
PERFECT MATCHINGS IN THE SEMI-RANDOM GRAPH PROCESS

PU GAO, CALUM MACRURY, AND PAWE L PRA LAT

Abstract. The semi-random graph process is a single player game in which the player is
initially presented an empty graph on n vertices. In each round, a vertex u is presented
to the player independently and uniformly at random. The player then adaptively selects
a vertex v, and adds the edge uv to the graph. For a fixed monotone graph property, the
objective of the player is to force the graph to satisfy this property with high probability in
as few rounds as possible.

We focus on the problem of constructing a perfect matching in as few rounds as possible.
In particular, we present an adaptive strategy for the player which achieves a perfect match-
ing in βn rounds, where the value of β < 1.206 is derived from a solution to some system
of differential equations. This improves upon the previously best known upper bound of
(1 + 2/e + o(1))n < 1.736n rounds. We also improve the previously best lower bound of
(ln 2 + o(1))n > 0.693n and show that the player cannot achieve the desired property in
less than αn rounds, where the value of α > 0.932 is derived from a solution to another
system of differential equations. As a result, the gap between the upper and lower bounds
is decreased roughly four times.

1. Introduction and Main Results

1.1. Definitions. In this paper, we consider the semi-random process suggested by Peleg
Michaeli and studied recently in [3, 2, 5] that can be viewed as a “one player game”. The
process starts from G0, the empty graph on the vertex set [n] := {1, . . . , n} where n ≥ 1.
In each step t, a vertex ut is chosen uniformly at random from [n]. Then, the player (who
is aware of graph Gt and vertex ut) must select a vertex vt and add the edge utvt to Gt to
form Gt+1. The goal of the player is to build a (multi)graph satisfying a given property P
as quickly as possible. It is convenient to refer to ut as a square, and vt as a circle so every
edge in Gt joins a square with a circle. We say that vertex j ∈ [n] is covered by the square
ut arriving at round t, provided ut = j. The analogous definition extends to the circle vt.
Equivalently, we may view Gt as a directed graph where each arc directs from ut to vt. For
this paper, it is easier to consider squares and circles for counting arguments.

A strategy S is defined by specifying for each n ≥ 1, a sequence of functions (ft)
∞
t=1,

where for each t ∈ N, ft(u1, v1, . . . , ut−1, vt−1, ut) is a distribution over [n] which depends
on the vertex ut, and the history of the process up until step t − 1. Then, vt is chosen
according to this distribution. If ft is an atomic distribution, then vt is determined by
u1, v1, . . . , ut−1, vt−1, ut. Observe that this means that the player needs to select her strategy
in advance, before the game actually starts. We then denote (GSt (n))ti=0 as the sequence of
random (multi)graphs obtained by following the strategy S for t rounds; where we shorten
GSt (n) to Gt or Gt(n) when clear.

Suppose P is a monotonely increasing property. Given a strategy S and a constant 0 <
q < 1, let τP(S, q, n) be the minimum t ≥ 0 for which P[Gt ∈ P] ≥ q, where τP(S, q, n) :=∞

1

2 PU GAO, CALUM MACRURY, AND PAWE L PRA LAT

if no such t exists. Define

τP(q, n) = inf
S
τP(S, q, n),

where the infimum is over all strategies on [n]. Observe that for each n ≥ 1, if 0 ≤ q1 ≤ q2 ≤
1, then τP(q1, n) ≤ τP(q2, n) as P is increasing. Thus, the function q → lim supn→∞ τP(q, n)
is non-decreasing, and so the limit,

τP := lim
q→1−

lim sup
n→∞

τP(q, n)

n
,

is guaranteed to exist. The goal is typically to compute upper and lower bounds on τP for
various properties P .

1.2. Main Results. In this work, we focus on the property of having a perfect matching,
which we denote by PM. We remark that by convention, we say that a graph on an odd
number of vertices has a perfect matching, if the matching saturates all but one vertex.
Hence, if n is odd, then τPM(q, n) ≤ τPM(q, n + 1) by the following natural coupling between
the two corresponding processes. Indeed, the first strategy on n vertices may steal the second
strategy on n+ 1 vertices if the square and the circle are both on [n]. Otherwise, the square
and the circle are placed uniformly at random on [n]. Immediately the subgraph induced by
[n] by the second strategy is a subgraph of the graph constructed by the first strategy and
the inequality follows. Since τPM is an asymptotic definition in n, it suffices to consider only
even n. Note also that since we focus on creating perfect matchings, we shall hereby restrict
our attention to strategies which do not create self-loops.

Our first result is an improvement on the upper bound of τPM from 1 + 2/e < 1.73576 to
1.20524. The current upper bound of 1 + 2/e follows from the fact, first observed in [3], that
one may couple the semi-random process with the following process that generates a random
bipartite graph. This process is known to have a perfect matching with probability tending
to 1 as n → ∞ (a.a.s.) [7]. The graph has two bipartite parts of size n/2 and is generated
in two rounds. The first round is the bipartite version of the 1-out process. That is, each
vertex chooses an out-neighbour independently and uniformly at random from the other
vertex part. A vertex is classified as unpopular if it has been chosen by at most one vertex.
In the second round, each unpopular vertex chooses another out-neighbour independently
and uniformly at random from the other vertex part. The final bipartite graph is obtained
by ignoring the directions of the arcs.

We propose a fully adaptive algorithm to construct a semi-random graph with a perfect
matching, which gives the following upper bound on τPM.

Theorem 1.1. τPM ≤ β + 10−5 ≤ 1.20524, where β is derived from a system of differential
equations.

Our second result is an improvement on the lower bound of τPM from ln(2) ≥ 0.69314 to
0.93261. First observe that trivially τPM ≥ 1/2, as any strategy of the player must wait at
least n/2 rounds in order to build a perfect matching. In fact, this lower bound can be
improved to ln(2) ≥ 0.69314, as was first observed in [3]. There are two obvious necessary
conditions for the existence of a perfect matching, both giving exactly the same lower bound.
If there exists a perfect matching in Gt, then Gt has the minimum degree at least 1 and there
are at least n/2 vertices in Gt with at least one square. In order to warm-up we re-prove
this result in Subsection 3.1.

PERFECT MATCHINGS IN THE SEMI-RANDOM GRAPH PROCESS 3

Proposition 1.2 ([3]). τPM ≥ ln(2) ≥ 0.69314.

The precise statement of our lower bound is in terms of a root of a function. Specifically,
define

α = inf{b ≥ 0 : g(b) ≥ 1/2},
where

g(b) := 1 +
1− 2b

2
exp(−b)− (b+ 1) exp(−2b)− 1

2
exp(−3b)

We prove the following:

Theorem 1.3. τPM ≥ α ≥ 0.93261.

1.3. Previous Results. Let us briefly describe a few known results on the semi-random
process. In the very first paper [3], it was shown that the process is general enough to
approximate (using suitable strategies) several well-studied random graph models. In the
same paper, the process was studied for various natural properties such having minimum
degree k ∈ N or having a fixed graph H as a subgraph. In particular, it was proven that
a.a.s. one can construct H in less than ω n(d−1)/d rounds where d ≥ 2 is the degeneracy of
H, and ω = ω(n) is any function tending to infinity as n→∞. It was conjectured that their
general lower bound is sharp. This conjecture was recently proven in [1].

The property of having a Hamilton cycle, which we denote by HAM, was also studied for
the semi-random process. As observed in [3], if Gt has a Hamilton cycle, then Gt has the
minimum degree at least 2 yielding τHAM ≥ ln 2 + ln(1 + ln 2) ≥ 1.21973. On the other hand,
it is known that the famous 3-out process is a.a.s. Hamiltonian [4]. As the semi-random
process can be coupled with the 3-out process, we get that τHAM ≤ 3. A new upper bound
was obtained in [5] in terms of an optimal solution of an optimization problem, whose value is
believed to be 2.61135 by numerical support. In the same paper, the lower bound mentioned
above was shown to not be tight. Recently, the authors of this paper managed to analyze a
fully adaptive algorithm further improving the upper bound and managed to substantially
improve the lower bound. These results will be included in the forthcoming paper [6].

Finally, let us mention about the property of containing a given spanning graph H as a
subgraph. It was asked by Noga Alon whether for any bounded-degree H, one can construct
a copy of H a.a.s. in O(n) rounds. This question was answered positively in a strong sense
in [2], in which is was shown that any graph with maximum degree ∆ can be constructed
a.a.s. in (3∆/2 + o(∆))n rounds. They also proved that if ∆ = ω(log(n)), then this upper
bound improves to (∆/2+o(∆))n rounds. Note that both of these upper bounds are asymp-
totic in ∆. When ∆ is constant in n, such as in both the perfect matching and Hamiltonian
cycle setting, determining the optimal dependence on ∆ for the number of rounds needed to
construct H remains open.

2. Upper Bound

In this section, we describe an adaptive algorithm which builds a perfect matching in
around 1.2n rounds a.a.s. In order to warm-up, we start with a slightly simpler algorithm
to analyze and then discuss the adjustments needed to claim the desired upper bound. Note
that throughout the paper, floor is automatically applied to any number that needs to be
an integer (typically a function of n).

4 PU GAO, CALUM MACRURY, AND PAWE L PRA LAT

2.1. Warming-up. In this section we analyse a simplified algorithm which constructs a
semi-random graph with a perfect matching in less than 1.28n steps. The algorithm operates
in two stages. In the first stage, the algorithm keeps building the matching greedily whenever
possible, but will keep utvt for future augmentation if ut lands on a saturated vertex. In each
step of the algorithm we will keep track of a matching Mt that is currently built and the
set Ut of unsaturated vertices. We will also maintain a set of red vertices which is a subset
of vertices that are saturated by Mt. If a red vertex is hit by a square, then an augmenting
path will be created and we can update Mt to a larger matching. In order to briefly explain
the idea, imagine uv is an edge in the matching. If a square lands on u then we will place
its corresponding circle on an unsaturated vertex x, and then colour v red. If in the future
a square is placed on v, then we will place its corresponding circle on an unsaturated vertex
y. Now the path xuvy is an augmenting path. When the red vertex v receives a square, the
algorithm needs to know the neighbour of u that is unsaturated, and there might be several
of them. In this simple algorithm, we keep track of only the first square that landed on u.

We now formally describe the first stage of the algorithm. Suppose that at step t, ut lands
on a saturated vertex u and vt is the corresponding circle which is necessarily placed on an
unsaturated vertex. Colour vertex u as well as the edge utvt green, and colour the mate of
u in the matching red. Below is a formal description of the t-th step of the algorithm.

(A1) If ut ∈ Ut−1 then let vt be a uniformly random vertex in Ut−1. Let Mt = Mt−1∪{utvt}
and Ut = Ut−1 \ {ut, vt}. For every green vertex x, if it is adjacent to either ut or
vt by a green edge then uncolour this green edge and uncolour x (from green) and
uncolour the mate of x in Mt (from red).

(A2) If ut lands on a red vertex, then let vt be a uniformly random vertex in Ut−1. Let x
be the mate of ut in Mt−1. Let y be the vertex in Ut−1 which is adjacent to x by a
green edge. Let Mt be the matching obtained by augmenting along the path yxutvt,
and let Ut = Ut−1 \ {y, vt}. Update the green vertices and edges and the red vertices
accordingly as in (A1).

(A3) If ut lands on an uncoloured saturated vertex, then choose vt uniformly at random
from Ut−1. Colour the edge utvt and the vertex where ut lands on green and colour
the mate of ut in Mt−1 red. Let Mt = Mt−1 and Ut = Ut−1.

(A4) If ut lands on a green vertex, then let vt be an arbitrary vertex in [n]. Let Mt = Mt−1
and Ut = Ut−1. The edge utvt will not be used in the matching construction in the
future.

The first stage terminates at the step when |Ut| becomes at most εn where ε = 10−14. In the
second stage, we design the algorithm which saturates the remaining unsaturated vertices in
at most 100

√
εn = 10−5n steps. We will define and analyse the second stage after analysing

the first.

Let X(t) = 2|Mt| and let R(t) denote the number of red vertices. By the algorithm, R(t) is
also equal to the number of green vertices, and thus equal to the number of green edges. Let
Ht := (X(i), R(i))0≤i≤t. Note that Ht does not encompass the full history of random graph
process at time t (i.e., G0, . . . , Gt – the first t + 1 graphs constructed by the randomized
algorithm). We condition on less information so that the circle placements amongst the
unsaturated vertices remain distributed uniformly at random. This allows us to claim the

PERFECT MATCHINGS IN THE SEMI-RANDOM GRAPH PROCESS 5

following expected difference equations:

E[X(t+ 1)−X(t) | Ht] =
2(n−X(t) +R(t))

n
+O(1/n),

E[R(t+ 1)−R(t) | Ht] =
n−X(t)

n
· −2R(t)

n−X(t)
+
R(t)

n

(
−1− 2(R(t)− 1)

n−X(t)

)
+
X(t)− 2R(t)

n
+O(1/n).

The first equation above is obvious, as the probability that ut+1 lands on a vertex in Ut or
a red vertex is (n−X(t) +R(t))/n. The probability that vt+1 is on the same vertex as ut+1

in (A1), or is on vertex y in (A2), is O(1/n). In order to justify the second equation, note
that if ut+1 lands on a vertex in Ut, then two vertices z1 and z2 in Ut become saturated after
the augmentation. Since the ends of the set of green edges in Ut are uniformly distributed,
the expected number of green edges incident with z1 or z2 is equal to 2R(t)/(n−X(t)). The
other ends of these green edges become uncoloured from green after the augmentation which,
in turn, forces their mates to become uncoloured from red. If ut+1 lands on a red vertex,
the situation is similar, except that the mate of ut+1 is first uncoloured from green. If ut+1

lands on a green vertex, then there is no change to R(t). Finally, if ut+1 lands on a vertex
that is neither unsaturated nor coloured, then a new green vertex is created. This explains
the second equation above.

By writing x(s) = X(sn)/n and r(s) = R(sn)/n, we have that

x′ = 2(1− x+ z), (1)

r′ =
−2r

1− x
(1− x+ r)− r + x− 2r, (2)

with the initial conditions x(0) = r(0) = 0.
The right hand sides of (1) and (2) are continuous and Lipschitz in the connected open

set D = {(s, x, r) : −ε < s < 3, |r| < 2,−ε < x < 1 − ε/4} which contains the point
(0, x(0), z(0)) = (0, 0, 0). Let TD be the first step t where (t/n,X(t)/n,R(t)/n) /∈ D. Then,
|X(t + 1) − X(t)| ≤ 1 for every t < TD, and with probability O(n−2), |R(t + 1) − R(t)| ≤
log2 n for every t < TD (in order to see the second assertion, note that, in expectation,
every unsaturated vertex is adjacent to R(t)/|Ut| ≤ 4/ε green vertices, and thus the claim
easily follows by standard bounds on the tail probability of a binomial variable). By the
differential equation method of Wormald (see, for example, [9, Theorem 5.1] or [8]) (applied
with γ = O(n−2), β = log2 n and λ = n−1/4), the differential equations (1) and (2) with
the given initial conditions have a unique solution that can extend arbitrarily close to the
boundary of D, and a.a.s. X(t) = x(t/n)n+O(λn) for every t where t/n < σ where σ is the
supremum of s where x(s) ≤ 1− ε/3 and s < 3. Numerical calculations show that x reaches
1 − ε/3 before s = 1.2769497.1 Hence, a.a.s. after 1.2769497n steps there are at most εn
unsaturated vertices.

Finally, we describe the second stage of the algorithm, which we refer to as the clean-
up algorithm. Let j0 be the number of unsaturated vertices after the first stage. Thus,
j0 ≤ εn. Let jk = b(3/4)kj0c, for k = 1, 2, For each k ≥ 1, the algorithm saturates
jk−1 − jk unsaturated vertices by doing the following.

(i) Uncolour all vertices and squares in the whole graph.

1Maple worksheet may be accessed at https://math.ryerson.ca/~pralat/.

6 PU GAO, CALUM MACRURY, AND PAWE L PRA LAT

(ii) Sprinkle b
√

3jk−1n/4c semi-random edges utvt as follows. If ut lands on a saturated
vertex x, then let vt be an unsaturated vertex selected uniformly at random, and
colour the mate of x in Mt by red (which is possibly already red). If ut lands on an
unsaturated vertex, then let vt be an arbitrary vertex, and the algorithm will not use
this edge for constructing the matching.

(iii) Let R be the set of red vertices after (ii). At each step t, if ut lands on a red vertex
or an unsaturated vertex then let vt be a uniformly random unsaturated vertex, and
then augment Mt as in (A1) and (A2) as in the first stage, and update R accordingly.
Stop when |Ut| = jk. Let Tk be the total number of steps in (ii) and (iii).

The total number of steps in the final stage of constructing a perfect matching is then∑
k≥1 Tk. Next we bound Tk for every k. Of course, the number of steps in (ii) is at most√
3jk−1n/4. It is easy to show by standard concentration arguments that with probability

1−O(n−2), |R| ≥
√

3jk−1n/5 after (ii). (Indeed, since jk−1 ≤ εn and the number of rounds
is
√

3jk−1n/4 = o(n), E[|R|] ≥ (1 − ε + o(1))
√

3jk−1n/4.) During the execution of (iii),
for each augmentation that is performed, the expected number of red vertices that become
uncoloured is at most

1 + 2 ·
√

3jk−1n/4

jk
,

since the total number of red vertices is at most
√

3jk−1n/4, and the total number of unsat-
urated vertices in each round is at least jk. There are 1

2
(jk−1 − jk) total augmentations in

(iii). Thus, by standard concentration arguments, with probability 1 − O(n−2), at the end
of (iii),

|R| ≥
√

3jk−1n

5
− 2 ·

(
1 + 2 ·

√
3jk−1n/4

jk

)
· jk−1 − jk

2
=

√
3jk−1n

30
− jk−1

4
≥
√

2jk−1n

30
,

where the last inequality holds since jk−1 ≤ εn where ε = 10−14 by our choice. Conse-
quently, the probability that a square lands on a red vertex at each step in (iii) is at least√

2jk−1/30
√
n. Hence,

ETk ≤
1

4

√
3jk−1n+

(√
2jk−1

30
√
n

)−1
jk−1 − jk

2
< 3.1

√
jk−1n.

Then, again by standard concentration arguments, a.a.s.

Tk ≤ max{4
√
jk−1n, log2 n} = 4

√
jk−1n ≤ 4

√
(3/4)k−1ε · n, for every k ≥ 1.

Thus, a.a.s. the total number of steps consumed in the second stage is at most∑
k≥1

Tk ≤
∑
k≥1

4
√

(3/4)k−1ε · n < 100
√
εn.

By our choice of ε, 100
√
ε = 10−5, a.a.s. the total number of steps the algorithm spend on

constructing a perfect matching is at most (1.2769497 + 10−5)n < 1.27696n.

2.2. Improving the Upper Bound. In this section, we describe a modified algorithm
which allows us to get the claimed upper bound of Theorem 1.1. As before, the algorithm
keeps building the matching greedily whenever possible. However, instead of making random
choices, it will choose its circles both deterministically and in a strategic way. Specifically,
suppose that ut lands on a saturated vertex. In this case, we choose vt such that vt has
the minimum number of circles on it amongst the vertices of Ut−1. We make the analogous

PERFECT MATCHINGS IN THE SEMI-RANDOM GRAPH PROCESS 7

decision when ut lands on an unsaturated vertex, as well as when ut lands on a red vertex
and we wish to extend the matching via an augmenting path. We now formally describe our
algorithm for round t:

(B1) If ut ∈ Ut−1, then let vt be a vertex of Ut−1 with a minimum number of circles among
those in Ut−1 \ {ut}. Let Mt = Mt−1 ∪ {utvt} and Ut = Ut−1 \ {ut, vt}. For every
green vertex x, if it is adjacent to either ut or vt by a green edge then uncolour this
green edge and x (from green) and uncolour the mate of x in Mt (from red).

(B2) If ut lands on a red vertex, then let x be the mate of ut in Mt−1. Let y be the
vertex in Ut which is adjacent to x by a green edge. Let vt be a vertex of Ut−1 with
a minimum number of circles among those in Ut−1 \ {y}. Let Mt be the matching
obtained by augmenting along the path yxutvt, and let Ut = Ut−1 \ {y, vt}. Update
the green vertices and edges and the red vertices accordingly as in (B1).

(B3) If ut lands on an uncoloured saturated vertex, then let vt be a vertex of Ut−1 with a
minimum number of circles. Colour the vertex where ut lands on green and colour the
mate of ut in Mt−1 red. Colour the edge utvt green. Let Mt = Mt−1 and Ut = Ut−1.

(B4) If ut lands on a green vertex, then let vt be an arbitrary vertex in [n] \ Ut−1. (We
restrict to [n] \ Ut−1 so that we can conveniently keep track of the number of circles
on our unsaturated vertices.) Let Mt = Mt−1 and Ut = Ut−1. The edge utvt will not
be used in the matching construction in the future.

As before, we define X(t) to be the number of saturated vertices after t ≥ 0 rounds. Given

q ≥ 0, we define R̃q(t) to be the number of unsaturated vertices with precisely q circles after

t rounds. Note that R̃q(0) = 0 for all q ≥ 1, and R̃0(0) = n. Now, for q ≥ 1, we say that
a red vertex is of type q at round t, provided its mate in Mt is adjacent to an unsaturated
vertex via a green edge with precisely q circles on it. We denote Rq(t) as the number of red

vertices of type q at time t ≥ 0. Observe that Rq(t) = qR̃q(t) for q ≥ 1 and t ≥ 0. Observe
also that for every t ≥ 0, there is q where all red vertices are either of type q or of type q+ 1.

For each q ≥ 1, let us define the stopping time τq to be the smallest t ≥ 0 such that

R̃j(t) = 0 for all j < q. It is obvious that τq is well-defined and is non-decreasing in q.
Moreover, after the step τq, all unsaturated vertices in the graph have precisely q circles.
This is obvious if what happened in step τq is in case (B3). Case (B4) cannot happen in step
τq, as the number of circles on the unsaturated vertices does not change in this case. If case
(B1) or (B2) occurs in step τq, it is possible that vt receives more than q circles in some rare
situations, but vt becomes saturated after the augmentation and so the number of circles on

every other unsaturated vertex is equal to q. It follows then that R̃q(t) = |Ut| = n −X(t).
By definition, τ0 = 0. Let us refer to phase q as those τq−1 ≤ t < τq.

We shall analyze our algorithm for the first k phases using the differential equation method.
For the case when k = 1100, we show that a.a.s. X(τk) ≥ (1−10−6)n and τk ≤ 1.20365n. We
complete the perfect matching by running the randomized algorithm from Subsection 2.1.2

The only difference is that the initial conditions are x(0) = 1 − 10−6 (instead of x(0) = 0)
and z(0) = 0. The conclusion is that a.a.s. after additional 0.00158n steps there are at most
10−14n unsaturated vertices. As before, the clean-up algorithm for the remaining unsaturated
vertices takes at most 0.00001n rounds, yielding the upper bound of (1.20365 + 0.00158 +
0.00001)n = 1.20524n.

2Maple worksheet may be accessed at https://math.ryerson.ca/~pralat/.

8 PU GAO, CALUM MACRURY, AND PAWE L PRA LAT

2.2.1. Analyzing the k phases. Unlike in the analysis of the randomized algorithm, we can
safely condition on the full history of the random graph process in each phase. If G0, . . . , Gt

correspond to the first t + 1 graphs constructed by the deterministic algorithm, then let
Ht := (G0, . . . , Gt).

In phase 1, we place circles on the unsaturated vertices, thus creating red vertices of type 1.
This leads to the following equations regarding the expected changes of X(t) and R1(t), for
0 ≤ t < τ1:

E[X(t+ 1)−X(t) | Ht] = 2

(
n−X(t) +R1(t)

n

)
,

E[R1(t+ 1)−R1(t) | Ht] =

(
X(t)− 2R1(t)

n

)
− 2R1(t)

n
+O(1/n).

Observe that the first equation follows, since 2 vertices become saturated whenever a square
lands on a red vertex, or an unsaturated vertex. The second equation follows since we create
an additional red vertex whenever a square lands on an uncoloured saturated vertex (of
which there exist X(t) − 2R1(t)). We destroy a red vertex whenever a square lands on a
type 1 red vertex, or an unsaturated vertex with one circle on it. There are R1(t) of each of
these. Note that the O(1/n) term accounts for contributions from the following two cases.
In the first case, ut lands on an unsaturated vertex which is the unique one in Ut which is
not covered by a circle. In that case, R1(t) decreases by one, but the probability that this
case occurs is O(1/n). In the other case, ut lands on a red vertex as in case (B2) where y
happens to be the only unsaturated vertex in Ut that is not covered by any circle. Again, it
is easy to see that the expected contribution from this case is O(1/n).

Suppose that the functions x1, y1 : [0,∞)→ R are the the unique solution to the following
system of differential equations:

x′1 = 2(1− x1 + y1)

y′1 = x− 4y1,

with initial conditions x1(0) = y1(0) = 0. Let c1 > 0 be the unique value such that y1(c1) =
1− x1(c1). By applying the differential equation method, we can derive the following:

Proposition 2.1. There exists a function ε1(n) = o(1), such that a.a.s for all 0 ≤ t ≤ τ1 it
holds that

max{|X(t)− x1(t/n)n|, |R1(t)− y1(t/n)n|} ≤ ε1n.

Moreover, |τ1 − c1n| ≤ ε1n a.a.s.

Let us now consider phase q ≥ 2. Observe that there exist red vertices only of types q− 1
and q during phase q. Thus, we can track the total number of red vertices at time t by just
focusing on the random variables Rq−1(t) and Rq(t). Specifically, observe the following for
τq−1 ≤ t < τq:

E[X(t+ 1)−X(t) | Ht] = 2

(
n−X(t)

n
+
Rq−1(t)

n
+
Rq(t)

n

)
,

E[Rq(t+ 1)−Rq(t) | Ht] = q

(
(X(t)− 2Rq(t)− 2Rq−1(t))−Rq(t)

n

)
−Rq(t)

n
+O(1/n),

PERFECT MATCHINGS IN THE SEMI-RANDOM GRAPH PROCESS 9

where

Rq−1(t) = (q − 1)

(
n−X(t)− Rq(t)

q

)
.

The first equation follows since 2 vertices become saturated whenever a square lands on
either an unsaturated vertex, or a red vertex. The second equation describes the expected
change in the red vertices of type q. Note that q such vertices are created when a square lands
on a saturated and uncoloured vertex, of which there are precisely X(t)− 2Rq(t)− 2Rq−1(t).
Similarly, q red vertices of type q are destroyed when the square lands on a red vertex of
type q, as well as when the square lands on an unsaturated vertex with precisely q circles.

Observe that there are Rq(t) of the former, and R̃q(t) = Rq(t)/q of the latter. Finally, the
O(1/n) term accounts for the rare case when vt is forced to be placed on a vertex with q
circles for the same reason as in phase 1.

We define a system of differential equations for each phase q ≥ 2, whose initial conditions
are determined inductively. The differential equation method implies that the trajectories
of the random variables X(t) and Rq(t) are concentrated around the solutions of these
differential equations in every phase. Let us assume that we have defined a system for
phase q − 1, whose solution has functions xq−1 and yq−1, and a value cq−1 ≥ 0 such that
yq−1(cq−1) = 1 − xq−1(cq−1) (observe that the base case holds by Proposition 2.1). Note
that we may interpret cq−1n as approximately the point in the process at which all the
unsaturated vertices have q− 1 circles, thus corresponding to the end of phase q− 1. Define
xq, yq, zq : [cq−1,∞) → R to be the unique solution to the following system of differential
equations:

x′q = 2(1− xq + yq + zq),

y′q = q(xq − 3yq − 2zq)− yq,
with initial conditions xq(cq−1) = xq−1(cq−1), zq(cq−1) = yq−1(cq−1), and yq(cq−1) = 0, where
zq = (q − 1)(1 − x − yq/q). Let cq ≥ 0 be the unique value such that yq(cq) = 1 − xq(cq) –
observe that this is precisely the value such that zq(cq) = 0, for all q ≥ 2. By applying the
differential equation method inductively for each phase q, we get the following:

Proposition 2.2. For each q ≥ 1, there exists a function εq(n) = o(1), such that a.a.s, for
all 0 ≤ t ≤ τq it holds that

max{|X(t)− xq(t/n)n|, |Rq(t)− yq(t/n)n|} ≤ εqn.

Moreover, |τq − cqn| ≤ εqn a.a.s.

Proposition 2.3. If k = 1100, then a.a.s. τk ≤ 1.20365 and X(τk) ≥ (1− 10−6)n.

After k = 1100 phases, we have constructed a matching Mτk which a.a.s. has at least
(1 − 10−6)n/2 edges. To complete the perfect matching, we apply the 2-stage randomised
algorithm from Section 2.1. First, we uncolour all vertices and edges of the graph. Then,
we keep exactly (1− 10−6)n/2 edges in Mτk , and “artificially” delete the other edges in the
matching, and put the incident vertices into Uτk . Starting again from t = 0, the argument
from Section 2.1 can be generalized to show that X(t) and R(t) follow the solutions of the
differential equations (1) and (2) with initial conditions x(0) = 1− 10−6 and r(0) = 0. This
is because we can reproduce the analysis of the algorithm from Section 2.1 with (1− 10−6)n
initial edges in the matching, opposed to none. Numerical solutions show that x(0.00158) >
1− ε, where ε = 10−14. The clean-up algorithm from Section 2.1 completes the construction

10 PU GAO, CALUM MACRURY, AND PAWE L PRA LAT

in 100
√
εn = 10−5n rounds. This yields an upper bound of 1.20365+0.00158+10−5 = 1.20524

on τPM, as in Theorem 1.1. �

3. Lower Bound

Throughout the section, we will repeatedly apply the following claim when deriving bounds
on τP for a property P :

Proposition 3.1. Given α > 0, suppose that for any strategy S and 0 < δ < α,

P[GST (n) ∈ P]→ 0

as n→∞, where T = T (n) = (α− δ)n. Then τP ≥ α.

3.1. Warming-up. We start with the proof of Proposition 1.2 as a warm-up for our im-
proved result. Suppose that we consider some strategy S of the player which begins on the
empty graph on vertex set [n]. Recall that we say the vertex j ∈ [n] is covered by the
square ut arriving at round t, provided ut = j. The analogous definition extends to the circle
vt. Let Sj(t) denote the number of squares covering j, and let Cj(t) denote the number of
circles covering j, after t steps of the strategy.

Suppose that X(t) is the number of vertices of Gt which are covered by at least one square.
Let us fix a constant c < ln(2), and consider T = T (n) = cn. Observe that if Gt has a perfect
matching at time t ≥ 0, then at least n/2 vertices of [n] must have been covered by at least
one square; that is, X(t) ≥ n/2. On the other hand, X(t) = n−

∑
j∈[n] 1{Sj(t)=0}, and so

E[X(t)] =
∑
j∈[n]

(1− P[Sj(t) = 0]) = n

(
1−

(
1− 1

n

)t)
= (1 + o(1))n(1− exp(−t/n)).

Thus, combined with a second moment computation, one can conclude that for any fixed
t ≥ 0, a.a.s.

X(t) = (1 + o(1))n(1− exp(−t/n)).

Now, T/n ≤ c, and c < ln(2), so a.a.s.

X(T) ≤ n(1 + o(1))(1− exp(−c)) < n/2.

Therefore, a.a.s. GT does not have a perfect matching. Since this holds for each c < ln(2),
Proposition 3.1 implies the desired property and the proof is finished.

3.2. Reducing to an Approximate Perfect Matching. Given a constant c > 0 and
a function ω = ω(n), we say that a strategy S is ω-well-behaved for cn rounds, if for all
0 ≤ t ≤ bcnc, each vertex of Gt(n) is covered by at most ω circles. In order to prove Theorem
1.3, we work with strategies which are well-behaved for an appropriate choice of ω. We will
also define a new property P which satisfies τP ≤ τPM. Moreover, we will show that general
strategies do not perform significantly better than well-behaved strategies for building a
graph in P . This allows us to restrict to analysing well-behaved strategies, and the various
random variables yielded by these strategies. Since the strategies are well-behaved, the set of
random variables under concern have the nice “bounded-Lipschitz” property that is essential
for the application of the differential equation method. We start with the definition of the
new property P on the family of directed graphs, and we use D[S] to denote the directed
graph induced by set S ⊆ V (D) for a directed graph D.

PERFECT MATCHINGS IN THE SEMI-RANDOM GRAPH PROCESS 11

Definition 3.2. Suppose that D is a directed graph with m arcs on vertex set [n]. We say
that D has an (µ, δ)-approximate perfect matching, denoted by D ∈ PM(µ, δ), if there
exists a subset S ⊆ [n] such that:

(A1) D[S] has a perfect matching.
(A2) All the vertices of S have in-degree at most µ in D.
(A3) |S| ≥ n− 2mδ.

A perfect matching of D[S] is then called a (µ, δ)-approximate perfect matching of D.

We first observe the following relation between PM and PM(µ, δ).

Proposition 3.3. For any function µ = µ(n), it holds that

τPM(µ, µ−1) ≤ τPM.

Proof. Suppose that D is a directed graph which has a perfect matching M . Let V1 be the set
of vertices whose in-degree is greater than µ(n). Let V2 be the set of isolated vertices obtained
once vertices in V1 are removed from M . Clearly, |V2| ≤ |V1| ≤ m/µ. Let S = [n]\ (V1∪V2).
Obviously, D[S] has a perfect matching, and |S| ≥ n− |V1| − |V2| ≥ n− 2|V1| ≥ n− 2mµ−1.
It follows that it is at least as easy to create an approximate perfect matching than to create
a perfect one. The proof is completed. �

Next, we confirm that general strategies do not behave significantly better than well-
behaved strategies for constructing a directed graph in PM(µ, µ−1), where we view every edge
in Gt as an arc from the square to the circle. Moreover we may safely restrict to strategies
that construct only simple graphs, as intuitively relocating vt when utvt is already an edge
would perform no worse, if not better. In the next proposition, we obtain a strategy S2
from a given strategy S1 by copying the moves of S1 whenever the move does not create a
multiple edge, or create a vertex with too many circles. Otherwise, S2 relocates the circle to
a different vertex (for counting purpose we colour relocated circles blue). We show that S2
performs at least as well as S1 quantitatively.

Proposition 3.4. For any constant 0 < c < 1 and function µ = µ(n) = ω(1), if S1 is a
strategy of the player, then there exists another strategy S2 which is 2µ-well-behaved for cn
rounds, and satisfies

P[GS1cn(n) satisfies PM(µ, µ−1)] ≤ P[GS2cn(n) satisfies PM(2µ, µ−1)].

Moreover, S2 does not create any multi-edges, and so GS2cn(n) is a simple graph.

Proof. In order to prove the claim, we couple the execution of S1 with another strategy
S2 which is 2µ-well-behaved, and which constructs a directed graph in PM(2µ, µ−1) no later
than when S1 constructs one in PM(µ, µ−1). We define S2 by stealing the strategy of S1,
while making a slight modification to avoid multi-edges and to ensure that no vertex of [n]
is covered by more than 2µ circles.

Suppose that the squares presented to strategy S1 are u1, . . . , ucn, and whose corresponding
circles are v11, . . . , v

1
cn. We denote the graph formed by S1 after 0 ≤ t ≤ cn rounds by G1

t .
Let us define another strategy S2 with the same set of squares as presented to S1, whose
circles we denote by v21, . . . , v

2
cn. For each 1 ≤ t ≤ cn, suppose that ut is presented to S2,

and G2
t−1 is the current graph constructed by S2 (where G2

0 is the empty graph):

(1) If adding utv
1
t to G1

t−1 does not cause the number of circles on v1t to exceed µ, and
utv

1
t is not an edge in G2

t−1 (note here that we consider G2
t−1 as an undirected graph),

then set v2t := v1t .

12 PU GAO, CALUM MACRURY, AND PAWE L PRA LAT

(2) Otherwise, choose v2t ∈ [n] \ NG2
t−1

(ut) amongst those vertices which have at most

c/(1− c) blue circles, and then colour the circle v2t blue.
(3) Add (ut, v

2
t) to G2

t−1 to get G2
t .

We first observe that the strategy S2 is well-defined in that there always exists a choice of
v2t which satisfies the requirements of (2). To see this, notice that trivially |NG2

t−1
(ut)| ≤ cn,

and so there are at least (1− c)n > 0 vertices which are not adjacent to ut in G2
t−1, as c < 1

by assumption. Thus, since there are at most cn blue circles, a simple averaging argument
ensures that there exists a vertex of [n] \ NG2

t−1
(ut) which is covered by at most c/(1 − c)

blue circles.
We now argue that the strategy S2 satisfies all the desired properties of Proposition 3.4.

It is clear that S2 does not create any multi-edges by definition, so it suffices to verify that
each vertex of G2

cn is covered by at most 2µ circles, and that G2
cn is in PM(2µ, µ−1) if G1

cn is in
PM(µ, µ−1) . Observe that if we fix j ∈ [n], then step (1) places at most µ (uncoloured) circles
on j, and step (2) places at most c/(1−c)+1 < µ blue vertices of j. Thus, in total there are at
most 2µ circles are placed on j, and so the strategy S2 is 2µ-well-behaved. As a result, if G1

cn

has a (µ, µ−1)-approximate perfect matching, then G2
cn must have a (2µ, µ−1)-approximate

perfect matching. Thus,

P[G1
cn satisfies PM(µ, µ−1)] ≤ P[G2

cn satisfies PM(2µ, µ−1)].

and so the proof is complete. �

By combining the above propositions with Proposition 3.1, we get the following lemma:

Lemma 3.5. Given 0 < α ≤ 1 and µ = µ(n) = ω(1), suppose that for each c < α and each
strategy S which is 2µ-well behaved for cn rounds, it holds that

P[GScn(n) satisfies PM(2µ, µ−1)]→ 0, as n→∞.

Then, τPM ≥ α.

3.3. Proving Theorem 1.3. In this section, we complete the proof of Theorem 1.3. Recall
that g : [0,∞)→ R is defined such that for b ≥ 0,

g(b) := 1 +
1− 2b

2
exp(−b)− (b+ 1) exp(−2b)− 1

2
exp(−3b), (3)

and in viewing g as monotonely increasing on [0,∞), we have that

α = min{α ≥ 0 : g(b) ≥ 1/2}.
Let µ =

√
n (indeed any function of n that grows with n in a sub-linear rate would work)

and let 0 < c < α ≤ 1 be an arbitrary constant. Define ω to be 2µ. This specifies the
parameters for the set of ω-well behaved strategies for cn rounds that are considered below.

Suppose that S is an ω-well behaved strategy for cn rounds. Since c < α ≤ 1, we may
apply Lemma 3.5 in order to prove Theorem 1.3. Thus, it suffices to show that

P[GScn(n) satisfies PM(ω, µ−1)]→ 0, as n→∞. (4)

For simplicity and without confusion, we remove S from the superscript. In order to
prove (4), we prove that a certain set of squares cannot be simultaneously contained in any
(ω, µ−1)-approximate perfect matching of Gcn and there are many such squares to exclude.

Given a vertex j ∈ [n], we say that j is redundant at time t ≥ 0, provided the following
conditions hold:

PERFECT MATCHINGS IN THE SEMI-RANDOM GRAPH PROCESS 13

(B1) Vertex j is covered by precisely one square, say us for s ≤ t.
(B2) The circle vs connected to us by the player is covered by at least one square, which

arrives after round s.

We denote by U(t) the number of redundant vertices at time t. Observe that (B2) ensures
that U(t) depends only on the placement of the squares, not the strategy S. Observe also
that the redundant square on j and any square on vs cannot be contained simultaneously in
any (ω, µ−1)-approximate perfect matching. Recall that X(t) denotes the number of vertices
covered by at least one square after step t.

Suppose that j is redundant at time t thanks to the arrival of the square us at time s ≤ t.
We then say that j is well-positioned, provided the vertex vs is also redundant at time
t. Denote W (t) as the number of well-positioned redundant vertices at time t. Clearly,
W (t) ≤ U(t) by definition. We observe then the following inequality:

Proposition 3.6. If Gt has an (ω, µ−1)-approximate perfect matching at time t ≥ 0, then

X(t)− U(t) +W (t) ≥ n

2
− 3t

µ
. (5)

Proof. Since Gt has an (ω, µ−1)-approximate perfect matching, there exists some subset
S ⊆ [n], such that |S| ≥ n − 2t/µ, for which Gt[S] has a perfect matching. Now, if M is a
perfect matching of Gt[S], then clearly |M| = |S|/2 ≥ n/2− t/µ.

On the other hand, suppose XS is the collection of vertices within S covered by at least
one square, US is the collection of vertices of S which are redundant, and WS is the number
of well-positioned vertices of Gt[S]. Let us denote XS := |XS|, US := |US| and WS := |WS|
for convenience. We claim the following inequality:

XS − US +WS ≥ |M| ≥ n/2− t/µ. (6)

To see the left-hand side of this inequality, we first partition S into XS \ US, US and ZS :=
S \ XS, thus ensuring that

|M| = eM(XS \ US, S) + eM(US,US) + eM(US,ZS). (7)

Now, clearly eM(XS \US, S) ≤ |XS \US|. On the other hand, we claim that eM(US,ZS) = 0.
This is because each vertex of US is redundant, and so its single out-neighbour is a vertex
covered by at least one square, and thus cannot be a member of ZS. Similarly, its in-
neighbours are covered by squares by definition, and thus are also not in ZS.

It remains to upper bound eM(US,US). In order to do so, we partition US into US \ WS

and WS, which ensures that

eM(US,US) = eM(US \WS,US \WS) + eM(WS,US).

Now, by definition each vertex j ∈ US \ WS has precisely one square on it, and the circle
corresponding to this square lies in XS \ US. Thus, eM(US \ WS) = 0. Moreover, we can
upper bound e(WS,US) by |WS|. By applying these bounds to (7), (6) follows.

We can complete the proof by observing that XS ≤ X(t), WS ≤ W (t), and US ≥ U(t)−
(n− |S|) ≥ U(t)− t/µ. Thus, after rearranging (6), we get that

X(t)− U(t) +W (t) ≥ n

2
− 3t

µ
,

as claimed. �

14 PU GAO, CALUM MACRURY, AND PAWE L PRA LAT

As we saw in Proposition 1.2, it is easy to control the behaviour of X(t) for t ≥ 0.
Controlling the behaviour of U(t) requires more care, and so it is useful to define Y (t) as the
number of vertices of Gt which are covered by precisely one square. Let Ht = (G0, . . . , Gt)
be the history of the random graph process up to step t. We then have that for each t ≥ 1:

E[X(t+ 1)−X(t) |Ht] = 1− X(t)

n
, (8)

E[Y (t+ 1)− Y (t) |Ht] =
n−X(t)

n
− Y (t)

n
, (9)

and

E[U(t+ 1)− U(t) |Ht] =
Y (t)− U(t)

n
− U(t)

n
. (10)

Verification of (8)–(10) is straightforward. We briefly verify (10). The number of pairs of
vertices (u, v) such that u is covered by exactly one square whose corresponding circle is
on v and v has no squares arriving after that circle, is exactly Y (t) − U(t) by step t. A
redundant vertex is created if a square lands on v. On the other hand, a redundant vertex
can be destroyed if it receives another square. This explains (10).

In order to control the behaviour of W (t), we introduce another definition. Let us say
that a vertex j1 is dangerous at time t ≥ 0, provided there exist times t1 < t2 ≤ t, such
that the following hold:

(C1) At time t1, the square ut1 lands on j1, and connects its circle vt1 to some vertex
j2 6= j1.

(C2) At time t2, the vertex j2 is covered by the square ut2 , at which point the circle vj2 is
placed on some vertex j3 /∈ {j1, j2}.

(C3) No squares land on j3 between times t2 and t, and ut1 and ut2 are the only squares
on j1 and j2, respectively.

Let us denote D(t) as the number of dangerous vertices at time t. Observe then that

E[D(t+ 1)−D(t) |Ht] =
Y (t)− U(t)

n
− 3D(t)

n
, (11)

where we recall that Y (t) is the number of vertices covered by exactly one square, and U(t)
is the number of redundant vertices. Note that the equality in (11) follows since the strategy
we are analyzing does not create multi-edges by assumption. We can use D(t) to help us
track the behaviour of W (t) at time t; that is, the well-positioned vertices. Specifically,
observe that

E[W (t+ 1)−W (t) |Ht] =
D(t)

n
− 2W (t)

n
.

Now, by assumption S is ω-well behaved—that is, there are at most ω = ω(n) circles
on any vertex of Gt. We can thus bound the worst case one-step changes of our random
variables by ω(n). More explicitly, observe that for each t ≥ 0

|X(t+ 1)−X(t)| ≤ ω(n),

and the analogous upper bound is also true for the other random variables.

PERFECT MATCHINGS IN THE SEMI-RANDOM GRAPH PROCESS 15

Suppose now that the functions x, y, u, d, w : [0,∞) → R are the unique solution to the
following system of differential equations:

x′ = 1− x,
y′ = 1− x− y,
u′ = y − 2u,

d′ = y − u− 3d,

w′ = d− 2w,

with initial conditions x(0) = y(0) = u(0) = d(0) = w(0) = 0. These functions have the
following closed form solution:

• x(b) = 1− exp(−b),
• y(b) = b exp(−b),
• u(b) = (b− 1) exp(−b) + exp(−2b).
• d(b) = 1

2
exp(−b) + 1

2
exp(−3b)− exp(−2b),

• w(b) = 1
2

exp(−b)− b exp(−2b)− 1
2

exp(−3b).

The following lemma follows immediately by Nick Wormald’s differential equation method
(see, for example, [9, Theorem 5.1] or [8]).

Lemma 3.7. There exists a function ε = ε(n) = o(1) such that a.a.s., for all 0 ≤ t ≤ cn,

max{|X(t)− x(t/n)n|, |U(t)− u(t/n)n|, |W (t)− w(t/n)n|} ≤ εn.

By applying Lemma 3.7, we are guaranteed the existence of a function ε = ε(n) = o(1),
such that a.a.s. for all t ≥ 0,

• X(t)/n ≤ 1− exp(−t/n) + ε,
• U(t)/n ≥

(
t
n
− 1
)

exp(−t/n) + exp(−2t/n)− ε,
• W (t)/n ≤

(
1
2

exp(−t/n)− 1
2

exp(−3t/n)− t
n

exp(−2t/n)
)

+ ε.

Let us now assume that α ≥ 0 is the infimum over those b ≥ 0 such that g(b) ≥ 1/2,
where g(b) is defined in (3). Now, c < α and T (n) := bcnc satisfies T = (1− o(1))cn. Thus,

X(T)

n
+
W (T)

n
− U(T)

n
≤ g(c) + 3ε.

Moreover, g(c) < 1/2 as c < α, and so since ε, µ−1 = o(1), it follows that a.a.s.

X(T) +W (T)− U(T) < n/2− 3T/µ.

Thus, GT does not have an (ω, µ−1)-approximate perfect matching a.a.s. by Proposition 3.6.
As c < α was arbitrary, the proof of Theorem 1.3 is complete after applying Lemma 3.5. �

4. Conclusion

We have reduced the gap between the previous best upper and lower bounds on τPM by
roughly a factor of four. That being said, we do not believe that any of our new bounds
are tight. For instance, in the case of our upper bound, our strategy does not make use
of subsequent squares which land on a green vertex. One way to improve the algorithm’s
performance would be to control these additional squares. The other way is to consider longer
augmenting paths. However, there are not many saturated vertices with more than one
square and thus the numerical improvement is not so significant. Tracing longer augmenting

16 PU GAO, CALUM MACRURY, AND PAWE L PRA LAT

paths is harder to analyse and we did not attempt this. However, algorithmic simulations3

suggest that this approach will lead to an improved upper bound. In the case of our lower
bound, we have identified certain subgraphs which preclude the strategy from building a
perfect matching too quickly, and which no strategy can avoid creating. To improve our
lower bound, one could track more complicated subgraphs which also prevent a perfect
matching from being created too quickly. For instance, one could track the number of vertices
which are covered by two squares, and whose neighbours are themselves not redundant.
However, such subgraphs can be avoided by the strategy, and so they are harder to control.
More importantly, these subgraphs are much rarer than redundant vertices, and so their
contribution to the improvement of the lower bound is rather small.

We believe it is an interesting open question to resolve the remaining gap between our
bounds on τPM. More generally, we believe it is an interesting direction to better understand
the value of τH, when H is a graph with absolutely bounded maximum degree ∆ which spans
all the vertices in [n] . For instance, improving upon the upper bound of 3/2(∆ + o(∆))
of [2] remains an intriguing open question when ∆ is small.

References

[1] Natalie C Behague, Trent G Marbach, Pawel Pralat, and Andrzej Rucinski. Subgraph games in the semi-
random graph process and its generalization to hypergraphs. arXiv preprint arXiv:2105.07034, 2021.

[2] Omri Ben-Eliezer, Lior Gishboliner, Dan Hefetz, and Michael Krivelevich. Very fast construction of
bounded-degree spanning graphs via the semi-random graph process. Proceedings of the 31st Symposium
on Discrete Algorithms (SODA’20), pages 728–737, 2020.

[3] Omri Ben-Eliezer, Dan Hefetz, Gal Kronenberg, Olaf Parczyk, Clara Shikhelman, and Miloš Stojaković.
Semi-random graph process. Random Structures & Algorithms, 56(3):648–675, 2020.

[4] Tom Bohman and Alan Frieze. Hamilton cycles in 3-out. Random Structures & Algorithms, 35(4):393–
417, 2009.

[5] Pu Gao, Bogumi l Kamiński, Calum MacRury, and Pawe l Pra lat. Hamilton cycles in the semi-random
graph process. European Journal of Combinatorics, 99:103423, 2022.

[6] Pu Gao, Calum MacRury, and Pawe l Pra lat. A fully adaptive strategy for hamiltonian cycles in the
semi-random graph process. draft, 2022.

[7] Michal Karoński, Ed Overman, and Boris Pittel. On a perfect matching in a random digraph with average
out-degree below two. Journal of Combinatorial Theory, Series B, 143, 03 2020.

[8] Lutz Warnke. On wormald’s differential equation method. CoRR, abs/1905.08928, 2019.
[9] Nicholas C Wormald et al. The differential equation method for random graph processes and greedy

algorithms. Lectures on approximation and randomized algorithms, 73:155, 1999.

Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Canada
Email address: pu.gao@uwaterloo.ca

Department of Computer Science, University of Toronto, Toronto, Canada
Email address: cmacrury@cs.toronto.edu

Department of Mathematics, Ryerson University, Toronto, Canada
Email address: pralat@ryerson.ca

3We did not simulate a longer augmenting path algorithm ourselves, however we thank an anonymous
reviewer for informing us that their simulation suggests an upper bound of 1.09.

	1. Introduction and Main Results
	1.1. Definitions
	1.2. Main Results
	1.3. Previous Results

	2. Upper Bound
	2.1. Warming-up
	2.2. Improving the Upper Bound

	3. Lower Bound
	3.1. Warming-up
	3.2. Reducing to an Approximate Perfect Matching
	3.3. Proving Theorem 1.3

	4. Conclusion
	References

