V | = n,
and E = U × V . Set xe := 1/n for all e ∈ E. Given a vertex ordering v1, . . . , vn, we assume
that the states of the edges incident to vi are presented to the OCRS before that of vi+1 for each
i = 1, . . . , n− 1. We consider the asymptotic setting when n→∞.

Fix an arbitrary OCRS with selectability c ≥ 0. Let Mi be the matching constructed by the
OCRS after vertices v1, . . . , vi arrive. First observe that since the OCRS is c-selectable, E[|Mn−1|] ≥
c(n− 1), and so

mn :=
E[|Mn−1|]
n− 1

≥ c. (2.16)

Consider now the final arriving vertex vn. Observe that vn can only be included inMn if it has
an active edge adjacent to some vertex u ∈ U not matched by Mn−1. Thus, after conditioning on
Mn−1,

P[vn ∈Mn | Mn−1] ≤ 1−
(
1− 1

n

)n−|Mn−1|

= (1 + o(1))

(
1− exp

(
|Mn−1|

n
− 1

))
.

Observe that z → (1 − exp(z − 1)) is concave on [0, 1], so after taking expectations and applying
Jensen’s inequality,

P[vn ∈Mn] ≤ (1 + o(1))

(
1− exp

(
mn ·

n− 1

n
− 1

))
. (2.17)

Yet, P[vn ∈Mn] ≥ c, so after applying (2.16) and (2.17) and taking n→∞, it follows that

c ≤ 1− exp(mn − 1) ≤ 1− exp(c− 1).

Thus 1− exp(c− 1)− c ≥ 0, completing the proof.

Proposition 2.11. The OCRS of [14] is no more than 0.382-selectable for bipartite graphs.

Proof of Proposition 2.11. Let G be a graph on vertices V = {1, 2, 3, 4} that is a path of three edges
(1,2),(2,3),(3,4), and consider the fractional matching whose edge values are x12 = 1 − ε, x23 =
ε, x34 = 1− ε, with ε being a small positive constant. The arrival order of edges is (1,2),(3,4),(2,3),
where the middle edge arrives last.

Notice that the first two edges, (1, 2) and (3, 4) cannot be blocked and so P[blocked(1, 2)] =
P[blocked(3, 4)] = 1. This means α(1,2) = α(3,4) = c. Each of these edges will therefore be matched
with probability c(1− ε). When the middle edge arrives, then, the probability it is not blocked is
(1− c(1− ε))2. Applying (2.2), we get

(1− c(1− ε))2 ≥ c

and for ε → 0 this gives c ≤ 0.3819. This means that the OCRS cannot be better than 0.382-
selectable for this graph.
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3 Random-order Contention Resolution Schemes
We reuse the terminology and notation about graphs and matching polytopes defined at the start
of Section 2 for OCRS, and add the following definitions below.

Definition 4 (Terminology and Notation for RCRS). Suppose the edges of G = (V,E) arrive
uniformly at random. In our analysis, we will treat each edge e as having an arrival time Ye drawn
independently and uniformly from [0, 1]. Edges then arrive in increasing order of arrival times.

Also, if x = (xe)e∈E satisfies constraints
∑

e∈∂(v) xe ≤ 1 for all v ∈ V as equality, then we then
say that G is 1-regular (with respect to x), and refer to (G,x) as a 1-regular input.

We first argue that when designing an RCRS, it suffices to only consider 1-regular inputs. The
proof is similar to that of [18], and so we defer it to Appendix A.

Lemma 3.1 (Reduction to 1-Regular Inputs). If there exists a c-selectable RCRS for all 1-regular
inputs, then there exists a c-selectable RCRS for all inputs via a reduction to a 1-regular input.
Moreover, this reduction can be computed efficiently, and preserves bipartiteness.

Let us now fix an arbitrary attenuation function a : [0, 1] → [0, 1]. Consider the following
template RCRS, which is presented the edges of a graph G = (V,E) in random order.

Algorithm 2 Attenuate-ROM
Input: Graph G = (V,E) and a fractional matching x = (xe)e∈E .
Output: subset of active edges forming a matching M.

1: M← ∅.
2: for arriving edges e ∈ E do
3: Draw Ae ∼ Ber(a(xe)) independently. . attenuate with probability a(xe)
4: if e is active, not blocked and Ae = 1 then
5: M←M∪ {e}.
6: return M

We consider Algorithm 2 with the quadratic attenuation function a1(x) := (1− (3− e)x)2 when
working with general graphs, and a new attenuation function, a2(x) := (1 − x)4/(ex − ex)2 for
x ∈ [0, 1) where a2(1) := limx→1− a(x) = 4/e2, when working with bipartite graphs.

Theorem 3.2 (General graphs). If a(x) = a1(x), where a1(x) := (1 − (3− e)x)2, then Algorithm
2 is e2−4e3+e4+20e−22

4e2
≥ 0.474035 selectable for 1-regular general graphs.

Theorem 3.3 (Bipartite graphs). If a(x) = a2(x), where a2(x) := (1 − x)4/(ex − ex)2, then
Algorithm 2 is e2+e4−10

2e4
≥ 0.476089 selectable for 1-regular bipartite graphs.

Remark 3.4. Our RCRS for attaining the positive results as claimed in Table 1 hold due to the
reduction of Lemma 3.1, which is computationally efficient. Note that for bipartite graphs, the
reduction to a 1-regular instance is done in a way that preserves bipartiteness.

As in the adversarial order setting, we define Se := Xe · Ae and say that e survives (the
attenuation function a) if Se = 1. Observe that each edge e survives independently with probability
q(xe) := xea(xe). We say that f ∈ ∂(e) is early (for e), provided Yf < Ye and f survives.
Otherwise, f is late. Denote the early edges of e by Fe. Observe that if e survives and Fe = ∅,
then e is selected by Algorithm 2 (note that the latter event is equivalent to aloneu(e) ∩ alonev(e)
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in our OCRS terminology). In [9], Brubach et al. use a different attenuation function to argue
that P[Fe = ∅] ≥ (1 − e−2)/2 ≥ 0.432, and it is not hard to see that their analysis is tight.
Our improvement comes from restricting to 1-regular inputs, as this allows e to be matched when
Fe 6= ∅, yet none of the edges of Fe were matched.

Definition 5. Fix e = (u, v) ∈ E, and suppose that f ∈ ∂(e) has vertex w not in e. We say that
h ∈ ∂(w) \ {(u,w), (v, w)} is a simple-blocker for f , denoted sblockerf (h), if:

1. h arrives before f (i.e., Yh < Yf ).

2. Each h′ ∈ ∂(h) \ ∂(e) is late for h.

We denote the event in which f has some simple-blocker by blockerf . If blockerf occurs for each
f ∈ Fe, then we say that Fe is safe (for e).

Observe the following basic properties of the simple-blocker definition:

Proposition 3.5. For any f ∈ ∂(e):

1. f has at most one simple-blocker.

2. The event blockerf is independent from the random variables Sf and (Yg, Sg)g∈∂(e)∪{e}\{f}.

Moreover, if Fe is safe, then each edge f ∈ Fe cannot get selected, as its endpoint not in (u, v)
must already have been matched. The following thus trivially holds:

Proposition 3.6. If Fe is safe, and e survives, then e ∈M.

3.1 Proving Theorem 3.2

Throughout this section, we analyze Algorithm 2 when executed with the quadratic attenuation
function a(x) = (1− (3− e)x)2. However, we are careful to isolate the required analytic properties
of a as we proceed through the argument (see Propositions 3.8, 3.10 and 3.12, which we prove in
Appendix A).

We consider the case when there is at most one early edge; that is, |Fe| ≤ 1. Observe first that
by Proposition 3.6,

P[e ∈M | Se = 1] ≥ P[|Fe| = 0] + P[Fe is safe and |Fe| = 1]. (3.1)

In order to lower bound the r.h.s. of (3.1), it will be convenient to first condition on Ye = y for
an arbitrary y ∈ [0, 1]. The expression P[|Fe| = 0 | Ye = y] is then easy to control, since |Fe| is
distributed as

∑
g∈∂(e) Ber(yq(xg)) where the Bernoulli’s are independent, and so

P[|Fe| = 0 | Ye = y] =
∏

g∈∂(e)

`(xg, y), (3.2)

where `(xg, y) := 1 − yq(xg) is the probability that g is late. We focus on lower bounding
P[Fe is safe and |Fe| = 1 | Ye = y]. In order to do so, we fix f ∈ ∂(e) with vertex w not in e,
and derive a lower bound on the likelihood that h ∈ ∂(w) \ {(u,w), (v, w)} is a simple-blocker for
f , conditional on f ∈ Fe. Note that if f = (w, u) (or f = (w, v)), then we define f c := (w, v)
(respectively, f c := (w, u)) to be the pair of f in the triangle {(u, v), (w, v), (w, u)}.
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Lemma 3.7 (First-order minimization). If f has vertex w not in e, then for each h ∈ ∂(w)\{f, f c},

P[sblockerf (h) | {f ∈ Fe}, Ye = y] ≥ q(xh)

zh

(
1− e−zh

zhy

)
, (3.3)

where zh = 2(1− xh)− xf − xfc.

In order to prove Lemma 3.7, we show that the minimum probability of the event sblockerf (h)
corresponds to when all the edges h′ ∈ ∂(w) \ {f, f c} have vanishing edges values. This is implied
by the following analytic properties of the attenuation function a:

Proposition 3.8 (First-order minimization). For each x, y ∈ [0, 1], the function x → ln `(x, y) is
convex. Moreover, a(0) = 1, and a is continuous and decreasing on [0, 1].

Proof of Lemma 3.7. Let us assume that f = (u,w), and h ∈ ∂(w) \ {f, f c}. We then condition
on Ye = y, Sf = 1, Yf = yf , and Yh = yh, where yf , yh ∈ [0, y] satisfy yh < yf . Our goal is to
first derive a lower bound on P[sblockerf (h) | Yh = yh, Yf = yf ]. Observe that since yh < yf , h is a
simple-blocker for f if and only if each h′ ∈ ∂(h) \ ∂(e) is late for h. Thus,

P[sblockerf (h) | Yh = yh, Yf = yf , Ye = y] = xha(xh)
∏

h′∈∂(h)\∂(e)

`(xh′ , yh) (3.4)

where we recall that `(xh′ , yh) := 1− yhq(xh′). Now, (3.4) is when minimized when ∂(h) \ ∂(e) has
as many edges as possible, so we hereby assume w.l.o.g. that ∂(h) ∩ ∂(e) = {f, f c}. In order to
minimize (3.4), we analyze ∑

h′∈∂(h)\{f,fc}

log `(xh′ , yh), (3.5)

subject to
∑

h′∈∂(h)\{f,fc} xh′ = 2−2xh−xf −xfc =: zh. The convexity of xh′ → log `(xh′ , yh) guar-
anteed by Proposition 3.8 allows us to conclude that (3.5) is minimized when maxh′∈∂(h)\{f,fc} xh′ =
o(1) and |∂(h) \ {f, f c}| → ∞. Thus,

P[sblockerf (h) | Yh = yh, Yf = yf , Ye = y] ≥ xha(xh) exp (−zhyh) . (3.6)

(We provide the full details in Appendix A, as this part of the argument is due to [9]). Using (3.6),
we integrate over yh ∈ [0, yf ], followed by yf ∈ [0, y], to get that

P[Yf ≤ y and sblockerf (h) | Ye = y] ≥ xha(xh)
∫ y

0

∫ yf

0
exp (−zhyh) dyh dyf

=
xha(xh)

z2h
(zhy + exp(−zhy)− 1) .

Finally, after dividing both sides by P[Yf ≤ y] = y, the proof is complete.

Next, we lower bound the probability that f has a simple-blocker, conditional on f ∈ Fe.

Lemma 3.9 (Second-order minimization). For each f ∈ ∂(e),

P[blockerf | {f ∈ Fe}, Ye = y] ≥
q(1− xf − xfc)

xf + xfc

(
1− e−(xf+xfc )y

(xf + xfc)y

)
=: T (xf + xfc , y).
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We prove Lemma 3.9 by characterizing the minimum probability of the event blockerf . This
minimum occurs when w of f = (w, u) has a single neighbor (other than u and w), and its
corresponding edge value is 1 − xf − xfc . Note that this is the opposite worst-case in comparison
to Lemma 3.7. Our proof relies on the following property of a:

Proposition 3.10 (Second-order minimization). For all x ∈ [0, 1], a′(x)
a(x) +

4
1−x −

2(1−exp(x−1))
exp(x−1)−x ≤ 0.

Proof of Lemma 3.9. Let us assume that f = (w, u) for some w ∈ N(u)\{v}. We shall assume that
1−xf−xfc < 1, as otherwise the statement follows immediately. In this case,

∑
h∈∂(w)\{f,fc} xh > 0

since w has fractional degree 1 (as G is 1-regular). Observe that by definition, blockerf occurs if
and only if ∪h∈∂(w)\{f,fc}sblockerf (h) occurs. On the other hand, f has at most one simple-blocker
by Proposition 3.5. Thus, after applying Lemma 3.7, if zh := 2(1− xh)− xf − xfc , then

P[blockerf | f ∈ Fe, Ye = y] ≥
∑

h∈∂(w)\{f,fc}

xha(xh)

zh

(
1− e−zh

zhy

)
, (3.7)

subject to the constraint,
∑

h∈∂(w)\{f,fc} xh = 1− xf − xfc . Fix y, xf and xfc . We claim that the
worst-case for (3.7) occurs when |∂(w) \ {f, f c}| = 1, and the single edge h within this set satisfies
xh = 1− xf − xfc . In this case, the r.h.s of (3.7) is T (xf + xfc , y) so this will complete the proof.

Define A(xh) := xha(xh)
zh

(
1− e−zh

zhy

)
. Observe that if we can show that A(xh) is decreasing as a

function of xh on the interval [0, 1 − xf − xfc ], then this will imply the claimed worst-case. Now,
setting B(xh) := logA(xh), we have that

B(xh) = log a(xh)− 2 log zh + log(zhy + e−yzh − 1),

and so after differentiating B with respect to xh,

B′(xh) =
a′(xh)

a(xh)
+

4

zh
− 2y(1− exp(−yzh)
zhy + exp(−yzh − 1)

. (3.8)

Our goal is to show that B′(xh) ≤ 0 for all xh ∈ [0, 1]. First, since zh ∈ [0, 2], the function

y → 2y(1− exp(−yzh))
zhy + exp(−yzh − 1)

is decreasing, and so (3.8) is minimized at y = 1, when it is equal to

a′(xh)

a(xh)
+

4

zh
− 2(1− exp(−zh))
zh + exp(−zh − 1)

.

Similarly, the function

zh →
4

zh
− 2(1− exp(−zh))
zh + exp(−zh − 1)

is decreasing in zh, and thus increasing in xh (as zh = 2− 2xh − xf − xfc). Its maximum therefore
occurs at xh = 1− xf − xfc , and so (3.8) is upper-bounded by

a′(xh)

a(xh)
+

4

1− xh
− 2(1− exp(xh − 1))

exp(xh − 1)− xh
,

which is at most 0 by Proposition 3.8. Thus, B′(xh) ≤ 0 for all xh ∈ [0, 1], and so B(xh) is
decreasing as a function of xh. By exponentiating, the same statement is true for A(xh), and so
the proof is complete.
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Recall that by Proposition 3.5, for each f ∈ ∂(e) the event blockerf is independent from random
variables (Sg, Yg)g∈∂(e)\{f}. We can therefore apply Lemma 3.9, to get that

P[Fe is safe and |Fe| = 1 | Ye = y] ≥
∑

f∈∂(e)

T (xf + xfc , y) · q(xf )y
∏

g∈∂(e)\{f}

`(xg, y).

Thus, combined with (3.2), (3.1) implies that P[e ∈M | Se = 1] is lower bounded by

obj(G,x, e) :=
∫ 1

0

∏
g∈∂(e)

`(xg, y) +
∑

f∈∂(e)

T (xf + xfc , y) · q(xf )y
∏

g∈∂(e)\{f}

`(xg, y) dy. (3.9)

In order to prove the theorem, we must identify the infimum of the function obj over graphs which
contain e, and whose fractional matching assigns xe to e. We claim that no matter the value of
xe, the infimum occurs when |∂(e)| → ∞ and maxf∈∂(e) xf = o(1) (i.e., the Poisson regime). In
order to prove this, we apply a vertex-splitting procedure. Specifically, fix any k ≥ 1, and replace an
arbitrary vertex w ∈ N(u) ∪N(v) \ {u, v} with k copies of itself, say w1, . . . , wk. Let G′ = (V ′, E′)
be the resulting graph. We define a new fractional matching x′ for G′ where we split the values
of the edges incident to w uniformly amongst w1, . . . , wk, and keep the remaining edge values the
same. That is, x′wi,r := xw,r/k for each i ∈ [k] and r ∈ V \ {w1, . . . , wk}, and x′f := xf for all other
f ∈ E. We lower bound obj(G,x, e) by the limiting value of obj(G′,x′, e) as k →∞.

Lemma 3.11 (Vertex Splitting). obj(G,x, e) ≥ limk→∞ obj(G′,x′, e).

Lemma 3.11 relies on the following properties of a:

Proposition 3.12 (Vertex splitting). For all x1, x2, y ∈ [0, 1], define

Q(x1, x2, y) := T (x1 + x2, s)(yq(x1)`(x2, y) + yq(x2)`(x1, y)). (3.10)

Then,

1. `(x1, y)`(x2, y)− exp(−(x1 + x2)y) ≥ 0.

2. The function y → `(x1, y)`(x2, y) + Q(x1, x2, y) − e−(x1+x2)y
(
1 + (x1+x2)a(1)y2

2

)
is initially

non-negative on [0, 1], and changes sign at most once. Moreover,∫ 1

0
`(x1, s)`(x2, s) +Q(x1, x2, s)− e−(x1+x2)s

(
1 +

(x1 + x2)a(1)s
2

2

)
ds ≥ 0.

We also make use of the following elementary lower bound on the integral of the product of two
functions.

Lemma 3.13. Suppose that λ, φ : [0, 1] → R are integrable, λ ≥ 0, and λ is non-increasing.
Moreover, assume that there exists 0 ≤ sc ≤ 1 such that φ(s) ≥ 0 for all s ∈ [0, sc], and φ(s) ≤ 0
for all s ∈ [sc, 1]. Then, ∫ 1

0
φ(s)λ(s) ds ≥ λ(sc)

∫ 1

0
ψ(s) ds

Proof of Lemma 3.11. Recall that w ∈ NG(u) ∪NG(v) \ {u, v} is the vertex which is copied k ≥ 1
times in the construction G′. For convenience, we define ∂̃(e) := ∂G(e) \ ∂G(w). We first define
ψk(y) to be integrand of obj(G′,x′, e). To write out this function, it will be convenient to use

T (x1 + x2, y) =
q(1− x1 − x2)

x1 + x2

(
1− e−(x1+x2)y

(x1 + x2)y

)
,
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and Q(x1, x2, y) = T (x1+x2, y)(yq(x1)`(x2, y)+yq(x2)`(x1, y)), where the latter function is defined
in (3.10) of Proposition 3.12. Observe then that ψk(y) is equal to∑

f∈∂̃(e)

T (xf + xfc , y) · yq(xf )(`(xw,u/k, y)`(xw,v/k, y))
k

∏
g∈∂̃(e)\{f}

`(xg, y)

+kQ(xu,w/k, xv,w/k, y) · (`(xw,u/k, y)`(xw,v/k, y))
k−1

∏
g∈∂̃(e)

`(xg, y)

+(`(xw,u/k, y)`(xw,v/k, y))
k
∏

g∈∂̃(e)

`(xg, y)

Instead of working directly with ψk(y), we consider its point-wise limit as k →∞. First, using the
continuity of a, and the fact that a(0) = 1,

lim
k→∞

(`(xw,u/k, y)`(xw,v/k, y))
k = lim

k→∞
(`(xw,u/k, y)`(xw,v/k, y))

k−1 = e−(xw,u+ww,v)y,

and
lim
k→∞

k(yq(xu,w/k)`(xv,w/k, y) + yq(xv,w/k)`(xu,w/k, y)) = (xu,w + xv,w)y.

Moreover, it is not hard to show that limx→0+ T (x, y) exists, and is equal to a(1)y/2. Thus,

lim
k→∞

kQ(xu,w/k, xv,w/k, y) =
a(1)(xu,w + xv,w)y

2

2
.

By combining all these expressions, limk→∞ ψk(y) is equal to∑
f∈∂̃(e)

T (xf + xfc , y) · q(xf )ye−(xw,u+ww,v)y
∏

g∈∂̃(e)\{f}

`(xg, y)

+

(
a(1)(xu,w + xv,w)y

2

2
+ 1

)
e−(xw,u+ww,v)y

∏
g∈∂̃(e)

`(xg, y).

Let us compare limk→∞ ψk(y) with the integrand of obj(G,x, e):∑
f∈∂̃(e)

T (xf + xfc , y) · q(xf )y
∏

g∈∂(e)\{f}

`(xg, y) +
∏

g∈∂(e)

`(xg, y) +Q(xf , xfc , y)
∏

g∈∂̃(e)

`(xg, y).

Define D1(y) to be the difference of each expression’s first term:

D1(y) :=
∑

f∈∂̃(e)

(
`(xu,w, y)`(xv,w, y)− e−(xw,u+ww,v)y

)
T (xf + xfc , y)yq(xf )

∏
g∈∂̃(e)\{f}

`(xg, y).

Similarly, let D2(y) be the difference of each expression’s remaining terms:(
`(xu,w, y)`(xv,w, y) +Q(xf , xfc , y)−

(
1 +

a(1)(xu,w + xv,w)y
2

2

)
e−(xw,u+ww,v)y

) ∏
g∈∂̃(e)

`(xg, y).

Observe now that we can exchange the order of integration and point-wise convergence so that

lim
k→∞

obj(G′,x′, e) = lim
k→∞

∫ 1

0
ψk(y) dy =

∫ 1

0
lim
k→∞

ψk(y) dy.
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Thus, to complete the proof it suffices to show that
∫ 1
0 Di(y) dy ≥ 0 for each i ∈ [2]. We start with

D1. Observe that `(xu,w, y)`(xv,w, y) − e−(xw,u+ww,v)y ≥ 0 for all y ∈ [0, 1] by the first property
of Proposition 3.12. Moreover, the remaining terms in each summand of D1 are non-negative, so∫ 1
0 D1 ≥ 0. Consider now D2. Observe that the function y →

∏
g∈∂̃(e) `(xg, y) is non-increasing in

y, as `(xg, y) := 1 − yq(xg), and q(xg) ∈ [0, 1] for xg ∈ [0, 1]. Moreover, by the second property of
Proposition 3.12, the function

y →
(
`(xu,w, y)`(xv,w, y) +Q(xf , xfc , y)−

(
1 +

a(1)(xu,w + xv,w)y
2

2

)
e−(xw,u+ww,v)y

)
,

is initially non-negative, changes sign at most once, and has a non-negative integral. Thus, we can
apply Lemma 3.13 (with λ as the first function, and φ as the second), to conclude that

∫ 1
0 D2 ≥ 0.

Given any ε > 0, we can apply Lemma 3.11 to each vertex of NG(u) ∪NG(v) \ {u, v} to get a
graph G∗ = (V ∗, E∗), and a fractional matching x∗ of G∗, such that x∗e = xe, and x∗f ≤ ε for all
f ∈ ∂(e). Moreover, obj(G∗,x∗, e) ≤ obj(G,x, e)+ε. Since this holds for each ε > 0, the infimum of
obj for a fixed edge e with fractional value xe occurs provided |∂(e)| → ∞ and maxf∈∂(e) xf = o(1).
In particular, suppose G′

k is the graph formed after splitting each vertex of NG(u)∪NG(v) \ {u, v}
into k ≥ 1 copies. Let φk(y) be the integrand of obj when evaluated on G′

k, its corresponding
fractional matching, and the edge e. By the above discussion,

obj(G,x, e) ≥ lim
k→∞

∫ 1

0
φk(y) dy.

On the other hand, for each y ∈ [0, 1],

φk(y) =
∏

g∈∂(e)

(`(xg/k, y))
k +

∑
f∈∂(e)

T ((xf + xfc)/k, y) · q(xf/k)y
∏

g∈∂(e)\{f}

(`(xg/k, y))
k. (3.11)

Now, by taking k →∞, and applying the same asymptotic computations from the proof of Lemma
3.11,

lim
k→∞

φk(y) =

1 +
∑

f∈∂(e)

a(1)xfy
2

2

 e−
∑

f∈∂(e) xfy.

Thus, since
∑

f∈∂(e) xf = 2(1− xe), limk→∞ φk(y) = exp (−2y(1− xe)) (1+ a(1)(1− xe)y2), and so

obj(G,x, e) ≥
∫ 1

0
e−2(1−xe)y

(
1 + a(1)(1− xe)y2

)
dy, (3.12)

where we have once again exchanged the order of integration and point-wise convergence. The
proof of Theorem 3.2 now follows immediately.

Proof of Theorem 3.2. First, observe that after multiplying (3.9) by a(xe), P[e ∈ M | Xe = 1] ≥
a(xe) · obj(G,x, e). Now, after applying (3.12),

a(xe) · obj((xf )f∈∂(e)) ≥ a(xe)
∫ 1

0
e−2y(1−xe)(1 + a(1)(1− xe)y2) dy. (3.13)

Upon evaluating the integral in (3.13), we get a function of xe whose minimum occurs at xe = 0

when it takes on the value e2−4e3+e4+20e−22
4e2

≥ 0.474035. The proof is thus complete.
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3.2 Proving Theorem 3.3

We now consider when Algorithm 2 is executed on a bipartite graph G = (V,E) using the attenu-
ation function a(x) = (1− x)4/(ex − ex)2. Note that the precise bipartition of G is not important,
and the theorem in fact holds when G is only triangle-free8.

Our proof follows the same structure as the general graph case in that after fixing e ∈ E, we
consider at most one early edge (i.e., |Fe| ≤ 1). Observe that our new attenuation function satisfies
the same analytic properties stated in Propositions 3.8 and 3.10, and so we can apply the argument
from the previous section to get that

P[e ∈M | Se = 1] ≥
∫ 1

0

∏
g∈∂(e)

`(xg, y) +
∑

f∈∂(e)

T (xf + xfc , y) · q(xf )y
∏

g∈∂(e)\{f}

`(xg, y) dy. (3.14)

(See Appendix A for a verification of the claimed analytic properties of a). Unfortunately, the
attenuation function does not satisfy the properties of Proposition 3.12, and so we cannot conclude
that the r.h.s. of (3.14) is minimized for vanishing edge values. Instead, we use the lack of triangles
in G to first simplify this expression before identifying its infimum. Specifically, observe that xfc = 0
for each f ∈ ∂(e). Thus, T (xf + xfc) becomes T (xf ), and so the r.h.s. is∫ 1

0

∏
g∈∂(e)

`(xg, y) +
∑

f∈∂(e)

T (xf , y) · q(xf )y
∏

g∈∂(e)\{f}

`(xg, y) dy

Let us denote the above equation by obj(G,x, e), and consider the same vertex splitting procedure
as before for k ≥ 1. Note that the resulting graph G′ is triangle-free, as G is triangle-free. By
restricting obj to triangle-free inputs, we are able to prove an analogous version of Lemma 3.11.
We rely on the following properties of a, which we note are a special case (i.e, weakening) of those
presented in Proposition 3.12.

Proposition 3.14 (Triangle-free vertex splitting). For all x, y ∈ [0, 1],

1. `(x, y)− exp(−xy) ≥ 0.

2. The function y → `(x, y)+yq(x)T (x, s)−e−xy
(
1 + xa(1)y2

2

)
is initially non-negative on [0, 1],

and changes sign at most once. Moreover,∫ 1

0
`(x, s) + yq(x)T (x, s)− e−xs

(
1 +

xa(1)s2

2

)
ds ≥ 0.

Lemma 3.15 (Triangle-free vertex splitting). obj(G,x, e) ≥ limk→∞ obj(G′,x′, e).

The proof of Lemma 3.15 is identical to that of Lemma 3.11, but with a different attenuation
function substituted in.

Proof of Theorem 3.3. We can use Lemma 3.15 to conclude that no matter the value of xe, the
infimum of obj occurs as |∂(e)| → ∞ and maxf∈∂(e) xf = o(1). Moreover, the same asymptotic
computation used in (3.12) can be applied to get that

obj(G,x, e) ≥
∫ 1

0
e−2(1−xe)y

(
1 + a(1)(1− xe)y2

)
dy, (3.15)

8We cannot claim a selectability lower bound of 0.476 for all triangle-free graphs, as our 1-regular reduction may
create triangles when G is not bipartite.
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where the only difference is that the r.h.s. of (3.15) now has a(1) = 4/e2. Thus,

P[e ∈M | Xe = 1] ≥ a(xe)
∫ 1

0
e−2y(1−xe)(1 + a(1)(1− xe)y2) dy.

After evaluating the above integral, we get a function of xe whose minimum occurs at xe = 0 when
it takes on the value e2+e4−10

2e4
≥ 0.476089. The proof is thus complete.

3.3 Impossibility Result for RCRS

Theorem 3.16. No RCRS is better than 1/2-selectable on bipartite graphs.

In order to prove Theorem 3.16, we again analyze the complete 1-regular bipartite graph with
2n vertices and uniform edge values, except instead of adversarially chosen edge arrivals, we work
with random order edge arrivals. Let G = (U1, U2, E) where E = U1 × U2, and |U1| = |U2| = n for
n ≥ 1, and set xe = 1/n for all e ∈ E. Once again, we work in the asymptotic setting as n → ∞.
We say that a sequence of events (En)n≥1 occurs with high probability (w.h.p.), provided P[En]→ 1
as n→∞.

Lemma 3.17. For any RCRS which outputs matching M on G, E[|M |] ≤ (1+o(1))n
2 .

Assuming Lemma 3.17, Theorem 3.16 then follows immediately.

Proof of Theorem 3.16. Suppose that we fix an arbitrary RCRS which is c-selectable for c ≥ 0,
and let M be the matching it creates when executing on G. Clearly, E[|M |]/n ≥ c by definition of
c-selectability. By applying Lemma 3.17, and taking n→∞, we get that c ≤ 1/2.

To prove Lemma 3.17, we consider an algorithm for maximizing E[|M |] and show that the
cardinality of the matching cannot exceed (1+o(1))n

2 in expectation. Without loss of generality, we
can assume such an algorithm is deterministic, even though we will refer to it colloquially as an
“RCRS”.

For each 1 ≤ t ≤ n2, let Ft be the tth edge of G presented to the RCRS, and denote its state
by XFt (clearly, XFt ∼ Ber(1/n)). Observe that if Et := {F1, . . . , Ft}, then conditional on Et, Ft+1

is distributed u.a.r. amongst E \ Et for 0 ≤ t ≤ n2 − 1. If Mt is the matching constructed by
the RCRS after t rounds, then since the RCRS is deterministic, Mt is a function of (Fi, XFi)

t
i=1.

Thus, Mt is measurable with respect to Ht, the sigma-algebra generated from (Fi, XFi)
t
i=1 (here

H0 := {∅,Ω}, the trivial sigma-algebra). We refer to Ht as the history after t steps. It will be
convenient to define W (t) := n · |Mt| for each 0 ≤ t ≤ n2. We can think of W (t) as indicating the
weight of the matching Mt, assuming each edge of G has weight n.

Let w(s) := s/(1 + s) for each real s ≥ 0. Note that w is the unique solution to the differential
equation w′ = (1 − w)2 with initial condition w(0) = 0. Roughly speaking, we will prove that
w.h.p., the random variable W (t)/n2 is upper bounded by (1 + o(1))w(t/n2) for each 0 ≤ t ≤ n2.

Proposition 3.18. For each constant 0 ≤ δ < 1, with probability at least 1− o(1/n2),

W (t) ≤ (1 + o(1))w(t/n2)n2

for all 0 ≤ t ≤ δn2.

We emphasize that in Proposition 3.18, a constant δ is fixed first, and n is taken to ∞ after-
ward. As we take constant δ to be arbitrarily close to 1, the 1/2 upper bound in Lemma 3.17 is
established. We now provide the proof of this fact. The rest of this section is then devoted to
proving Proposition 3.18.

26



Proof of Lemma 3.17 using Proposition 3.18. Fix 0 ≤ δ < 1. Observe that Proposition 3.18 implies

E[W (δn2)] ≤ (1− o(1/n2))(1 + o(1))w(δ)n2 + o(1/n2)δn2 = (1 + o(1))w(δ)n2, (3.16)

where the o(1/n2)δn2 term uses the bound that W (δn2) cannot exceed the expected weight of active
edges up to time δn2, which is δn2. Moreover, the same bound yields E[W (n2)−W (δn2)] ≤ (1−δ)n2.
Thus,

E[W (n2)] ≤ (1 + o(1))
δ

1 + δ
n2 + (1− δ)n2,

and so after dividing by n2, E[|Mn2 |]/n ≤ (1+o(1)) δ
1+δ+(1−δ). Since this holds for each 0 ≤ δ < 1,

and δ
1+δ + (1− δ)→ 1/2 as δ → 1, we get that

E[|Mn2 |]
n

≤ (1 + o(1))
1

2
.

As E[|Mn2 |] is an upper bound on the expected size of any matching created by an RCRS, the
proof is complete.

In order to prove Proposition 3.18, for each constant 0 ≤ δ < 1, and 0 ≤ t ≤ δn2, we first
upper bound the expected one-step changes of W (t), conditional on the current history Ht. More
formally, we upper bound E[∆W (t) | Ht], where ∆W (t) := W (t+ 1)−W (t). Our goal is to show
that

E[∆W (t) | Ht] ≤ (1 + o(1))

(
1− W (t)

n2

)2

.

It turns out that this upper bound only holds for most instantiations of the random variables
(Fi)

t
i=0 (upon which the history Ht depends). We quantify this by defining a sequence of events,

(Qt)
δn2

t=0, which occur w.h.p., and which help ensure the upper bound holds.
Fix a pair of vertex subsets (S1, S2), where Sj ⊆ Uj for j = 1, 2. We say that (S1, S2) is large,

provided |Sj | ≥ n/2 for j = 1, 2. Given 0 ≤ t ≤ n2, we say that (S1, S2) is well-controlled at time
t, provided

|Lt ∩ S1 × S2| ≤ (1 + n−1/3)|S1||S2|
(
1− t

n2

)
, (3.17)

where Lt := E \Et denotes the edges which have yet to arrive after t rounds. We define the event
Qt to occur, provided each pair of large vertex subsets is well-controlled at time t. Observe that
the event Qt is Ht-measurable.

Lemma 3.19. For any constant 0 ≤ δ < 1, P[∩δn2

i=0Qi] ≥ 1− o(1/n2).

Proof. We shall prove that for each 0 ≤ i ≤ δn2, Qi holds with probability at least 1 − o(1/n4).
Since there are δn2 ≤ n2 rounds, this will imply that P[∩δn2

i=0Qi] ≥ 1 − o(1/n2) after applying a
union bound.

Observe first that Li = E \ Ei is a uniformly random subset of E of size n2 − i. Thus,
|Li ∩ S1 × S2| is distributed as a hyper-geometric random variable on a universe of size n2 with
success probability |S1||S2|/(n2 − i) (we denote this by |Li ∩ S1 × S2| ∼ Hyper(n2, |S1||S2|, n2 − i).
Now, the distribution Hyper(n2, |S1||S2|, n2 − i) is at least as concentrated about its expectation
as the binomial distribution, Bin(n2, |S1||S2|/(n2− i)) (see Chapter 21 in [17] for details). As such,
standard Chernoff bounds ensure that if µ := |S1||S2|

(
1− i

n2

)
, then for each 0 < λ < 1,

P[|Li ∩ S1 × S2| ≥ (1 + λ)µ] ≤ exp

(
−λ2µ
3

)
.
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By assumption, |S1||S2| ≥ n2/4. Thus, since 0 ≤ i ≤ δn2, µ ≥ n2(1 − δ)/4. By taking λ = n−1/3,
we get that

|Li ∩ S1 × S2| ≥ (1 + λ)|S1||S2|
(
1− i

n2

)
with probability at most exp

(
−n4/3(1−δ)

12

)
which is exp

(
−Ω(n4/3)

)
because δ < 1 is a constant.

Now, after union bounding over at most 4n subsets, we get that Qt does not occur with probability
at most 4n exp(−Ω(n4/3)) = o(1/n4). The proof is thus complete.

Let us define ε(t) := 4/n1/3 + 2t/n7/3 for each 0 ≤ t ≤ n2. Upon conditioning on the history
Ht for 0 ≤ t ≤ δn2, if Qt occurs and W (t) ≤ (1 + ε(t))w(t/n2)n2, then we can upper bound
E[∆W (t) | Ht].

Lemma 3.20. For each 0 ≤ t ≤ δn2, if Qt occurs and W (t) ≤ (1 + ε(t))w(t/n2)n2, then

E[∆W (t) | Ht] ≤ (1 + n−1/3)

(
1− W (t)

n2

)2

. (3.18)

Remark 3.21. Note that the assumption W (t) ≤ (1 + ε(t))w(t/n2)n2 is what we are trying to
prove in Proposition 3.18. This is a common feature of Wormald’s dfferential equation method [28]
(see [Lemma 8, [27]] for an explicit statement), where the deterministic behaviour of the function
w(t/n2) guides the assumptions one places on the random variable W (t/n2). We shall see that the
proof structure of Proposition 3.18 is amicable to this approach.

Proof of Lemma 3.20. Suppose 0 ≤ t ≤ δn2 is such that Qt occurs and W (t) ≤ (1+ε(t))w(t/n2)n2.
Observe that since W (t) = n|Mt|, it suffices to show that

E[|Mt+1| − |Mt| | Ht] ≤
1

n
(1 + n−1/3)

(
1− |Mt|

n

)2

.

For j = 1, 2, let Uj,t denote the vertices of Uj which are not selected by the RCRS after edges
Et = {F1, . . . , Ft} arrive, where Uj,0 := Uj . Since the graph is bipartite, we have |Uj,t| = n− |Mt|.
Observe that a necessary condition for the RCRS to match Ft+1 is that it must be an edge of
U1,t ×U2,t. On the other hand, conditional on Ht, Ft+1 is distributed u.a.r. amongst Lt := E \Et.
Thus,

P[Ft+1 ∈ U1,t × U2,t | Ht] =
|(U1,t × U2,t) ∩ Lt|

|E \ Lt|
=
|(U1,t × U2,t) ∩ Lt|

n2 − t
, (3.19)

where the equality follows since |E \Lt| = n2−t. In order to simplify (3.19), we make use the upper
bound on W (t), and the occurrence of the event Qt. First, W (t) ≤ (1 + ε(t))w(t/n2)n2, where we
note that w(t/n2) ≤ w(δ) = δ

1+δ < 1/2, and hence for a sufficiently large n we have W (t) ≤ n2/2
and hence |Mt| ≤ n/2. Thus, |Uj,t| = (n− |Mt|) ≥ n/2, and so we can apply (3.17) to subsets U1,t

and U2,t to ensure that

|(U1,t × U2,t) ∩ Lt| ≤ (1 + n−1/3)(n− |Mt|)2
(
1− t

n2

)
.

Combined with (3.19), this implies that

P[Ft+1 ∈ U1,t × U2,t | Ht] ≤
(1 + n−1/3)(n− |Mt|)2

n2
= (1 + n−1/3)

(
1− |Mt|

n

)2

. (3.20)
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Now, a second necessary condition for the RCRS to match Ft+1 is that Ft+1 must be active (i.e.,
XFt+1 = 1). This event occurs with probability 1/n, independently of the event Ft+1 ∈ U1,t × U2,t

and the history Ht. By combining both necessary conditions, and (3.20),

E[|Mt+1| − |Mt| | Ht] ≤
1

n
(1 + n−1/3)

(
1− |Mt|

n

)2

,

and so the proof is complete.

Observe that since ∩δn2

t=0Qt holds w.h.p., by scaling both t and W (t) by n2, (3.18) suggests the
following differential inequality satisfied for each real s ≥ 0:

r′(s) ≤ (1− r(s))2, (3.21)

where r(0) = 0 (it is useful to think of s = t/n2). When (3.21) is replaced with equality, recall
that w(s) := s/(1 + s) is then the unique solution to the corresponding differential equation. A
classical result due to Petrovitsch [24] implies that any solution r(s) to (3.21) is dominated by the
function w(s); that is, r(s) ≤ w(s) for all 0 ≤ s ≤ δ (this can also be seen as an application of
Gronwall’s inequality). The analogous statement holds when working with the (scaled) random
variables (W (t)/n2)δn

2

t=0, and this is exactly the statement of Proposition 3.18.
If we were working with the greedy RCRS, then (3.18) of Lemma 3.20 would be replaced with

equality. In this case, Wormald’s differential equation method [28, 27] immediately implies that
w.h.p. W (t) = (w(t/n2)+ o(1))n2 for all 0 ≤ t ≤ δn2. Unfortunately, we are not aware of a similar
“black-box” theorem statement which allows for the inequality in Lemma 3.20. Proposition 3.18
can instead be proven using the critical interval approach, which was first used in [26], and whose
terminology is due to [8]. The proof follows the same structure as in [Section 3.3, [7]], with a minor
modification needed to account for the event ∩δn2

i=0Qi. We also need to use Freedman’s inequality
[16] instead of the Azuma–Hoeffding inequality. The details of the proof are included below for
completeness.

Proof of Proposition 3.18. Fix 0 ≤ δ < 1. For each 0 ≤ t ≤ n2, recall that ε(t) := 4/n1/3+2t/n7/3.
We then define the critical interval It := [(w(t/n2) + ε(t)/2)n2, (w(t/n2) + ε(t))n2]. The benefit of
working with It is that if W (t/n2) enters It, then it is tightly bounded around w(t/n2). We can
then use the analytic properties of w to show that W (t/n2) is unlikely to exceed (w(t/n2)+ε(t))n2.
We prove this using a supermartingale argument in conjunction with Freedman’s inequality; see
[Section 2, [7]] for the exact form of the inequality we invoke.

Given j ≤ t ≤ δn2, we define Ej,t to occur, provided the following events occur:

1. W (i) ≤ (w(i/n2) + ε(i))n2 for all 0 ≤ i ≤ t,

2. W (i) ∈ Ii for all j ≤ i ≤ t,

3. ∩ti=0Qi occurs.

Thus, if Ej,t occurs, then W (i) lies within the critical interval for steps, j ≤ i ≤ t, and also does
not exceed the right-hand endpoint of Ii at any point 0 ≤ i ≤ t. The final condition ensures that
the rare event ¬Qi does not occur at any time step 0 ≤ i ≤ t.
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For each 0 ≤ j ≤ δn2, we define a sequence of random variables, (Nj(t))
δn2

t=j , where

Nj(t) =

{
W (t)− (w(t/n2) + ε(t)) if t = j, or t > j and Ej,t−1 occurs.
Nj(t− 1) otherwise.

Note that we can view Nj(t) as being frozen or stopped, at the first time t ≥ j when Ej,t−1 fails to
occur.

In order to see why we have defined these random variables, let us suppose that W (t) >
(w(t/n2) + ε(t))n2 for some 0 ≤ t ≤ δn2, and t is the first step at which this occurs. First observe
that t > 0, since W (0) = 0. Now, if we assume that ∩δn2

i=0Qi also occurs, then Ej,t−1 must occur for
some 0 ≤ j ≤ t− 1. Let j be the minimum such time. Again, j > 0, as W (0) = 0 < ε(0)n2/2 (and
so W (0) /∈ I0). Moreover, since ∩ji=0Qj occurs and W (j) ≤ (w(j/n2) + ε(j))n2, it must be that
W (j − 1) < (w((j − 1)/n2) + ε(j − 1))n2. Thus, j is the first step the random variables (W (i))δn

2

i=0

enter the critical interval.
Our goal is to show that if the above t exists, then the difference between Nj(δn

2) and Nj(j)
must be large. First observe that Nj(δn

2) = Nj(t) > 0, by the assumption on t. Now, W (j) ≤
W (j−1)+n (as at most one edge is added in a round), and W (j−1) < (w((j−1)/n2)+ε(j−1))n2

(as already argued). Thus, W (j) ≤ (w((j−1)/n2)+ε(j−1)/2)n2+n. Since w((j−1)/n2) ≤ w(j/n2)
and ε(j − 1) ≤ ε(j), we get that

Nj(j) =W (j)− (w(j/n2) + ε(j))n2

≤ (w((j − 1)/n2) + ε(j − 1)/2)n2 + n− (w(j/n2) + ε(j))n2

= (w((j − 1)/n2) + ε(j − 1)/2− w(j/n2)− ε(j))n2 + n

≤ −ε(j)n
2

2
+ n ≤ −ε(0)n

2

2
+ n ≤ −n5/3,

where the last inequalities follow since ε(0) ≤ ε(j), and ε(0)n2 = 4n5/3. Putting everything
together, we get that

P[∩δn2

i=0Qi and ∃ 0 ≤ t ≤ δn2 :W (t) > (w(t/n2) + ε(t))n2]

≤ P[∩δn2

i=0Qi and ∃ 0 < j ≤ δn2 : Nj(δn
2)−Nj(j) > n5/3]

≤
δn2∑
j=1

P[Nj(δn
2)−Nj(j) > n5/3].

It follows that

P[∃ 0 ≤ t ≤ δn2 :W (t) > (w(t/n2) + ε(t))n2] ≤
δn2∑
j=0

P[Nj(δn
2)−Nj(j) > n5/3] + P[∪δn2

i=0¬Qi]

≤
δn2∑
j=0

P[Nj(δn
2)−Nj(j) > n5/3] + o(1/n2),

where the final line follows by Lemma 3.19. Thus, in order to complete the proof, it suffices to
show that P[Nj(δn

2)−Nj(j) > n5/3] ≤ o(1/n4) for each 0 < j ≤ δn2.
Fix 0 < j ≤ δn2. Using Lemma 3.20, we shall first show that (Nj(t))

δn2

t=j forms a supermartingale.
To see this, let us assume that Ej,t occurs for t ≥ j, as the other case is easy. Under this assumption,
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the events of Lemma 3.20 hold, and so we get that

E[∆W (t) | Ht] ≤ (1 + n−1/3)

(
1− W (t)

n2

)2

≤
(
1− w(t/n2)

)2
+ n−1/3,

where the second inequality follows since W (t)
n2 ≥ (w(t/n2) + ε(t)/2) ≥ w(t/n2) (as W (t)/n2 is

within the critical interval It). By applying this inequality, and ε(t + 1) − ε(t) = 2n−7/3, we get
that

E[∆Nj(t) | Ht] = E[∆W (t) | Ht]− (w((t+ 1)/n2)− w(t/n2))n2 − (ε(t+ 1)− ε(t))n2

≤
(
1− w(t/n2)

)2 − (w((t+ 1)/n2)− w(t/n2))n2 − n−1/3,

Now, (w((t+1)/n2)−w(t/n2))n2 = w′(t/n2)+O(1/n2) by Taylor’s theorem, and we also know that
w′(t/n2) = (1 − w(t/n2))2. Thus, combined with the above, E[∆Nj(t) | Ht] ≤ 0 for n sufficiently
large. It follows that (N(t))δn

2

t=j forms a supermartingale.
In order to apply Freedman’s inequality, we must control the one-step changes in the super-

martingale. Recall that |∆W (t)| ≤ n, and so,

|∆Nj(t)| ≤ n+O(1/n2)− n−1/3 ≤ n

for n sufficiently large. Similarly,

E[|∆Nj(t)| | Ht] ≤
1

n
n+O(1/n2)− n−1/3 ≤ 1,

for n sufficiently large. By combining these upper bounds, we can control the conditional variance
of ∆N(t) in the following way:

Var[∆N(t) | Ht] ≤ E[|∆N(t)|2 | Ht] ≤ n.

Using the form of Freedman’s inequality from [Section 2, [7]], it follows that for any λ > 0,

P[∃ 0 ≤ t ≤ δn2 : Nj(t)−Nj(j) ≥ λ] ≤ exp

(
− λ2

2(δn3 + nλ)

)
.

In particular, setting λ = n5/3,

P[Nj(δn
2)−Nj(j) ≥ n−5/3] ≤ exp

(
−Θ(n1/3)

)
.

Since exp
(
−Θ(n1/3)

)
= o(1/n4), the desired upper bound holds, and so the proof is complete.
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A Deferred Proofs from Section 3
Below we state a detailed version of Lemma 3.1 for general graphs. Note that this construction
does not preserve bipartiteness; for bipartite graphs, we give another reduction (Lemma A.2) which
does preserve the bipartiteness.

Lemma A.1 (Reduction to 1-Regular Inputs – Long Version). Given G = (V,E) with fractional
matching x = (xe)e∈E, for each k ≥ |V |, there exists G′ = (V ′, E′) and x′ = (x′e)e∈E′ with the
following properties:

1. |V ′ \ V | = k, |E′ \ E| = k(|V |+ k − 1), and (G′,x′) can be computed in poly(nk) time.

2. (G′,x′) is 1-regular.

3. If there is an α-selectable RCRS for G′ and x′, then there exists an α-selectable RCRS for G
and x.

4. G is a subgraph of G′, with x′e = xe for all e ∈ E, and x′e ≤ 1/|V | for all e ∈ E′ \ E.

Proof of Lemma A.1. The graph G′ is constructed as follows. We create a k-clique Kk = (Vk, Ek)
of dummy vertices. Let EG,k = {(u, vk) | u ∈ V ∧vk = Vk} be a set of edges connecting every vertex
in V to each of the vertices of the dummy Kk. Then, V ′ = V ∪ Vk and E′ = E ∪Ek ∪EG,k. Then,
x′ is given by setting x′e = xe for every e ∈ E and x′e = (1 − xu)/k for e = (u, v) ∈ EG,k, where
xu :=

∑
v∈V xu,v. Finally, for e = (v, v′) ∈ Ek, let x′e = (1−

∑
e∈E

xe
k )/k;

Certainly, for e ∈ EG,k ∪ Ek, we have x′e ≤ 1/k ≤ 1/|V |.
Clearly, |V ′ \ V | = |Vk| = k, and |E′ \ E| = |Ek| + |EG,k| = k(k − 1) + k|V |. If n = |V |,

we can certainly therefore construct G′ in time O(k + nk) = poly(nk), and similarly each x′e
can be computed in time poly(nk). The construction also clearly ensures that for each u ∈ V ,∑

v∈V ′ x′uv = xu+
∑

v∈Vk
xuv = 1. We can similarly verify that, for v ∈ Vk, we have

∑
v′∈V ′ xv,v′ = 1.

Now consider an α-selectable RCRS for (G′,x′). We now show how to produce an α-selectable
RCRS for (G,x). For each edge e ∈ E′ \ E, generate a uniformly random arrival time Y ′

e ∈ [0, 1].
Then, we run the RCRS for G′, allowing the edges of E′ \E to arrive in the order of Y ′

e (letting Y ′
e

for an edge e ∈ E be equal to its original arrival time in G).
Clearly, the arrivals of E′ are uniformly random, so the RCRS for G′ selects each edge e ∈ E′

with probability at least αxe (since the RCRS is α-selectable). Since the RCRS further processes
the edges of E in their original (random) order, this is also an RCRS for G, and it is clearly
α-selectable.

Next we show a similar reduction for the case when G is bipartite.

Lemma A.2 (Reduction to 1-Regular Inputs for Bipartite Graphs – Long Version). Given bipartite
G = (U ∪ V,E) with fractional matching x = (xe)e∈E, there exists bipartite G′ = (U ′ ∪ V ′, E′) and
x′ = (x′e)e∈E′ with the following properties:

1. (G′,x′) can be computed in poly(nk) time.

2. (G′,x′) is 1-regular.

3. If there is an α-selectable RCRS for G′ and x′, then there exists an α-selectable RCRS for G
and x.

4. G is a subgraph of G′, with x′e = xe for all e ∈ E, and x′e ≤ 1/|V | for all e ∈ E′ \ E.

35



Proof. The graph G′ is constructed as follows. First, assume w.l.o.g. that |U | = |V | (we can do
this by creating dummy vertices on the smaller side with edge values of 0). Let n := |U |. We create
a biclique Kn,n = (UK ∪ VK , EK) of dummy vertices. Let EG,K = (U × VK) ∪ (UK ∪ V ) be a set of
edges connecting every vertex in G to each of the vertices of the dummy Kn,n. Let U ′ = U ∪ UK ,
V ′ = V ∪ VK , and E′ = E ∪ EK ∪ EG,K .

Then, x′ is given by setting x′e = xe for every e ∈ E and x′e = (1− xu)/n for e = (u, v) ∈ EG,K ,
where xu :=

∑
v∈V xu,v. Clearly, for u ∈ U , we have

∑
v∈V ′ x′uv = 1 and similarly for v ∈ V ,∑

u∈U ′ x′uv = 1.
Finally, for e = (u, v) ∈ EK , set x′uv := 1

n2

∑
v∈V xv. Note that by the handshaking lemma, we

have
∑

v∈V xv =
∑

u∈U xu so x′uv = 1
n2

∑
u∈U xu.

Therefore, for u ∈ UK , we have:

x′u =
∑
v∈V ′

x′uv =
∑
v∈V

x′uv+
∑
v∈VK

x′uv =
1

n

∑
v∈V

(1−xv)+
∑

vK∈VK

1

n2

∑
v∈V

xv =
1

n

∑
v∈V

(1−xv)+
1

n

∑
v∈V

xv = 1

and similarly, for v ∈ VK :

x′v =
∑
u∈U

x′uv +
∑
u∈UK

x′uv =
1

n

∑
u∈U

(1− xu) +
∑

uK∈UK

1

n2

∑
u∈U

xu =
1

n

∑
u∈U

(1− xv) +
1

n

∑
u∈U

xu = 1

Certainly, for e ∈ EK ∪ EG,K , we have x′e ≤ 1/n ≤ 1/|V |.
We have |U ′| = 2|U |, |V ′| = 2|V |, and |E′ \E| = |U |2|V |2. We can certainly therefore construct

G′ in time poly(n), and similarly each x′e can be computed in time poly(n). By the same argument
as in the proof of Lemma A.1, an α-selectable RCRS for (G′,x′) can be used to get an α-selectable
RCRS for (G,x).

Proof of Equation 3.6 from Lemma 3.7. In order to prove (3.6), we will show that∏
h′∈∂(h)\{f,fc}

`(xh′ , yh) ≥ exp (−zhyh) , (A.1)

where we recall that `(xh′ , yh) := 1 − yhq(xh′), and zh := 2 − 2xh − xf − xfc . To begin, we
exponentiate the left-hand side of (A.1) to get

exp

 ∑
h′∈∂(h)\{f,fc}

log `(xh′ , y)

 . (A.2)

Our goal is then to minimize ∑
h′∈∂(h)\{f,fc}

log `(xh′ , yh), (A.3)

subject to
∑

h′∈∂(h)\{f,fc} xh′ = 2 − 2xh − xf − xfc = zh. Observe that by Proposition 3.8,
log `(xh′ , yh) is convex as a function xh′ for each h′ ∈ ∂(h) \ {f, f c}. Thus, if k := |∂(h) \ {f, f c}|,
then (A.3) is minimized when xh′ = zh/|∂(h) \ {f, f c}| for each h′ ∈ ∂(h) \ {f, f c}, and k → ∞.
By applying the first part, we get that∑

h′∈∂(h)\{f,fc}

log `(xh′ , yh) ≥ log
(
1− yhq

(zh
k

))k
.

36



and so,

exp

 ∑
h′∈∂(h)\{f,fc}

log `(xh′ , y)

 ≥ exp

(
log
(
1− yhq

(zh
k

))k)

=
(
1− yhq

(zh
k

))k

Now, since a(0) = 1 (and a is continuous), limk→∞ k · q
(
zh
k

)
= limk→∞ zha

(
zh
k

)
= zh. Thus,

lim
k→∞

(
1− yhq

(zh
k

))k
= lim

k→∞
exp

(
−kyhq

(zh
k

))
= exp (−zhyh) .

Since the minimum of (A.3) occurs as k →∞, (A.1) holds.

We give an outline for proving the properties of Proposition 3.8 for both attenuation functions
a1(x) and a2(x).

Proof of Proposition 3.8. First observe that a1(0) = a2(0) = 1, and a1 and a2 are continuous and
decreasing on [0, 1] (by definition, we extended a2 to be continuous at x = 1). We follow the same
approach for checking the remaining properties of a1 and a2.

Consider the second derivative d2

dx2 ln `(x, y); minimizing this over all x ∈ [0, 1], y ∈ [0, 1] gives
a minimum of 0 at x = y = 0. Thus, if we fix any y ∈ [0, 1], the function x 7→ d2

dx2 `(x, y) is
nonnegative for x ∈ [0, 1], implying that for this fixed value of y, x 7→ ln `(x, y) is convex on the
interval [0, 1].

We give an outline for verifying the properties of Proposition 3.10 for both a1 and a2.

Proof of Proposition 3.10. Begin with a1(x) = (1− (3− e)x)2. The function

x 7→ a′1(x)

a1(x)
+

4

1− x
− 2(1− exp(x− 1))

exp(x− 1)− x

is decreasing on the interval [0, 1], as can be seen by examining its first derivative. Thus, it is
maximized at x = 0, where it takes on value 0.

For a2, observe that a2(x) = (1− x)4/(ex − ex)2 is in fact the unique solution to the first-order
differential equation

y′(x)

y(x)
+

4

1− x
− 2(1− exp(x− 1))

exp(x− 1)− x
= 0,

with initial condition y(0) = 1. Thus, the required property holds by definition.

Next, we give an outline for proving Proposition 3.12 for attenuation function a1.

Proof of Proposition 3.12. The first property can be checked fairly easily: the minimum value of
`(x1, y)`(x2, y)−exp(−(x1+x2)y) over x1, x2, y ∈ [0, 1] occurs either when of x1 = x2 = 0 or y = 0,
for which `(x1, y)`(x2, y)− exp(−(x1 + x2)y) = 0.
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The second property is more complicated to verify. We provide here an outline of the verification.
Set I(x1, x2) :=

∫ 1
0 `(x1, s)`(x2, s) + Q(x1, x2, s) − e−(x1+x2)s

(
1 + (x1+x2)a(1)s2

2

)
ds. This function

has a closed form, and its minimum occurs when x1 = x2 = 0,
Next, let Fx1,x2(s) := `(x1, s)`(x2, s) + Q(x1, x2, s) − e−(x1+x2)s

(
1 + (x1+x2)a(1)s2

2

)
. It can be

observed that for x1, x2 ∈ [0, 1], Fx1,x2(0) = 0, F ′
x1,x2

(0) ≥ 0, and F ′′
x1,x2

(s) ≤ 0 for all s ∈
(0, 1). These can be checked easily by e.g. numerically minimizing F ′

x1,x2
(0) over x1, x2 ∈ [0, 1] and

numerically maximizing F ′′
x1,x2

(s) over x1, x2, s ∈ [0, 1] (we find that the minimum of F ′
x1,x2

(0) is
F ′
x1,x2

(0) = 0, and the maximum of F ′′
x1,x2

(s) occurs for x1 = x2 = 0 where F ′′
0,0(s) = 0 for all s).

Thus, Fx1,x2(s) is initially nonnegative and increasing.
Now, suppose for sake of contradiction that for a given x1, x2, there exist two points s1 < s2 for

which Fx1,x2 changes sign, and without loss of generality, assume these are the first two such points.
Since Fx1,x2 is initially nonnegative and increasing, it must be the case that Fx1,x2 is positive on
the interval (0, s1) with F ′

x1,x2
(s1) < 0 and negative on the interval (s1, s2) with F ′

x1,x2
(s2) > 0.

Therefore, it must be the case that F ′
x1,x2

(s) is increasing on the interval (s1, s2), but this means that
F ′′
x1,x2

(s) > 0 somewhere on this interval; however, it was observed previously that F ′′
x1,x2

(s) ≤ 0
on the entire interval (0, 1).

Proof of Proposition 3.14. The same approach used in the proof of Proposition 3.12 allows us to
verify that a2 satisfies the properties of Proposition 3.14. The proof is nearly identical to that
of 3.14, so we omit it here.
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