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Abstract

The semi-random graph process is a single player game in which the player is
initially presented an empty graph on n vertices. In each round, a vertex u is presented
to the player independently and uniformly at random. The player then adaptively
selects a vertex v, and adds the edge uv to the graph. For a fixed monotone graph
property, the objective of the player is to force the graph to satisfy this property with
high probability in as few rounds as possible.

We focus on the problem of constructing a Hamilton cycle in as few rounds as
possible. In particular, we present a novel strategy for the player which achieves a
Hamiltonian cycle in c∗n rounds, where the value of c∗ is the result of a high dimensional
optimization problem. Numerical computations indicate that c∗ < 2.61135. This
improves upon the previously best known upper bound of 3n rounds. We also show
that the previously best lower bound of (ln 2 + ln(1 + ln 2) + o(1))n is not tight.

∗The first, the third, and the last authors are partially supported by NSERC.
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1 Introduction

In this paper, we consider the semi-random process suggested by Peleg Michaeli and
studied recently in [1,2] that can be viewed as a “one player game”. The process starts from
G0, the empty graph on the vertex set [n] = {1, . . . , n}. In each step t, a vertex ut is chosen
uniformly at random from [n]. Then, the player (who is aware of graph Gt−1 and vertex ut)
needs to select a vertex vt and add an edge utvt to Gt−1 to form Gt. The goal of the player
is to build a (multi)graph satisfying a given monotonely increasing property A as quickly as
possible.

A strategy in this context is a sequence of functions f1, f2, . . ., where for each t ∈ N,
ft(u1, v1, . . . , ut−1, vt−1, ut) is a distribution over [n], given the history of the process up to and
including step t− 1, and vertex ut. Then vt is chosen according to this distribution. If ft is
an atomic distribution, then vt is determined by u1, v1, . . . , ut−1, vt−1, ut. As ft is determined
by ut, and the history of the process up to step t−1, it means that the player needs to select
her strategy in advance, before the game actually starts. Given f = (f1, f2, . . .) and real
number 0 < q < 1, let τq(f , n) be the minimum t for which P(Gt ∈ A) ≥ q, where (Gi)

t
i=0 is

obtained following strategy f . Define

τq(A, n) = min
f
τq(f , n),

where the minimum is over all strategies. Let

τA = lim
q→1−

lim sup
n→∞

τq(A, n)

n
;

note that the limit above exists, since for every n the function q → τq(A,n)
n

is nondecreasing,
as A is monotonely increasing.

In this paper, we concentrate on property A = HAM that a graph has a Hamilton cycle.
It was observed in [2] that

1.21973 ≤ ln 2 + ln(1 + ln 2) ≤ τHAM ≤ 3.

We improve both upper and lower bounds for τHAM. The upper bound involves a high
dimensional optimization problem. Unfortunately, we could not solve this optimization
problem but, in Subsection 2.9, we provide strong numerical evidence that τHAM < 2.61135.
The existing lower bound of (ln 2 + ln(1 + ln 2))n + o(n) is the number of steps required to
build a semi-random graph with minimum degree at least 2. In many random graph models
or processes, the phase transitions for the property of Hamiltonicity and for that of minimum
degree at least two coincide. Our new lower bound shows that this is not the case for the
semi-random process. We do not optimize the argument (as it gives a small improvement
anyway) but aim for a relatively easy proof that shows that the currently existing bound is
not tight.

Here are our main results. Theorem 1 is proved in Section 2 whereas the proof of The-
orem 2 can be found in Section 3. Let f and R be as defined in (38) and (39). Due to the
technicality, we postpone their definitions to Section 2.7. Let

c∗ = inf
{
{c+ 2 + 4e−2 : f(c,uuu) < 0 ∀(c,uuu) ∈ R} ∪ {3}

}
. (1)

2



Here f is a multivariable function and R defines a feasible region. Thus, c∗ is the infimum
of c+ 2 + 4e−2 in the set of c < 3 where f is negative in R. If this set is empty, then c∗ = 3.

Theorem 1. τHAM ≤ c∗.

As mentioned above, we provide strong numerical evidence that c∗ < 2.61135.

Theorem 2. There exists a universal constant ε > 10−8 such that

τHAM ≥ ln 2 + ln(1 + ln 2) + ε.

All asymptotics in this paper refer to n → ∞. We say that an event holds asymptoti-
cally almost surely (a.a.s.) if the probability that it holds tends to 1 as n → ∞. In the
proofs we use the standard Landau notation. Given two sequences of real numbers an and
bn, we write an = O(bn) if there exists a constant C > 0 such that |an| ≤ C|bn| for all n. We
write an = o(bn) if bn > 0 for all sufficiently large n and limn→∞ an/bn = 0.

2 Upper Bound

In order to obtain an upper bound for τHAM, one needs to propose a strategy for the player
to build a graph during the semi-random process, and show that after a certain number of
steps the resulting graph is a.a.s. Hamiltonian.

In order to warm up, let us recall an observation made in [2] that gives τHAM ≤ 3n a.a.s.
To see it, the following simple strategy can be applied: let vt = (t − 1) (mod n) + 1 for all
1 ≤ t ≤ 3n. Note that this is a non-adaptive strategy, that is, function ft does not depend
on the history of the process nor vertex ut chosen at time t. More importantly, it is easy to
see that the resulting graph has the same distribution as the well-known G3-out process that
is Hamiltonian a.a.s. [4].

In general, the m-out process is defined for any natural number m: each vertex v ∈ [n]
independently chooses m random out-neighbours from [n] to create the random digraph
Dm–out. We then obtain Gm–out by ignoring orientations. Note that Gm–out is a multi-graph
(it may have loops or multiple edges) with minimum degree m and precisely mn edges. In
the model, we can either allow these multiple edges and loops, replace multiple edges with
single edges and remove loops, or condition on them not occurring. (Since the probability
that there are no multiple edges is bounded away from zero, any property that holds a.a.s.
in the model that allows multiple edges also holds a.a.s. when we condition on no multiple
edges.) For our application, when the strategy creates a multiple edge or a loop in the
underlying undirected graph, we simply “discard” that edge. That is, we will not use that
edge for the construction of a Hamilton cycle.

This section is structured as follows. In Subsection 2.1, we define a strategy for the
player that creates a random graph G∗. The main goal is to prove that G∗, together with
some additional o(n) semi-random edges, is Hamiltonian a.a.s. Since the argument is quite
involved, an overview of the proof is provided in Subsection 2.2. In Subsection 2.3, we
introduce definitions and notation that will be used through the entire paper. Some useful
properties of the graphs involved in the argument are extracted and proved in Subsection 2.4.
In order to achieve our goal, in particular, we need to prove that a.a.s. G∗ has a 2-matching
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with o(n) components (the definition is provided in Subsection 2.2). Subsection 2.6 prepares
us for this task. The proof that a.a.s. G∗ has a 2-matching with few components is finished
in Subsection 2.8. Now, it is enough to guide the semi-random process such that after
additional o(n) rounds the graph has a Hamiltonian cycle. This last task does not depend
on the argument used to show that G∗ has the desired 2-matching and so, in fact, we do it
earlier, in Subsection 2.5.

2.1 Our Strategy

In this subsection, we define a strategy for the player that creates a random (multi)graph
G∗. It will be convenient to work with the directed graph Dt underlying Gt. For each edge
utvt that is added to Gt at time t, we put a directed edge from vt to ut in Dt. As mentioned
before, for the construction of a Hamilton cycle we will only use edges from a subgraph of
Gt. For any multigraph G, let Ĝ denote the simple graph obtained from G by deleting all
loops and replacing all parallel edges by single edges. Thus, the sequence of multigraphs
(Gt) immediately yields the corresponding sequence of simple graphs (Ĝt).

Consider the following strategy that will be defined in four phases:

(P1) During the first phase, for 1 ≤ t ≤ 2n, let vt = (t − 1) (mod n) + 1. It is clear that
G2n has the same distribution as G2-out. Let V0 and V1 be the sets of vertices in D2n

of in-degree 0 and, respectively, of in-degree 1.

(P2) During the second phase, two out edges are added from every vertex in V0 and one out
edge is added from every vertex in V1. More precisely, each vertex of V0 is selected as
vt twice, and each vertex of V1 is selected as vt once.

(P3) During the third phase, we add c · n directed edges uniformly at random, where 0 ≤
c ≤ 0.46. That is, in each step, vt is uniformly chosen from [n] \ {ut}. We call v a
deficit vertex if after phase 3 its degree is less than 4.

(P4) In the fourth and last phase, we repeatedly add a semi-random edge, coloured golden
for convenience, coming out of a deficit vertex until its degree in the current underlying
undirected simple graph (that is, in Ĝt) becomes at least 4.

Let τi denote the last step of phase i (in particular, τ1 = 2n). Note that a golden semi-
random edge is added out of u only if a loop or a multiple edge incident with u was created
in the process (Gt) during the first two phases. It is easy to show, by a standard first moment
calculation, that Gτ3 has O(1) loops or parallel edges, and o(1) other types of multiple edges
in expectation. Also, the following property holds a.a.s.: if v is incident with a loop in Gτ3

then v may send out up to two semi-random edges in phase 4. If v is incident with a parallel
edge in Gτ3 then v may send out at most one semi-random edge in the final phase. Hence,
a.a.s. Gτ4 and Ĝτ4 have the following property.

(E): There are at most ln lnn double edges or loops in Gτ4 and they are all vertex disjoint.
There are at most ln lnn golden edges, inducing vertex-disjoint paths of length 1 or 2,

and every pair of deficit vertices are at distance at least lnn/5 from each other in Ĝτ4 .
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Thus a.a.s. the total number of semi-random edges added during the last two phases is
(c+ o(1))n. Note that the addition of the golden edges guarantees that the minimum degree
of Ĝτ4 is at least 4, which will be used in the proof later. Finally, let G∗ = Gτ4 , the multigraph
obtained after the last step of phase 4. As we will only use edges in Ĝτ4 ⊆ G∗, we will mainly
focus on the process (Ĝt). Note that we may also restrict ourselves to c ≤ 0.46, as otherwise
the number of edges in the final graph will be greater than 3n, worse than the known upper
bound τHAM ≤ 3. Let c ≤ 0.46 be chosen such that

c = c∗ − 2− 4e−2 + o(1).

We will show that for this choice of c, G∗ can be completed to a Hamiltonian graph a.a.s.
after adding another o(n) semi-random edges.

2.2 Overview of the Proof

Let us present an overview of the proof of Theorem 1. First, we will investigate how long it
takes to construct graph G∗.

Lemma 3. A.a.s. the following holds

|E(G∗)| = (2 + 4e−2 + c+ o(1))n.

In order to state the next lemma, we need one definition. A 2-matching in a graph
G is a simple subgraph H of G with maximum degree at most 2, that is, a collection of
vertex-disjoint paths and cycles. Moreover, we assume that V (H) = V (G) so some paths in
H could be isolated vertices.

Lemma 4. For every ε > 0 there exists c ≥ 0 such that |c− (c∗ − 2− 4e−2)| < ε and a.a.s.
G∗ has a 2-matching with o(n) components.

The next lemma serves as the final ingredient for the proof of Theorem 1.

Lemma 5. Suppose G∗ has a 2-matching with o(n) components. Then, there exists an
adaptive strategy such that a.a.s. the semi-random process builds a Hamiltonian graph within
an additional o(n) steps.

Theorem 1 follows immediately from the above three lemmas. Our strategy for construct-
ing a Hamilton cycle in Lemma 5 is the same as that in [4] where a Hamilton cycle is found
in G3-out. We start with a 2-matching F of G∗ which has o(n) components. Then, we take
an arbitrary component C of F and let P be a path that spans all vertices of C. By applying
Posá rotations, we use either edges in G∗, or additional o(n) edges added to G∗ to repeatedly
absorb vertices in other components of F into the long path we carefully construct, until
finally completing the path into a Hamilton cycle. Having less available edges in G∗ than in
G3-out requires some new treatments in the proof of Lemma 5.

In order to prove Lemma 4, as it is done in [4], we will apply Tutte and Berge’s formula for
the size of a maximum 2-matching of Ĝτ4 ⊆ G∗. However, as we have significantly less edges
in Ĝτ4 than in G3-out, it becomes much more challenging to verify the Tutte-Berge conditions.
Rough bounds that worked in [4] fail to work in our setting and, in order to achieve a tighter
bound we end up with an optimization problem involving a high dimensional objective
function. That results in the technical definitions of f and R.
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2.3 Definitions and Notation

In this subsection, we introduce basic definitions and notation that will be used throughout
the paper. Let us start from graph theoretic ones. For a given subset of vertices S ⊆ V (G),
let G[S] be the graph induced by set S, that is, V (G[S]) = S and

E(G[S]) = {uw ∈ E(G) : u, v ∈ S} ⊆ E(G).

Let e(S) denote the number of edges induced by set S, that is,

e(S) = |E(G[S])| = |{xy ∈ E(G) : x, y ∈ S}|.

Moreover, let
N(S) = {v ∈ V (G) \ S : ∃u ∈ S such that uv ∈ E(G)}.

Finally, we say that S is an independent set if S induces no edge, that is, e(S) = 0.
Given subsets of vertices U,W ⊆ V (G), let e(U,W ) denote the number of edges with

exactly one end in U and the other end in W , that is,

e(U,W ) = |{uw ∈ E(G) : u ∈ U,w ∈ W}|.

For a given vertex v ∈ V (G), let deg(v) be the degree of v, that is, the number of neighbours
of v in G. Let δ(G) = min{deg(v) : v ∈ V (G)} denote the minimum degree of a graph G.

For a directed graph D and a given vertex v ∈ V (D), let deg−(v) and deg+(v) be the in-
and out-degree of v, that is, the number of directed edges going to v and, respectively, going
from v in D.

For sequences of real numbers an and bn, we say an = poly(n) if there exists a constant
C > 0 such that n−C < an < nC for every n. We say an = O(bn) if there exists a constant
C > 0 such that |an| < C|bn| for all n. We say an = o(bn) if eventually bn > 0 and
limn→∞ an/bn = 0.

Finally, let us introduce the binomial random graph G(n, p). More precisely, G(n, p)
is a distribution over the class of graphs with vertex set [n] in which every pair {i, j} ∈

(
[n]
2

)
appears independently as an edge in G with probability p. Note that p = p(n) may (and in
our application it does) tend to zero as n tends to infinity. A closely related random graph
model is G(n,m) where m is an integer between 0 and

(
n
2

)
. It denotes a random graph on

the vertex set [n] with exactly m edges, taken uniformly at random from the family of such
graphs.

2.4 Some Technical Properties and Proof of Lemma 3

Let us start with the following simple observations.

Observation 6. Our process can be coupled such that the following properties hold.

(a) G2n has the same distribution as G2-out and thus Ĝτ1 ⊆ G2-out.
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(b) Ĝτ2 is a subgraph of G4-out; in particular,

P
(
S ⊆ E(Ĝτ2)

)
≤
(

8

n

)|S|
, for any S ⊆

(
[n]

2

)
. (2)

(c) δ(Ĝτ4) ≥ 4 and

P
(
S ⊆ E(Ĝτ3)

)
≤

(
9

n

)|S|
, for any S ⊆

(
[n]

2

)
(3)

P
(
S ⊆ E(Ĝτ4)

)
≤

(
13

n

)|S|
, for any S ⊆

(
[n]

2

)
. (4)

Proof. Part (a): The property follows immediately from the construction of our process.

Part (b): Recall that Gτ2 is constructed from G2-out by adding two out edges from every
vertex in V0 and one out edge from every vertex in V1. If, instead, two out edges are added
from every vertex in G2-out, we would get a graph with the same distribution as G4-out.
Hence, one may easily couple our process such that Gτ2 is a subgraph of G4-out. In order to
see that (2) holds, note first that

P
(
e ∈ E(Ĝτ2)

)
= P

(
e ∈ E(Gτ2)

)
≤ P

(
e ∈ E(G4-out)

)
= 1−

(
1− 1

n

)8

≤ 8

n
.

The desired inequality holds after observing that S ′ ⊆ E(Ĝτ2) does not increase the proba-
bility that an edge e /∈ S ′ is also in E(Ĝτ2).

Part (c): The fact that δ(Ĝτ4) ≥ 4 follows immediately by construction of Ĝτ4 . For (3),
we note that part (b) implies that our process can be coupled such that Ĝτ2 is a subgraph
of G4-out. As a result, Ĝτ3 can be viewed as a subgraph of G4-out ∪ G(n, c · n). Thus, by the
union bound we get that

P(e ∈ E(Ĝτ3)) ≤ P(e ∈ E(Ĝτ2)) + P(e ∈ E(G(n, c · n))) ≤ 8

n
+

2c+ o(1)

n
<

9

n
,

as c ≤ 0.46. The assertion follows by noting that the presence of other edges do not increase
the probability that e ∈ E(Ĝτ3).

In order to see that (4) holds, we apply the same argument after noting that every vertex
sends out at most two golden semi-random edges. As a result, Ĝτ4 can be viewed as a
subgraph of G6-out ∪ G(n, c · n).

The next lemma collects some important properties of the graphs involved in the process
that will be used in various places of this paper. In particular, part (a) immediately implies
Lemma 3.

Lemma 7. A.a.s. the following properties hold.

(a) Dτ1 has asymptotically e−2n vertices of in-degree 0 and 2e−2n vertices of in-degree 1.
In other words, |V0| = (e−2 + o(1))n and |V1| = (2e−2 + o(1))n.
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(b) For every ε > 0 there exists δ = δ(ε) > 0 such that for all S ⊆ [n] with |S| ≤ δn, S
induces at most (1 + ε)|S| edges in Ĝτ4.

(c) All S ⊆ [n] with |S| ≤ 0.005n induce at most 1.9|S| edges in Ĝτ4.

Proof. Part (a): Let v ∈ [n] be any vertex of D2n = Dτ1 . Clearly,

P(deg−(v) = 0) =

(
1− 1

n

)2n

= e−2 + o(1)

P(deg−(v) = 1) = (2n) · 1

n
·
(

1− 1

n

)2n−1

= 2e−2 + o(1).

It follows that E(|V0|) = (e−2 + o(1))n and E(|V1|) = (2e−2 + o(1))n. It is straightforward to
show the concentration for these random variables (for example, by using the second moment
method; we omit details) and so part (a) holds.

Part (b): Let us fix ε > 0 and s = s(n) ∈ N. By (4), the expected number of sets S ⊆ [n]
with |S| = s that induce at least (1 + ε)s edges in Ĝτ4 is at most

g(s) :=

(
n

s

)( (
s
2

)
(1 + ε)s

)(
13

n

)(1+ε)s

≤
(en
s

)s( es2/2

(1 + ε)s

)(1+ε)s(
13

n

)(1+ε)s

=

(
e2+ε6.51+ε

(1 + ε)1+ε

( s
n

)ε)s
≤
(

6.5e2
(

6.5es

n

)ε)s
.

Clearly,
g(s) ≤

(
6.5e2 (6.5eδ)ε

)s ≤ (1/2)s,

provided that s ≤ δn and δ = δ(ε) > 0 is sufficiently small (the optimal value of δ is
(13e2)−1/ε/(6.5e)). On the other hand, if (for example) s ≤ lnn, then g(s) ≤ n−εs/2 ≤ n−ε/2.
It follows that the expected number of sets S ⊆ [n] with |S| ≤ δn that induce at least
(1 + ε)|S| edges is at most

δn∑
s=1

g(s) ≤
lnn∑
s=1

n−ε/2 +
δn∑

s=lnn

(1/2)s ≤ (lnn)n−ε/2 + 2(1/2)lnn = o(1).

Part (b) holds by Markov’s inequality.

Part (c): For a given s = s(n) ∈ N, let Xs be the number of sets S ⊆ [n] with |S| = s
that induce at least 1.9s edges in Ĝτ4 , and let Ys be the number of sets S ⊆ [n] with |S| = s
that induce at least t(s) edges in Ĝτ3 , where

t(s) =

{
1.2s if s ≤ lnn
1.89s if s > lnn.

As a.a.s. Ĝτ4 ∈ E, it follows that a.a.s. Xs ≤ Ys for all s, since the number of golden
edges induced by S is at most min{2s/3, ln lnn} ≤ min{0.7s, ln lnn}, given Ĝτ4 ∈ E, and
1.9s− ln lnn ≥ 1.89s when s > lnn. Let g(s) = E(Ys). By (3), we get that

g(s) ≤
(
n

s

)((s
2

)
t(s)

)(
9

n

)t(s)
≤
(en
s

)s(es2/2
t(s)

)t(s)(
9

n

)t(s)
.
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If s ≤ lnn, then g(s) ≤ n−0.1. On the other hand, if lnn < s ≤ δn with δ = 0.005, then

g(s) ≤

(
e

(
9e

3.78

)1.89

δ0.89

)s

< 0.85s.

It follows that the expected number of sets S ⊆ [n] with |S| ≤ δn that induce at least 1.9|S|
edges in Ĝτ4 is at most

δn∑
s=1

g(s) ≤
lnn∑
s=1

n−0.1 +
δn∑

s=lnn

0.85s = o(1).

Part (c) holds by Markov’s inequality.

2.5 Proof of Lemma 5

The whole subsection is devoted to prove Lemma 5. In order to achieve it, we will use a
powerful proof technique introduced by Posá in [9]. Suppose that F is a 2-matching (that is,
a collection of vertex-disjoint paths and cycles) of Ĝτ4 ⊆ G∗ with o(n) components. We will
use Posá rotations to extend a path in Ĝτ4 to longer and longer paths, and eventually extend
a Hamilton path to a Hamilton cycle, by adding o(n) extra semi-random edges. During the
process of extending the paths, we will use edges in Ĝτ4 whenever possible. If no edges in
Ĝτ4 are of help, then we will use semi-random edges where we strategically choose vt to help
us with the extension of the paths.

We start from a path P = u1u2 . . . uh in F . If F is a collection of cycles, then we
arbitrarily take a cycle and let P be the path obtained by deleting an arbitrary edge in that
cycle. Given a path P and an edge uhuj, 1 < j < h− 1 we can create another path of length
h, namely, P ′ = u1u2 . . . ujuhuh−1 . . . uj+1 with a new endpoint uj+1. We call this operation

a Posá rotation. Let S be the set of paths in Ĝτ4 on the same set of vertices as P obtained
by fixing u1 and performing any sequence of Posá rotations on P . Let End denote the union
of the end vertices of paths in S other than u1.

Let us independently consider the following two cases:

Case 1: there is x ∈ End and y /∈ V (P ) such that xy ∈ E(Ĝτ4). If y is in a cycle C in F , then
we can extend P to a longer path on V (P ) ∪ V (C). On the other hand, if y is in a path P ′

in F , then without loss of generality we may assume that P ′ = v1v2 . . . v` . . . vh with v` = y
where ` > h/2. We can now extend P to a longer path on vertex set V (P ) ∪ {v1, . . . , v`}.
After that operation, the number of vertex-disjoint paths and cycles remains the same or
decreases by one.

Case 2: for every x ∈ End, N(x) ⊆ V (P ). Colour vertices in End blue or red as follows. If
ui ∈ End and none of the two neighbours of ui (or just one neighbour of ui if ui is an end
of P ) on P are in End, then colour ui red; otherwise, colour it blue. Let us start with the
following observation about red vertices.

Claim 8. Let U denote the set of red vertices in End. Then U induces an independent set
in Ĝτ4.

9



Proof. For a contradiction, suppose that x, y are both red vertices in End and xy is an edge
in Ĝτ4 . Without loss of generality, suppose that y was added to End before x and let P ′ be
the path obtained via Posá rotation with y being the other end. Let x = ui. Since x is red,
neither ui−1 nor ui+1 is in End. Thus, the two neighbours of x on P ′ must be ui−1 and ui+1.
But then we can get another path on V (P ) via Posá rotation on P ′ where one of ui−1 and
ui+1 becomes an end vertex. This contradicts with the fact that x is red. It follows that U
must be an independent set in G∗.

By the usual argument of Posá rotation, for every ui ∈ N(End), we must have

{ui−1, ui+1} ∩ End 6= ∅.

In particular, it implies that |N(End)| < 2|End|. However, using the above claim, we get a
slightly stronger bound. Let x1 and x2 be the number of red and, respectively, blue vertices
in End. Since the set of red vertices in End induces an independent set in Ĝτ4 , it follows that

|N(End)| ≤ 2x1 + x2 − 1 = |End|+ x1 − 1. (5)

Our next task and the main ingredient of the proof of the lemma is the next claim.

Claim 9. |End| = Ω(n).

Proof. In order to simplify the notation, let S = End. Let ε0 > 0 be a sufficiently small
constant that will be determined soon. We will show that |S| ≥ ε0n. For a contradiction,
suppose that |S| < ε0n, and let

Ni = {x /∈ S : e({x}, S) = i}, ni = |Ni|.

Claim 10. For every 0 < ε ≤ 1,
∑

i≥1 ni ≥ (2 − ε)|S|, provided ε0 = ε0(ε) is sufficiently
small.

Indeed, by Lemma 7(b) applied with ε′ = ε/2 and S ∪N(S), we get that a.a.s.

e

(
S ∪

⋃
i≥2

Ni

)
≤ (1 + ε′)

∣∣∣∣∣S ∪⋃
i≥2

Ni

∣∣∣∣∣ ,
provided ε0 is sufficiently small. It follows that

e(S) +
∑
i≥2

ini ≤ (1 + ε′)

(
|S|+

∑
i≥2

ni

)
. (6)

On the other hand, by Observation 6(c), δ(Ĝτ4) ≥ 4 and so

2e(S) +
∑
i≥1

ni ≥ 4|S|.

Substituting 2e(S) ≤ (2 + 2ε′)|S|+
∑

i≥2(2 + 2ε′ − 2i)ni from (6) into the above yields

(2− 2ε′)|S| ≤ n1 +
∑
i≥2

(2 + 2ε′ − 2i+ 1)ni

10



By the definition of ε′ and as ε′ ≤ 1/2, we get

(2− ε)|S| = (2− 2ε′)|S| ≤ n1 +
∑
i≥2

(2 + ε− 2i+ 1)ni (7)

≤ n1 ≤
∑
i≥1

ni. (8)

This finishes the proof of the claim.

We apply the above claim with ε = 0.05 so we may assume that

|N(S)| ≥ (2− ε)|S| if |S| ≤ ε0n. (9)

By (5) and (9),
(2− ε)|S| ≤ |S|+ x1 − 1,

and hence
(1− ε)|S| ≤ x1 − 1.

Let X1 denote the set of red vertices and let X2 be the set of blue vertices in S. Let X ′1 ⊆ X1

be the set of red vertices with at least 2 blue neighbours.

Claim 11. |X ′1| ≤ 1.3ε|S|.

Indeed, consider the subgraph of G induced by Y = X ′1 ∪ X2. By the definition of X ′1,
Y induces at least 2|X ′1| edges. On the other hand, by Lemma 7(b), Y induces at most
1.1(|X ′1|+ |X2|) edges by choosing sufficiently small ε0. Hence, 2|X ′1| ≤ 1.1(|X ′1|+ |X2|). As
x2 < ε|S|, we have |X ′1| ≤ (1.1/0.9)ε|S| < 1.3ε|S|, which finishes the proof of the claim.

Therefore, every vertex in X1 \ X ′1 has at least 3 neighbours in S. Thus, e(S, S) ≥
3|X1 \X ′1| ≥ 3((1− ε)|S| − 1.3ε|S|) ≥ 3(1− 2.3ε)|S|. That is,∑

i≥1

ini ≥ (3− 6.9ε)|S|. (10)

By (7) and noting that 2i− 1 ≥ i for every i ≥ 2,

(2− ε)|S| ≤ n1 + (2 + ε)
∑
i≥2

ni −
∑
i≥2

ini.

Plugging the lower bound for
∑

i≥1 ini from (10) yields

(2 + ε)
∑
i≥1

ni ≥ n1 + (2 + ε)
∑
i≥2

ni ≥ (2− ε)|S|+ (3− 6.9ε)|S| = (5− 7.9ε)|S|.

Thus,

|N(S)| =
∑
i≥1

ni ≥
5− 7.9ε

2 + ε
|S| > 2.1|S|,

as ε < 0.05. This contradicts with |N(S)| ≤ |S| + x1 − 1 < 2|S|. It follows then that
|S| ≥ ε0n.

11



Now, it is straightforward to finish the proof of Lemma 5.

Proof of Lemma 5. We extend P whenever possible, and if it is not possible, then |V (P )| ≥
ε0n by Claim 9. The vertices outside of P are in a collection F of o(n) paths and cycles. Let
vt be an arbitrary vertex outside of P that is either an end vertex of a path, or any vertex
in a cycle. If the semi-random process selects a vertex ut ∈ End then, by performing Posá
rotations, we extend P to a longer path by absorbing a path or a cycle in F that was not in
P . The number of components in F goes down by 1. Otherwise, we simply ignore ut and vt,
and repeat until eventually ut ∈ End. Since |End| ≥ ε0n, the probability that ut ∈ End is at
least 1/ε0. Hence, it takes O(1) trials on average to absorb a path or a cycle. Since there are
only o(n) paths or cycles to be absorbed, it follows immediately from Chernoff bound that
a.a.s. an additional o(n) edges are enough to be added to G∗ to make it Hamiltonian.

2.6 Preparation for the Proof of Lemma 4

Our aim now is to prove that G∗ has a 2-matching with o(n) components. In order to achieve
it, we will apply the consequence of the Tutte-Berge matching formula [10, Theorem 30.7] to
Ĝτ4 , which is a simple graph and a subgraph of G∗. However, we need one more definition
before we can state it.

Given a simple graph G, let κ(G) be the number of edges in a maximum 2-matching of
G (that is, κ(G) is the size of a maximum 2-matching). The Tutte-Berge matching theorem
implies the following.

Theorem 12. Let G be a simple graph on the vertex set [n]. Then,

κ(G) = min

{
n+ |U | − |S|+

∑
X

⌊
e(X,S)

2

⌋}
,

where U and S are disjoint subsets of [n], S is an independent set, and X ranges over the
components of G− U − S.

Despite the fact that the above theorem provides the exact value for κ(G), it is not so
easy to apply it in the context of random graphs. Fortunately, if G belongs to some family of
graphs, then we get an easier property to check. We will first define the family, then prove a
weaker but more workable statement, and finally show that a.a.s. G∗ belongs to the family.

Let Ccyclic be the family of graphs on the vertex set [n] which satisfy the following
properties: there are at most n/ lnn subsets S ⊆ [n] with |S| ≤ lnn/10 such that S induces
a connected subgraph with at least the same number of edges as the number of vertices; that
is, G[S] is connected and |E(G[S])| ≥ |S|.

Corollary 13. Suppose G ∈ Ccyclic and all 2-matchings of G have more than γ components
for some γ ≥ 0. Then, G has vertex partition [n] = S ∪ T ∪R ∪ U such that

(a) S is an independent set and G[T ] is a forest;

(b) |S| ≥ max{|U |, γ − 11n/ lnn};

12



(c) e(S ∪ T ) + e(S ∪ T,R) ≤ |T |+ 2|S| − 2|U | − 2γ + 33n/ lnn;

(d) e(R, T ) = 0.

Proof. The proof is almost identical to that in [4] so we only briefly sketch the argument
here. Let F be a maximum 2-matching of G. Since G ∈ Ccyclic, the number of cycles in
F is at most n/ lnn + n/(lnn/10) = 11n/ lnn. Let c(F ) and e(F ) denote the numbers of
components and, respectively, edges in F . Then,

γ ≤ c(F ) ≤ n− e(F ) + 11n/ lnn = n+ 11n/ lnn− κ(G).

Thus, κ(G) ≤ n+ 11n/ lnn− γ.
Let S and U be a pair of disjoint subsets of [n] that minimize

n+ |U | − |S|+
∑
X∈C

⌊
e(X,S)

2

⌋
, (11)

where C is the set of components of G− U − S, and S is an independent set. Let T be the
union of components of G−U−S that are trees, and R = [n]−U−S−T . By Theorem 12 and

our earlier observation, we get that κ(G) = n+ |U |−|S|+
∑

X∈C

⌊
e(X,S)

2

⌋
≤ n+11n/ lnn−γ,

and so

|U | − |S|+
∑
X∈C

⌊
e(X,S)

2

⌋
≤ 11n/ lnn− γ. (12)

By our construction, [n] = S∪T ∪R∪U is a partition of the vertex set, and properties (a)
and (d) hold. It remains to show that properties (b) and (c) also hold. It follows immediately
from inequality (12) that

|S| ≥ |U |+
∑
X∈C

⌊
e(X,S)

2

⌋
+ γ − 11n/ lnn ≥ γ − 11n/ lnn,

since |U | ≥ 0 and
∑

X∈C

⌊
e(X,S)

2

⌋
≥ 0. On the other hand, by Theorem 12 and the fact that

(S, U) is chosen such that it minimizes (11), we have n ≥ κ(G) ≥ n+ |U |−|S|, which implies
|S| ≥ |U |. This shows that property (b) holds.

For part (c), let p and q denote the number of components in G[T ] and, respectively,
G[R]. Since G ∈ Ccyclic, there are at most n/ lnn components in G[R] of order at most
lnn/10, and at most 10n/ lnn components in G[R] of order greater than lnn/10. It follows
that q ≤ 11n/ lnn. Then,∑

X∈C

⌊
e(X,S)

2

⌋
≥ (e(S, T )− p) + (e(S,R)− q)

2
≥ e(S, T ) + e(S,R)− p− 11n/ lnn

2
.

Hence,

11n/ lnn− γ ≥ |U | − |S|+
∑
X∈C

⌊
e(X,S)

2

⌋
≥ |U | − |S|+ e(S, T ) + e(S,R)− p− 11n/ lnn

2
.
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It follows that
e(S, T ) + e(S,R) ≤ 33n/ lnn− 2γ + 2|S| − 2|U |+ p.

Now condition (c) follows since

e(S ∪ T ) + e(S ∪ T,R) = e(S, T ) + e(T ) + e(S,R) ≤ e(S, T ) + e(S,R) + |T | − p,

as T induces a forest and e(T,R) = 0.

Let us now show that Ĝτ4 belongs to the family Ccyclic and so Corollary 13 can be applied.

Lemma 14. A.a.s. Ĝτ4 ∈ Ccyclic.

Proof. Let Z be the family of sets S with |S| ≤ lnn/10 where S induces a connected subgraph
of Ĝτ4 with at least |S| edges, and let Z = |Z|. We will show that E[Z] = o(n/ lnn) which
proves the lemma as it implies that Z ≤ n/ lnn by Markov’s inequality.

For a given S ⊆ [n] with |S| ≤ lnn/10, let XS be the indicator random variable that S
induces a connected subgraph of Ĝτ3 with at least |S| edges. Let X =

∑
S:3≤|S|≤lnn/10XS. It

follows that

E[X] ≤
lnn/10∑
s=3

(
n

s

)
ss−2

(
s

2

)(
9

n

)s
≤

lnn/10∑
s=3

(9e)s = O
(
(9e)lnn/10

)
= O(n0.36) = o(n/ lnn).

(Indeed, there are
(
n
s

)
sets of cardinality s, ss−2 spanning trees of Ks, and

(
s
2

)
choices for

an additional edge. By (3), the probability that selected edges are present in G∗ is at most
(9/n)s.)

Note that X counts those sets S ∈ Z that already satisfy the desired property in the
subgraph Ĝτ3 . We may assume that Ĝτ4 has property E. Hence, it is sufficient to further
bound the number of sets S ∈ Z that contain exactly one deficit vertex v and induce at
least one golden edge incident with v. Let YS be the indicator variable that S is such a set.
Let Y =

∑
S:3≤|S|≤lnn/10 YS and we immediately have Z ≤ X + Y . Hence, our next task is

to upper bound E[Y ]. There are |S| ways to choose vertex v in S to be the deficit vertex.
Then either v is incident with a loop, or a multiple edge in Gτ2 . We will only bound E[YS1A]
where A denotes the event that the deficit vertex in S is incident with a loop in Gτ2 ; the
other case can be dealt with analogously. Let s = |S|. There are ss−2

(
s
2

)
ways to specify a

set of s edges that must be induced by S. Given a specification of such s edges, there are
at most s ways to specify one of them to be golden. The probability for that specific edge
to be golden is at most 2/n < 9/n (as v sends out 2 golden edges in total). There could be
another edge among the s edges that is golden, and the conditional probability for that is
at most 2/n < 9/n. Moreover, the probability that v is incident with a loop is O(1/n). It
follows now that

E[Y 1A] ≤
lnn/10∑
s=3

(
n

s

)
s2 · ss−2

(
s

2

)(
9

n

)s
·O(1/n) = O

(
ln2 n

n

)
·
lnn/10∑
s=3

(9e)s = o(1).
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As we already mentioned, similar calculations show that E[Y 1B] = o(1), where B is the
event that the deficit vertex in S is incident with a parallel edge in Gτ2 . Combining all of
the above, we have E[Z] ≤ E[X] + E[Y 1A] + E[Y 1B] = o(n/ lnn). The lemma follows by
Markov’s inequality.

Let us fix an arbitrarily small ε > 0. After combining Lemma 14 and Corollary 13, it
remains to show that a.a.s. there is no vertex partition S ∪ T ∪ U ∪ R of Ĝτ4 satisfying
properties (a)–(d) in Corollary 13 with some γ ≥ εn. However, the distribution of Ĝτ4 is
complicated. As a result, we will work on Gτ4 instead and use Property E, which implies
that Ĝτ4 misses at most ln lnn edges of Gτ4 .

It will be convenient to colour edges of Gτ3 in one of the four colours: blue, green, red,
and yellow. Along the way of colouring edges we will colour some vertices as well. Recall that
Gτ3 is constructed during the first three phases, and Gτ4 is obtained by adding up to ln lnn
golden semi-edges to Gτ3 . During the first phase, G2n and the corresponding directed graph
D2n are created; V0 and V1 are the sets of vertices in D2n of in-degree 0 and, respectively, of
in-degree 1. Let us colour edges of G2n green if their counterparts in D2n are directed into
one of the vertices in V0 ∪ V1 which we also colour green. The remaining edges are coloured
blue. During the second phase graph Gτ2 is created; let us colour edges added during this
phase red. Finally, edges added during the third phase are coloured yellow.

Let us consider any partition [n] = S ∪ T ∪ U ∪ R. For any i ∈ {S, T, U,R}, let αi be
the fraction of vertices that belong to set i (that is, αi = |i|/n) and let γi be the fraction of
vertices of i that are green (that is, γi = |Gi|/αin where Gi is the set of green vertices in
set i). Moreover, let βi be the fraction of vertices in Gi that received no incoming edge in
D2n (that is, βi = |Gi ∩ V0|/|Gi|). In order to simplify the notation, we define the following
vectors: ααα = (αi)i∈{S,T,U,R}, βββ = (βi)i∈{S,T,U,R}, γγγ = (γi)i∈{S,T,U,R}. It follows immediately
from the above definitions that the following properties hold:∑

i∈{S,T,U,R}

αi = 1, , 0 ≤ γi ≤ 1, 0 ≤ βi ≤ 1 for all i ∈ {S, T, U,R}. (13)

Next, for i, j ∈ {S, T, U,R}, let bij · (2αin), gij · (2αin), and rij · (2βi + (1 − βi))γiαin
denote the numbers of blue, green and, respectively, red edges from set i to set j. Vectors
bbb = (bij)i,j∈{S,T,U,R}, ggg = (gij)i,j∈{S,T,U,R}, and rrr = (rij)i,j∈{S,T,U,R} describe the distribution of
edges of a given colour between parts. Let y1 · 0.07n denote the number of yellow edges that
are either incident to a vertex in U , or are induced by R. Let y2 ·0.07n denote the number of
yellow edges that are induced by T . Note that there are (1−y1−y2) ·0.07n edges between S
and R ∪ T . Hence, the vector (y1, y2, 1− y1 − y2) describes the distribution of yellow edges.

Let us fix uuu = (ααα,βββ,γγγ, bbb, ggg, rrr, y1, y2). Our goal is to upper bound the probability P (uuu)
that there exists a partition [n] = S ∪ T ∪ U ∪ R with |i| = αin for i ∈ {S, T, U,R}, and
subsets i′ ⊆ i for i ∈ {S, T, U,R} with |i′| = γiαin such that the following properties hold:

• there are exactly bij · (2αin) blue directed edges from set i to set j;

• there are exactly gij · (2αin) green directed edges from set i to set j;

• there are exactly rij · (2βi + (1− βi))γiαin red directed edges from set i to set j;

15



• there are exactly y1 · 0.07n yellow edges that are either incident to a vertex in U , or
are induced by R;

• there are exactly y2 · 0.07n yellow edges that are induced by T ;

• there are no yellow edges inside S, or between R and T ;

• all vertices in i′ received at most 1 incoming green edge;

• all vertices in i \ i′ received at least 2 incoming blue edges.

We will show that P (uuu) ≤ poly(n) exp(f(c,uuu)n) for some explicit function f(c,uuu). Unfortu-
nately, this function is quite involved so we will define it in the next section.

2.7 Function f

Let ε0 = 2−32. Let us start with an observation that, due to Lemma 7, we may assume that
the parameter uuu is of a specific form, that is, it satisfies the following constraints:

− ε0 <
∑

i∈{S,T,U,R}

γiαi − 3e−2 < ε0 (14)

− ε0 <
∑

i∈{S,T,U,R}

βiγiαi − e−2 < ε0 (15)

− ε0 <
∑

i∈{S,T,U,R}

2αi
∑

j∈{S,T,U,R}

gij − 2e−2 < ε0, (16)

Indeed, equations (14) and (15) follow from the fact that a.a.s. |V0|+ |V1| = (3e−2 + o(1))n
and, respectively, |V0| = (e−2 + o(1))n (Lemma 7(a)); equation (16) follows from the fact
that the number of green edges is equal to |V1| and so a.a.s. it is asymptotic to 2e−2n. We
also have the following set of obvious constraints:∑

j∈{S,T,U,R}

(bij + gij) = 1, for all i ∈ {S, T, U,R} (17)

∑
j∈{S,T,U,R}

rij = 1, for all i ∈ {S, T, U,R} (18)

y1 + y2 ≤ 1 (19)

ααα,βββ,γγγ, bbb, ggg, rrr, y1, y2 ∈ [0, 1]. (20)

(For the ease of notation, we write that a vector is in [0, 1] when every component of the
vector is in [0, 1].) As we only consider partitions satisfying properties (a)–(d) stated in
Corollary 13, we additionally require that

αS ≥ αU , (21)

2αT bTT + 2αTgTT + γTαT (2βT + (1− βT ))rTT + c · y2 ≤ αT + min{ε0, αT}, (22)

cSS = cRT = cTR = 0, for all c ∈ {b, g, r}. (23)
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The first constraint comes immediately from property (b), and the last constraint follows
from properties (a) and (d). The second constraint comes from the fact that e(T ) ≤ |T | in
Ĝτ4 required by property (a), which together with Property E imply that e(G) ≤ |T | + ε0n
and e(G) ≤ 2|T | in Gτ4 (note there can be at most |T | loops or double edges induced by T ).
Finally, let us note that Properties (c) and E, and Lemma 3 imply that a.a.s. the number of
edges incident with U or induced by R is at least

|E(Gτ4)|−e(S ∪ T )− e(S ∪ T,R)

≥ (2 + 4e−2 + c+ o(1))n− |T | − 2|S|+ 2|U |+ 2γ − 33n/ lnn− ln lnn

≥ (2 + 4e−2 + c)n− |T | − 2|S|+ 2|U |
= (4e−2 + c+ 4αU + αT + 2αR)n.

This yields the following constraint:

2αU + γUαU(1 + βU) + 2αS(bSU + gSU) + γSαSrSU(1 + βS) + 2αT (bTU + gTU)

+γTαT rTU(1 + βT ) + 2αR(bRU + bRR + gRU + gRR)

+γRαR(rRU + rRR)(1 + βR) + 0.07y1

≥ 4e−2 + c+ 4αU + αT + 2αR. (24)

For i ∈ {S, T, U,R}, the number of blue edges coming into set i must be at least 2αi(1−γi)n,
as every vertex in i \ (V0 ∪ V1) must receive at least 2 blue edges. This yield the following
set of constraints: ∑

j∈{S,T,U,R}

2αjbji ≥ 2αi(1− γi), for all i ∈ {S, T, U,R}. (25)

Finally, the number of green edges coming into each set satisfies the following constraints:∑
j∈{S,T,U,R}

2αjgji = αiγi(1− βi), for all i ∈ {S, T, U,R}. (26)

Now, we are ready to show that P (uuu) ≤ poly(n) exp(f(c,uuu)n) for some explicit func-
tion f(c,uuu). Given a vector of non-negative real numbers aaa with

∑
i ai = 1, let H(aaa) =

−
∑

i ai ln ai. If aaa = (a1, a2), then we simply write H(a1) for H(aaa). By convention, we set
0 ln(0) = 0, for any a > 0 we set a ln(0) = −∞, and we treat −∞ < x for every real
number x.

Given uuu, there are
(

n
αSn,αTn,αUn,αRn

)
= poly(n) exp(H(αS, αT , αU , αR)n) choices for sets

S, T , U , and R. Given S, T , U , R, there are

∏
i∈{S,T,U,R}

(
αin

γiαin

)
= poly(n)

∏
i∈{S,T,U,R}

exp(H(γi)αin) = poly(n) exp

n ∑
i∈{S,T,U,R}

H(γi)αi


ways to choose GS, GT , GU and GR. The probability that the number of blue and green
edges going out of S into each part of S, T , U , R is precisely as prescribed by uuu is equal to
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poly(n) exp(fSn), where

fS =2αS

(
H(bSU , bST , bSR, gSU , gST , gSR) + bSU ln((1− γU)αU) + bST ln((1− γT )αT )

+ bSR ln((1− γR)αR) + gSU ln(γUαU) + gST ln(γTαT ) + gSR ln(γRαR)
)
. (27)

Indeed, there are 2αSn edges going out of S that are blue or green. We need to partition
them into 6 classes depending on their colour and to which part they go to. This gives us
the term 2αSH(bSU , bST , bSR, gSU , gST , gSR). For each i ∈ {T, U,R}, there are 2αSbSin blue
edges that need to go to blue vertices of i (hence terms 2αSbSi ln((1− γi)αi)) and there are
2αSgSin green edges that need to go to green vertices of i (hence terms 2αSgSi ln(γiαi)).
Similarly, the probabilities that the number of blue and green edges going out of T , U , R
into other parts is precisely as encoded by uuu are poly(n) exp(fTn), poly(n) exp(fUn) and,
respectively, poly(n) exp(fRn), where

fT =2αT

(
H(bTS, bTT , bTU , gTS, gTT , gTU) + bTS ln((1− γS)αS) + bTT ln((1− γT )αT )

+ bTU ln((1− γU)αU) + gTS ln(γSαS) + gTT ln(γTαT ) + gTU ln(γUαU)
)
, (28)

fU =2αU

(
H(bUS, bUT , bUU , bUR, gUS, gUT , gUU , gUR) + bUS ln((1− γS)αS)

+ bUT ln((1− γT )αT ) + bUU ln((1− γU)αU) + bUR ln((1− γR)αR) + gUS ln(γSαS)

+ gUT ln(γTαT ) + gUU ln(γUαU) + gUR ln(γRαR)
)
, (29)

and

fR =2αR

(
H(bRS, bRU , bRR, gRS, gRU , gRR) + bRS ln((1− γS)αS) + bRU ln((1− γU)αU)

+ bRR ln((1− γR)αR) + gRS ln(γSαS) + gRU ln(γUαU) + gRR ln(γRαR)
)
. (30)

Given that, the probabilities that the number of red edges going out of S, T , U , R into
each part of S, T , U , R exactly as dictated by uuu are poly(n) exp(gSn), poly(n) exp(gTn),
poly(n) exp(gUn) and, respectively, poly(n) exp(gRn), where

gS =αSγS(2βS + (1− βS))
(
H(rSU , rST , rSR) + rSU lnαU + rST lnαT + rSR lnαR

)
, (31)

gT =αTγT (2βT + (1− βT ))
(
H(rTS, rTT , rTU) + rTS lnαS + rTT lnαT + rTU lnαU

)
, (32)

gU =αUγU(2βU + (1− βU))
(
H(rUS, rUT , rUU , rUR) + rUS lnαS + rUT lnαT

+ rUU lnαU + rUR lnαR

)
, (33)

gR =αRγR(2βR + (1− βR))
(
H(rRS, rRU , rRR) + rRS lnαS + rRU lnαU + rRR lnαR

)
. (34)

In order to continue our computations, we need the following auxiliary lemma on the
“balls into bins” model.
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Lemma 15. Fix α > 0 and suppose that αn balls are thrown independently and uniformly
at random into n bins.

(a) If α > 2, then the probability that every bin receives at least two balls is asymptotic
to poly(n) exp(t(α)n) with t(α) = λ − α + α ln(α/λ) + ln(1 − e−λ − λe−λ), where
λ = λ(α) > 0 is the unique solution of the following equation:

λ(1− e−λ)
1− e−λ − λe−λ

= α.

(b) If α ≤ 1, then the probability that every bin receives at most one ball is asymptotic to
poly(n) exp(κ(α)n), where κ(α) = −α− (1− α) ln(1− α).

(c) If α = 2, the probability that every bin receives exactly two balls is asymptotic to
poly(n) exp((ln 2− 2)n).

Before we prove the lemma, let us note that

f(λ) :=
λ(1− e−λ)

1− e−λ − λe−λ
=

λ(1− (1− λ+O(λ2)))

1− (1− λ+ λ2/2 +O(λ3))(1 + λ)
=

λ2 +O(λ3)

λ2/2 +O(λ3)
= 2 +O(λ),

so limλ→0+ f(λ) = 2. It is also straightforward to see that limλ→∞ f(λ) =∞ and f(λ) is an
increasing function of λ. Hence, indeed, λ = λ(α) is well defined. For convenience, we define
λ(2) = 0 and set

t(2) = lim
α→2+

t(α) = ln 2− 2.

This definition of t : [2,∞)→ R unifies parts (a) and (c) in the lemma above.

Proof. Suppose that α ≥ 2. Let K be the truncated Poisson variable with parameter λ =
λ(α) and truncated at 2, that is,

P(K = j) =
e−λλj

j!(1− e−λ − λe−λ)
, for every integer j ≥ 2.

It follows that

EK =
∑
j≥2

j · P(K = j) =
∑
j≥2

e−λλj

(j − 1)!(1− e−λ − λe−λ)

=
λ

1− e−λ − λe−λ
∑
j≥1

e−λλj

j!
=

λ(1− e−λ)
1− e−λ − λe−λ

= α,

by the definition of λ.
Let k1, . . . , kn be n independent copies of K. Then, by Gnedenko’s local limit theorem [6],

Θ(n−1/2) = P

(
n∑
i=1

ki = αn

)
=

∑
j1≥2,...,jn≥2∑n

i=1 ji=αn

n∏
i=1

e−λλji

ji!(1− e−λ − λe−λ)

=
e−λnλαn

(1− e−λ − λe−λ)n
∑∗

,
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where ∑∗
=

∑
j1≥2,...,jn≥2∑n

i=1 ji=αn

n∏
i=1

1

ji!
.

Hence, ∑∗
= poly(n)

(1− e−λ − λe−λ)n

e−λnλαn
.

Consider now throwing αn balls independently and uniformly at random into n bins.
By Stirling’s formula (x! = poly(x)(x/e)x), the probability that every bin receives at least 2
balls is equal to∑
j1≥2,...,jn≥2∑n

i=1 ji=αn

(
αn

j1, . . . , jn

)
n−αn =

(αn)!

nαn

∑∗
= poly(n)e−αnααn

∑∗

= poly(n)e−αnααn
(1− e−λ − λe−λ)n

e−λnλαn
= poly(n) exp(t(α)n).

This completes the proof of part (a).
To show part (b), suppose that α ≤ 1. The probability that every bin receives at most

one ball is equal to

(n)αn
nαn

=
n!

(n− αn)!nαn
= poly(n) exp(κ(α)n),

where (x)j =
∏j−1

i=0 (x− j) denotes the j-th falling factorial.
To show part (c), note that the probability that every bin receives exactly two balls is

equal to
(2n)!/2n

n2n
= poly(n) exp((ln 2− 2)n).

This finishes the proof of the lemma.

We are now back to our problem. With Lemma 15 at hand, we will be able to prove the
following claims.

Claim 16. The probability that all vertices in [n] \ (GS ∪GT ∪GU ∪GR) receive at least two

blue edges is equal to poly(n) exp
(
n
∑

i∈{S,T,U,R}wi

)
, where

wi = (1− γi)αi
(
λi − di + di ln(di/λi) + ln(1− e−λi − λie−λi)

)
, (35)

di =

∑
j∈{S,T,U,R} 2αjbji

(1− γi)αi
,

and λi = λi(di) > 0 is the unique solution of the following equation:

λi(1− e−λi)
1− e−λi − λie−λi

= di.
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Before we move to the proof, let us remark that, by (25), for every i ∈ {S, T, U,R} we
have di ≥ 2 and so λi is well defined.

Proof. Note that for each i ∈ {S, T, U,R}, the number of blue edges coming into i \ Gi is
equal to

∑
j∈{S,T,U,R} 2αjnbji. Moreover, |i \ (V0 ∪ V1)| = (1 − γi)αin. The claim follows

immediately from Lemma 15(a) applied with α =
∑

j∈{S,T,U,R} 2αjbji/(1−γi)αi = di and the

number of balls equal to (1− γi)αin.

Claim 17. The probability that all vertices in GS ∪GT ∪GU ∪GR receive at most one green

edge is equal to poly(n) exp
(
n
∑

i∈{S,T,U,R} w̃i

)
, where

w̃i = αiγi

(
− 1 + βi − βi ln βi

)
. (36)

Proof. Note that for each i ∈ {S, T, U,R}, the number of green edges coming into i∩(V0∪V1)
is (1 − βi)γiαin. Moreover, |i ∩ (V0 ∪ V1)| = γiαin. The claim follows immediately from
Lemma 15(b) applied with α = (1− βi)γiαi/γiαi = 1− βi and the number of bins equal to
γiαin.

Claim 18. The probability that there are exactly y1 · cn yellow edges incident with U or
induced by R, and exactly y2 · cn yellow edges induced by T is equal to poly(n) exp(hn),
where

h = c ln(c) + c · y1 ln

(
α2
U + 2αU(1− αU) + α2

R

c · y1

)
+ c · y2 ln

(
α2
T

c · y2

)
+ c · (1− y1 − y2) ln

(
2αS(αT + αR)

c · (1− y1 − y2)

)
. (37)

Proof. Recall that there are c ·n yellow edges in total, so the remaining c(1−y1−y2)n yellow
edges are between S and R ∪ T . The probability in the claim is equal to((αUn

2

)
+ αU(1− αU)n2 +

(
αRn
2

)
c · y1n

)((αTn
2

)
c · y2n

)(
αSn(αT + αR)n

c(1− y1 − y2)n

)((n
2

)
cn

)−1
,

which is equal to poly(n) exp(hn) by Stirling’s formula.

Combining everything together with (27)– (37), it follows that P (uuu) = poly(n) exp(f(c,uuu)n),
where

f(c,uuu) = H(αS, αT , αU , αR) +
∑

i∈{S,T,U,R}

(
αiH(γi) + fi + gi + wi + w̃i

)
+ h. (38)

Define

R = {(c,uuu) | 0 ≤ c ≤ 0.46, uuu satisfies (13)–(26) and αR ≤ 0.995}. (39)

By the definition of c∗ in (1), either there exists δ > 0 such that f(c∗− 2− 4e−2,uuu) < −δ for
all (c∗− 2− 4e−2,uuu) ∈ R; or there exists a sequence of real numbers (ci)i≥0 where ci > c∗ for
every i, limi→∞ ci = c∗ and for every i there exists δi > 0 such that f(ci− 2− 4e−2,uuu) < −δi
for all (ci − 2− 4e−2,uuu) ∈ R. In either case, we have the following.
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Claim 19. For every ε > 0, there exists δ > 0 and c∗ − 2 − 4e−2 ≤ c < c∗ − 2 − 4e−2 + ε
such that f(c,uuu) < −δ for all (c,uuu) ∈ R.

Let us remark that the reason to separate αR from 1 in the definition of R is that the
probability of a specified vertex partition S ∪ T ∪ U ∪ R satisfying Corollary 13(a)–(d) will
not be exponentially small when S, T , and U are all of sub-linear size, and thus f is not
bounded away from 0 in the entire region (13)–(26).

2.8 Proof of Lemma 4

Proof of Lemma 4. Our goal is to show that a.a.s. Ĝτ4 has a 2-matching with o(n) compo-
nents. Fix ε > 0. Let c ≥ 0 and δ > 0 to be chosen to satisfy Claim 19. As mentioned
earlier, after combining Lemma 14 and Corollary 13, it remains to show that a.a.s. there is
no vertex partition S ∪ T ∪ U ∪ R of Ĝτ4 satisfying properties (a)–(d) in Corollary 13 with
some γ ≥ εn.

The expected number of partitions S ∪ T ∪ U ∪ R satisfying (a)–(d) with γ ≥ εn and
|R| ≤ 0.995n is at most ∑

uuu

P (uuu) =
∑
uuu

poly(n) exp(f(c,uuu)n), (40)

where the sum is over all uuu such that (c,uuu) ∈ R. By the choice of c we have f(c,uuu) < −δ
for all uuu in the range of summation of (40) restricted to αR ≤ 0.995. The number of possible
values of uuu in the summation is clearly poly(n). Hence, the expected number of partitions
S ∪ T ∪ U ∪R satisfying (a)–(d) where |R| ≤ 0.995n is at most∑

uuu

poly(n) exp(f(c,uuu)n) ≤ poly(n) exp(−δn) = o(1).

It only remains to consider partitions S∪T ∪U ∪R satisfying (a)–(d) with |R| > 0.995n.
Let

x1 denote the number of edges between S and T ;

x2 denote the number of edges between U and T ;

x3 denote the number of edges between S and U ;

x4 denote the number of edges between S and R.

Since the minimum degree of Ĝτ4 is at least 4, S induces an independent set, and T induces
a forest, we get that

x1 + x2 + 2e(T ) ≥ 4|T |, e(T ) < |T |, and x1 + x3 + x4 ≥ 4|S|.
By property (c) and the fact that γ ≥ εn, we get that x1 + e(T ) + x4 ≤ |T | + 2|S| − 2|U |.
Hence,

2|T |+ 2|S| − 2|U |+ x1 + x2 + x3 > |T |+ 2|S| − 2|U |+ x1 + x2 + x3 + e(T )

≥ 2x1 + x2 + x3 + x4 + 2e(T ) ≥ 4(|S|+ |T |). (41)

It follows that x1 + x2 + x3 ≥ 2(|S|+ |T |+ |U |) = 2(|S ∪ T ∪U |), that is, S ∪ T ∪U induces
at least 2|S ∪ T ∪ U | edges. However, by Lemma 7(c), this does not happen a.a.s. for any
partition with |S ∪ T ∪ U | ≤ 0.005n.
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2.9 Numerical support

The goal of this section is to provide a numerical evidence that c∗ < 2.61135. Let c = 0.07,
and our aim is to verify numerically that f(c,uuu) < 0 uniformly for all uuu in the summation (40).
The optimization problem was carefully investigated using the code written in the Julia
language [3], JuMP.jl package [5] with Ipopt solver [11]. The optimization problem we
needed to face is challenging for the following reasons.

First of all, it involves a non-convex optimization problem which potentially has many
local optima (we numerically confirmed that this is the case in our problem). In order
to overcome this challenge, we used a standard multi-start [7] approach for solving global
optimization problems. However, due to a stochastic nature of the heuristic search procedure
used in this process, it means that the results we obtained are only heuristic in nature. In
other words, the numerical results we obtained strongly suggest that the desired property
holds but this is, unfortunately, not a formal proof of this.

Second of all, the objective function contains terms of the form x ln(x) which have deriva-
tives tending to ∞ as x → 0. This creates a challenge when solving the problem using
numerical methods. More importantly, in the problem there are some local optima for which
some variables are equal to zero. In order to overcome this problem, we relaxed the original
problem by replacing x ln(x) with some other function f̄(x) ≤ x ln(x) (we need this prop-
erty as we deal with a maximization problem and terms of the form x ln(x) appear with a
negative sign in the objective function). Function f̄(x) should be a quadratic function near
0, its value and the values of its first and second derivatives should match in the point of
change of the formula. The exact function we ended up using as a relaxation of x ln(x) is:

f̄(x) =

{
231x2 + ln(2−32)x− 2−33 if 0 ≤ x < 2−32

x ln(x) if x ≥ 2−32
.

The third challenge is that the optimization problem for most of the variables allows the
domain to be [0, 1] and we have ln(x) occurring in multiple places of the formulation of the
objective function (and also other than x ln(x) which is handled by the relaxation described
above). This poses another challenge when the solver performs a local search in the points
near the boundary of the admissible set. In such cases a logarithm of negative value might
be considered (note that the solver evaluates the objective function for points contained in
some small neighbourhood of a current potential solution before ensuring that the constraints
are satisfied; as a result, if points close to 0 are considered, such neighbourhood could
contain negative values), which leads to errors when performing the computation. In order
to overcome this problem, we apply the transformation given by the formula

ḡ(x) =
1

2

(
sin

(
π

(
x− 1

2

))
+ 1

)
to every variable that is constrained to the interval [0, 1], before passing it for the evaluation
of the objective function and constraints. Note that this transformation is a bijection from
the interval [0, 1] into the interval [0, 1] but it guarantees that if some decision variable is
tested outside the [0, 1] interval it is transformed back to [0, 1] interval (such values are
rejected later anyway due to the constraints but are tested during the optimization process
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which causes no error). Also note that the transformation we use is an analytic function,
which means that it does not introduce additional problems when calculating the first or the
second derivatives of the objective functions or constraints.

In order to explore the solution space thoroughly, we have performed two optimization
processes. In the first one, we tested the interior of the solution space, that is, all deci-
sion variables that are restricted to [0, 1] were in fact constrained even further to be in the
[0.005, 0.995] interval. In the second optimization scenario, we did not impose these addi-
tional constraints and all the variables were allowed to be taken from their original domain.
The largest local optimum found across both scenarios was −0.000722123670503 (we report
the value of the original objective function, before the relaxation). It was clearly separated
from the boundary; indeed, all decision variables restricted to the interval [0, 1] actually lied
in the [0.0032, 0.9586] interval. This is consistent with a theoretical understanding of the
problem; it is expected that there is no problem with the boundary. In both scenarios there
were some additional local optima (two in the first scenario and four in the second) but all
of them were smaller than the one we report above.

In order to make sure that our results are stable we tested several different values for ε0,
various relaxation functions f and space transformation functions g, and many separation
margins from the boundary. In all cases we consistently obtained that the best local optimum
found was below zero. Therefore, it provides a strong numerical support for f being negative
in the domain R for our choice of c.

We independently tested smaller values of c. Denote by ûuu the best solution for c = 0.07;
it satisfies f(0.07, ûuu) < 0. However, for c = 0.06, the best solution uuu∗ that the solver is able
to find satisfies that f(0.06,uuu∗) > 0. We also checked the relationship between points ûuu and
uuu∗. The two points are very close to each other (‖uuu∗− ûuu‖∞ = 0.0024), which means that the
results are stable. Having said that, they are clearly not identical as changing the number
of random edges added during the third phase affects the constraints of our optimization
problem. In particular, (0.07,uuu∗) /∈ R. That is, point uuu∗ is not feasible for the process
involving adding 0.07n random edges.

3 Lower bound

As it was done in the argument for an upper bound, it will also be convenient to work with
the directed graph Dt underlying Gt. For each edge utvt that is added to Gt at time t, we
put a directed edge from vt to ut in Dt (recall that ut is a random vertex selected by the
semi-random graph process and vt is a vertex selected by the player). The existing lower
bound for τHAM that was observed in [2] follows from the fact that in order to construct a
Hamilton cycle, the player has to create a graph with minimum degree at least 2. However,
this trivial necessary condition alone requires (ln 2 + ln(1 + ln 2) + o(1))n steps. Indeed,
in order to reach a graph with minimum degree 2, the player has to play greedily during
the first part of the game by selecting vertices of Gt that are of degree 0. This part of the
game ends at step (ln 2 + o(1))n a.a.s. From that point on, she continues playing greedily
by selecting vertices of degree 1 which requires additional (ln(1 + ln 2) + o(1))n steps a.a.s.

In order to improve the lower bound (unfortunately, only by a hair) we will use another
trivial observation. We will call a vertex x in Dt problematic if it is of in-degree at least 3
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(out-degree of x is not important) with the in-neighbours y1, y2, y3 (if x has in-degree larger
than 3, then these are the first three in-neighbours sorted by the time when they were added
to the graph), each of them of out-degree 1 and in-degree 1. Since yi’s are of degree 2 in the
underlying graph Gt, the three edges yix must be included in a potential Hamilton cycle but
then, indeed, vertex x creates a problem. It gives us another trivial necessary condition: if
Gt has a Hamilton cycle, then there are no problematic vertices. Indeed, if Gt has a vertex v
adjacent to three vertices, all of which are of degree 2, then Gt cannot be Hamiltonian. This
results in various types of “problematic” vertices. Our definition focuses only on a particular
type for the purpose of simplifying the proof.

The numerical improvement is tiny and the bound we prove is certainly not tight. Hence,
we only provide sketches of the proofs. The computations presented in the paper were
performed by using Maple [8]. The worksheets can be found at the following address [13].

For convenience, we will distinguish a few phases in the semi-random graph process. The
first phase lasts exactly n ln 2 steps. Our first goal is to show that if the player plays greedily,
then a.a.s. there will be linearly many problematic vertices at the end of first phase.

Claim 20. Suppose that the player plays greedily during the first phase of the process. Then,
a.a.s. there are (ξ + o(1))n problematic vertices at the end of this phase, where

ξ =
1

128

(
4(ln 2)4 + 20(ln 2)3 + 54(ln 2)2 − 18 ln 2− 21

)
≈ 0.0004035.

Proof. It is fairly easy to show that the number of problematic vertices is a.a.s. at least ξn
for some positive constant ξ. By the standard first and second moment calculations, after
the first (ln 2/2)n steps there will be at least (e−cc3/6)n vertices of in-degree at least 3 in
Dt where c = ln 2/2. Then, a.a.s. a positive fraction of these vertices turns out problematic
during the next (ln 2/2)n steps. Of course, in order to get larger constant ξ it is best to track
the process and apply the differential equation’s method (see [12] for more information on
the DE’s method). We briefly sketch the argument.

For a, b, c ∈ {0, 1} and a ≥ b ≥ c, we will say that a vertex x in Dt is of type (a, b, c) if it is
of in-degree at least 3, with the first three in-neighbours y1, y2 and y3 (order is not important),
each of which has out-degree 1 and in-degree a, b, and c, respectively. In particular, vertex
of type (1, 1, 1) is simply a problematic vertex. Similarly, vertices of in-degree 2 could be
of type (a, b) and vertices of in-degree 1 could be of type (a). The remaining vertices of
in-degree at least 1 are called neglected. (Note that neglected vertices can still prevent
Hamilton cycle to be constructed but we simply neglect them.)

In order to analyze the process, we need to keep track of 9 random variables associated
with vertices of different types, random variables Xabc, Xab, and Xa. In particular, X111(t)
is the number of problematic vertices (type (1, 1, 1)) at the end of step t. Moreover, let Y (t)
be the number of neglected vertices at the end of step t. It is straightforward to compute
the conditional expectations; for example,

E
(
X111(t+ 1)−X111(t) | Dt

)
=
X110(t)

n
− 3

X111(t)

n
.

Indeed, the only chance to create a problematic vertex is when the semi-random process
selects the in-neighbour of a vertex of type (1, 1, 0) that is of in-degree 0. On the other
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hand, if the process selects any of the first three in-neighbours of a problematic vertex, this
vertex becomes neglected. The other expectations can be computed in a similar way. This
suggests the following system of differential equations that should reflect the behaviour of
the corresponding random variables:

x′0(x) = 1− x0(x)− x00(x)− x000(x)− x1(x)− x10(x)− x100(x)− x11(x)

−x110(x)− x111(x)− y(x)− 2x0(x),

x′00(x) = x0(x)− 3x00(x),

x′000(x) = x00(x)− 3x000(x),

x′1(x) = x0(x)− 2x1(x),

x′10(x) = 2x00(x) + x1(x)− 3x10(x),

x′100(x) = 3x000(x) + x10(x)− 3x100(x),

x′11(x) = x10(x)− 3x11(x),

x′110(x) = 2x100(x) + x11(x)− 3x110(x),

x′111(x) = x110(x)− 3x111(x),

y′(x) = x1(x) + x10(x) + x100(x) + 2x11(x) + 2x110(x) + 3x111(x),

with the initial condition that all functions at x = 0 are equal to zero. This system of
equations can be explicitly solved. In particular, we get that

x111(x) =
e−3xx4

4
+

5e−3xx3

4
+

27e−3xx2

8
+

39e−3xx

8
+

39e−3x

16
− 3e−2xx− 3e−2x +

9e−x

16
.

It follows from the DE’s method that a.a.s. X111(t) = (1 + o(1))x111(t/n)n for any 0 ≤ t ≤
n ln 2. Hence, a.a.s. the number of problematic vertices at the end of the first phase is equal
to (1 + o(1))x111(ln 2) and the claim holds.

The above claim implies that if the player concentrates on achieving minimum degree 2
as soon as possible (that is, play greedily until the graph has minimum degree equal to 2),
then a.a.s. there will be (ξ + o(1))n problematic vertices at the end of the first phase. If she
continues playing greedily, then a.a.s. some positive fraction of these problematic vertices
will remain present in the graph. Making them negligible will take linearly many steps. As
a result, the player might want to adjust her strategy and not play greedily but start paying
attention to problematic vertices instead. We now argue that this will also slow her down.

For a given δ ∈ [0, 1] (δ = δ(n) could be a function of n), let Fδ be a family of strategies
in which (1 − δ)n ln 2 steps in the first phase are greedy (that is, the player selects some
isolated vertex) but δn ln 2 steps are non-greedy (that is, the player selects some vertex of
degree at least 1). We will show that playing non-greedily has a penalty in the form of
reaching minimum degree 2 later in comparison to the minimum degree 2 process.

Claim 21. Fix any δ ∈ [0, 1]. For any strategy from family Fδ, a.a.s. it takes at least

(ln 2 + ln(1 + ln 2) + ε1(δ) + o(1))n

steps for Gt to reach minimum degree 2, where

ε1(δ) = ln
(
(21+δ − 1) ln(21+δ − 1)− 21+δδ ln 2 + (1 + ln 2)2δ

)
− δ ln 2− ln(1 + ln 2),

for δ ∈ [0, 1/2] and ε1(δ) = ε1(1/2) for δ ∈ (1/2, 1].
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Note that ε1(δ) is an increasing function of δ on [0, 1/2] and ε1(0) = 0 (which corresponds
to the original minimum degree 2 process).

Proof. It is important to notice that the objective here is only to eliminate all vertices of
degree below 2, and thus the player does not need to worry about problematic vertices.
First consider δ ∈ [0, 1/2]. As in the case of the unrestricted minimum degree 2 process
(which corresponds to δ = 0), it is straightforward to see (for example, by a simple coupling
argument) that it is always beneficial to play a greedy move instead of a non-greedy one1.
Hence, in order to achieve our goal, the best strategy from the family Fδ is to play on vertices
of degree 0 during the first (1 − δ)n ln 2 steps. After that, the player should select vertices
of degree 1 until the end of the first phase , that is, during the following δn ln 2 steps. As
there are no restrictions on the game after that (in particular, no restrictions on the number
of non-greedy moves), she should play greedily until the end of the game; that is, play on
vertices of degree 0 until they disappear and then play on vertices of degree 1 until the
end of the game. Hence, both the first and the second phase are split into two sub-phases,
depending on which type of vertices are selected.

In order to analyze how long it takes to finish this process, we need to keep track of
two random variables: Y (t) and Z(t), the number of vertices at time t of degree 0 and 1,
respectively. We say that a move is of type i (where i ∈ {0, 1}) if the player chooses vt
whose degree is i in Gt−1. It is not difficult to see that

E
(
Y (t+ 1)− Y (t) | Gt and type i

)
= −δi=0 −

Y (t)

n

E
(
Z(t+ 1)− Z(t) | Gt and type i

)
= δi=0 − δi=1 +

Y (t)

n
− Z(t)

n
.

where δA is the Kronecker delta function (δA = 1 if A is true and δA = 0 otherwise). The
corresponding system of DEs is

y′(x) = −δi=0 − y(x)

z′(x) = δi=0 − δi=1 + y(x)− z(x).

The initial condition is y(0) = 1 and z(0) = 0. Moreover, the final values of y(x) and
z(x) after one of the sub-phases are used as the initial values for the next sub-phase. The
conclusion follows from the DE’s method. We skip the details and refer the interested reader
to the Maple worksheets available on-line.

It is easy to see that if 1/2 < δ ≤ 1 then any strategy from Fδ a.a.s. takes at least
(ln 2 + ln(1 + ln 2) + ε1(1/2) + o(1))n steps to build a graph with minimum degree at least
2. During the second sub-phase of phase 1, the player may select any non-isolated vertex
if there are no vertices of degree 1 left. These moves are not helping with building a graph
with minimum degree 2 and thus it takes even longer to complete the process.

Our next task is to estimate the number of problematic vertices at the end of the first
phase, provided that the player uses a strategy from family Fδ.

1For any strategy f of Fδ which does not prioritize greedy moves first, there exists another strategy within
Fδ which does prioritize greedy moves first, and whose completion time is stochastically dominated by the
completion time of f .
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Claim 22. Fix any δ ∈ [0, ξ/(2 ln 2)], where ξ is defined in Claim 20. For any strategy from
family Fδ, a.a.s. there are at least (ξ− 2δ ln 2 + o(1))n problematic vertices at the end of the
first phase.

Proof. It is not clear what the best strategy for minimizing the number of problematic
vertices is. So, in order to keep the argument as simple as possible, we will help the player
and propose to play the following auxiliary game, a mixture of on-line and off-line variants
of the game. We simply run the greedy algorithm by selecting an isolated vertex in each
step of the process. It follows from Claim 20 that a.a.s. there are (ξ + o(1))n problematic
vertices at the end of the first phase. After that, we ask the player to ‘rewind’ the process
and carefully ‘rewire’ δ fraction of moves in any way she wants keeping the remaining 1− δ
fraction of moves greedy, as required. Each modified move affects at most two problematic
vertices so the number of problematic vertices decreases by at most 2 · δn ln 2. Since this
task clearly is much easier for the player than the original one, the lower bound follows.

Our final task is to combine all results together.

Claim 23. Fix any δ ∈ [0, ξ/(2 ln 2)], where ξ is defined in Claim 20. For any strategy from
family Fδ, a.a.s. it takes at least

(ln 2 + ln(1 + ln 2) + ε1(δ) + ε2(δ) + o(1))n

steps for Gt to reach minimum degree 2 and remove all problematic vertices that were created
during the first phase. Function ε1(δ) is defined in Claim 21 and

ε2(δ) =
ln
(
3τ(δ) + 1

)
3

,

τ(δ) = (ξ − 2δ ln 2) exp(−3 ln(1 + ln 2)− 3ε1(δ)).

Proof. As in the proof of the previous claim, it is not clear what the best strategy is. Since
we aim for an easy argument without optimizing the constants, we propose the player to play
the following auxiliary game. We let her play the degree-greedy algorithm from the family
Fδ which optimizes the time needed to achieve minimum degree 2 (without worrying about
problematic vertices). At the end of the first phase we artificially ‘destroy’ some problematic
vertices (if needed), leaving only (ξ − 2δ ln 2 + o(1))n of them in the graph. Clearly, this is
an easier game for the player to play. Indeed, by Claim 22 any strategy from Fδ creates at
least that many problematic vertices and so this is certainly a sweet deal for her.

The player continues the game trying to reach minimum degree at least 2 and to destroy
the remaining problematic vertices. It is straightforward to see that the best strategy is
to continue playing the degree-greedy algorithm, destroying the remaining isolated vertices
before playing vertices of degree 1. That part is taking (ln(1 + ln 2) + ε1(δ) + o(1))n steps
by Claim 21. In the meantime, vertices selected by the random graph process land on the
neighbours of problematic vertices. The probability that a given problematic vertex is not
destroyed is equal to(

1− 3

n

)(ln(1+ln 2)+ε1(δ)+o(1))n

= exp
(
− 3
(

ln(1 + ln 2) + ε1(δ)
))

+ o(1).
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Hence a.a.s. there are (τ(δ) + o(1))n problematic vertices at this point.
After that, the player has to destroy the remaining problematic vertices. Obviously, the

best strategy is to choose vt to be one of the first three neighbours of a problematic vertex.
A problematic vertex x can also be destroyed if ut happens to be one of these neighbours.
Let Y (t) be the number of problematic vertices at the end of step t (for simplicity counting
from t = 0). It is straightforward to see that

E
(
Y (t+ 1)− Y (t) | Gt

)
= −1− 3Y (t)

n
.

The corresponding DE is y′(x) = −1−3y(x) with the initial condition y(0) = τ(δ). It follows
that y(x) = −1/3+(τ(δ)+1/3)e−3x and so we get that a.a.s. it takes another (ε2(δ)+o(1))n
steps to finish the game, and the claim holds.

Theorem 2 follows immediately from Claim 23. Let us first extend ε2(δ) to [0, 1] by
setting ε2(δ) = 0 for δ ∈ (ξ/(2 ln 2), 1]. We have shown that for every δ ∈ [0, 1], any strategy
from Fδ a.a.s. takes at least (ln 2 + ln(1 + ln 2) + ε1(δ) + ε2(δ) + o(1))n steps to build a
Hamilton cycle. Note that ε1(δ) is an increasing function of δ; the more non-greedy moves
the player needs to play, the longer the game is. On the other hand, ε2(δ) is a decreasing
function on [0, ξ/(2 ln 2)] with ε2(ξ/(2 ln 2)) = 0; the non-greedy moves can be spent on
destroying problematic vertices and so the number of them decreases with δ. After more
careful investigation we get that ε1(δ) + ε2(δ) is a decreasing function on [0, ξ/(2 ln 2)] and
then it is equal to ε1(δ) and so it starts increasing. Therefore we get that

ε = min
δ

(
ε1(δ) + ε2(δ)

)
= ε1

(
ξ

2 ln 2

)
+ ε2

(
ξ

2 ln 2

)
= ε1

(
ξ

2 ln 2

)
≈ 2.403 · 10−8.
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[11] A. Wächter, L.T. Biegler, On the Implementation of a Primal-Dual Interior Point Filter
Line Search Algorithm for Large-Scale Nonlinear Programming, Mathematical Program-
ming 106 25–57 (2006).

[12] N.C. Wormald, The differential equation method for random graph processes and greedy
algorithms. Lectures on Approximation and Randomized Algorithms, eds. M. Karoński
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