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Abstract9

We consider the online bipartite matching problem within the context of stochastic probing10

with commitment. This is the one-sided online bipartite matching problem where edges adjacent to11

an online node must be probed to determine if they exist based on edge probabilities that become12

known when an online vertex arrives. If a probed edge exists, it must be used in the matching. We13

consider the competitiveness of online algorithms in the adversarial order model (AOM) and the14

secretary/random order model (ROM). More specifically, we consider an unknown bipartite stochastic15

graph G = (U, V, E) where U is the known set of offline vertices, V is the set of online vertices, G has16

edge probabilities (pe)e∈E , and G has edge weights (we)e∈E or vertex weights (wu)u∈U . Additionally,17

G has a downward-closed set of probing constraints (Cv)v∈V , where Cv indicates which sequences of18

edges adjacent to an online vertex v can be probed. This model generalizes the various settings of19

the classical bipartite matching problem (i.e. with and without probing). Our contributions include20

the introduction and analysis of probing within the random order model, and our generalization21

of probing constraints which includes budget (i.e. knapsack) constraints. Our algorithms run in22

polynomial time assuming access to a membership oracle for each Cv.23

In the vertex weighted setting, for adversarial order arrivals, we generalize the known 1
2 competit-24

ive ratio to our setting of Cv constraints. For random order arrivals, we show that the same algorithm25

attains an asymptotic competitive ratio of 1 − 1/e, provided the edge probabilities vanish to 026

sufficiently fast. We also obtain a strict competitive ratio for non-vanishing edge probabilities when27

the probing constraints are sufficiently simple. For example, if each Cv corresponds to a patience28

constraint ℓv (i.e., ℓv is the maximum number of probes of edges adjacent to v), and any one of29

following three conditions is satisfied (each studied in previous papers), then there is a conceptually30

simple greedy algorithm whose competitive ratio is 1 − 1
e
.31

When the offline vertices are unweighted.32

When the online vertex probabilities are “vertex uniform”; i.e., pu,v = pv for all (u, v) ∈ E.33

When the patience constraint ℓv satisfies ℓv ∈ {[1, |U |} for every online vertex; i.e., every online34

vertex either has unit or full patience.35

Finally, in the edge weighted case, we match the known optimal 1
e

asymptotic competitive ratio for36

the classic (i.e. without probing) secretary matching problem.37
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13:2 Secretary Matching Meets Probing with Commitment

1 Introduction44

Stochastic probing problems are part of the larger area of decision making under uncertainty45

and more specifically, stochastic optimization. Unlike more standard forms of stochastic46

optimization, it is not just that there is some possible stochastic uncertainty in the set47

of inputs, stochastic probing problems involve inputs that cannot be determined without48

probing (at some cost and/or within some constraint) so as to reveal the inputs. Applications49

of stochastic probing occur naturally in many settings, such as in matching problems where50

compatibility (for example, in online dating and kidney exchange applications) or legality51

(for example, a financial transaction that must be authorized before it can be completed)52

cannot be determined without some trial or investigation. Amongst other applications, the53

online bipartite stochastic matching problem notably models online advertising where the54

probability of an edge can correspond to the probability of a purchase in online stores or55

to pay-per-click revenue in online searching. Commitment reflects the fact that one usually56

chooses the next probe based on some concept of expected value but in many applications57

(e.g. kidney exchanges) the cost or invasiveness of probing makes it practically necessary58

to commit. In some applications, there may be a legal requirement to commit (e.g., if a59

contract is possibly being offered and commitment is required).60

The (offline) stochastic matching problem was introduced by Chen et al. [9]. In this61

problem, the input is an adversarially generated stochastic graph G = (V, E) with a probability62

pe associated with each edge e and a patience (or time-out) parameter ℓv associated with63

each vertex v. An algorithm probes edges in E within the constraint that at most ℓv edges64

are probed incident to any particular vertex v ∈ V . Also, when an edge e is probed, it is65

guaranteed to exist with probability exactly pe. If an edge (u, v) is found to exist, it is added66

to the matching and then u and v are no longer available. The goal is to maximize the67

expected size of a matching constructed in this way. Chen et al. showed that by probing68

edges in non-increasing order of edge probability, one attains an approximation ratio of 1/4.69

The analysis was later improved by Adamczyk [1], who showed that this algorithm in fact70

attains an approximation ratio of 1/2. This problem can be generalized to vertices or edges71

having weights.72

Mehta and Panigrahi [22] adapted the offline stochastic matching model to online bipartite73

matching as originally studied in the classical (non-stochastic) adversarial order online model.74

That is, they consider the setting where the stochastic graph is unknown and online vertices75

are determined by an adversary. More specifically, they studied the problem in the case of76

an unweighted stochastic graph G = (U, V, E) where U is the set of known offline vertices77

and the vertices in V arrive online without knowledge of future online node arrivals. They78

considered the special case of uniform edge probabilities (i.e, pe = p for all e ∈ E) and unit79

patience values, that is ℓv = 1 for all v ∈ V . They considered a greedy algorithm which80

attains a competitive ratio of 1
2 (1 + (1− p)2/p), which limits to 1

2 (1 + e−2) ≈ .567 as p→ 0.81

Mehta et al. [23] considered the unweighted online stochastic bipartite setting with arbitrary82

edge probabilities, attaining a competitive ratio of 0.534, and recently, Huang and Zhang [16]83

additionally handled the case of arbitrary offline vertex weights, while improving this ratio84

to 0.572. However, as in [22], both [23] and [16] are restricted to unit patience values, and85

moreover require edge probabilities which are vanishingly small1. Goyal and Udwani [12]86

improved on both of these works by showing a 0.596 competitive ratio in the same setting.87

1 Vanishingly small edge probabilities must satisfy maxe∈E pe → 0, where the asymptotics are with
respect to the size of G.
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In all our results we will assume commitment; that is, when an edge is probed and found88

to exist, it must be included in the matching (if possible without violating the matching89

constraint). The patience constraint can be viewed as a simple form of a budget (equivalently,90

knapsack) constraint for the online vertices. We generalize patience and budget constraints91

by associating a downward-closed set Cv of probing sequences for each online node v where92

Cv indicates which sequences of edges adjacent to vertex v can be probed. In the general93

query and commit framework of Gupta and Nagarajan [14], the Cv constraints are the outer94

constraints.95

1.1 Preliminaries96

An input to the (online) stochastic matching problem is a (bipartite) stochastic97

graph, specified in the following way. Let G = (U, V, E) be a bipartite graph with edge98

weights (we)e∈E and edge probabilities (pe)e∈E . We draw an independent Bernoulli random99

variable of parameter pe for each e ∈ E. We refer to this Bernoulli as the state of the edge e,100

and denote it by st(e). If st(e) = 1, then we say that e is active, and otherwise we say that101

e is inactive. For each v ∈ V , denote ∂(v) as the edges of G which include v. Define ∂(v)(∗)
102

as the collection of strings (tuples) formed from the edges of ∂(v) whose characters (entries)103

are all distinct. Note that we use string/tuple notation and terminology interchangeably.104

Each v ∈ V has an online probing constraint Cv ⊆ ∂(v)(∗) which is downward-closed.105

That is, Cv has the property that if e ∈ Cv, then so is any substring or permutation of e.106

Thus, in particular, our setting encodes the case when v has a patience value ℓv, and more107

generally, when Cv corresponds to a matroid or budgetary constraint2 on ∂(v). Note that we108

will often assume w.l.o.g. that E = U × V , as we can always set pu,v := 0.109

A solution to the online stochastic matching problem is an online probing algorithm.110

An online probing algorithm is initially only aware of the identity of the offline vertices111

U of G. We think of G, as well as the relevant edges probabilities, weights, and probing112

constraints, as being generated by an adversary. An ordering on V is then generated either113

through an adversarial process or uniformly at random. We refer to the former case as114

the adversarial order model (AOM) and the latter case as the random order model115

(ROM).116

Based on whichever ordering is generated on V , the nodes are then presented to the117

online probing algorithm one by one. When an online node v ∈ V arrives, the online118

probing algorithm sees all the adjacent edges and their associated probabilities, as well as119

Cv. However, the edge states (st(e))e∈∂(v) remain hidden to the algorithm. Instead, the120

algorithm must perform a probing operation on an adjacent edge e to reveal/expose its121

state, st(e). Moreover, the online probing algorithm must respect commitment. That122

is, if an edge e = (u, v) is probed and turns out to be active, then e must be added to the123

current matching, provided u and v are both currently unmatched. The probing constraint124

Cv of the online node then restricts which sequences of probes can be made to ∂(v). As in125

the classical problem, an online probing algorithm must decide on a possible match for an126

online node v before seeing the next online node. The goal of the online probing algorithm127

is to return a matching whose expected weight is as large as possible. Since Cv may be128

exponentially large in the size of U , in order to discuss the efficiency of an online probing129

algorithm, we work in the membership oracle model. That is, upon receiving the online130

2 In the case of a budget Bv and edge probing costs (be)e∈∂(v), any subset of ∂(v) may be probed, provided
its cumulative cost does not exceed Bv.
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13:4 Secretary Matching Meets Probing with Commitment

vertex v ∈ V , we assume the online probing algorithm has access to a membership oracle.131

The algorithm may query any string e ∈ ∂(v)(∗), thus determining in a single operation132

whether or not e ∈ ∂(v)(∗) is in Cv.133

It is easy to see we cannot hope to obtain a non-trivial competitive ratio against the134

expected value of an optimal matching of the stochastic graph. Consider a single online vertex135

with patience 1, and k ≥ 1 offline (unweighted) vertices where each edge e has probability 1
k136

of being present. The expectation of an online probing algorithm will be at most 1
k while the137

expected size of an optimal matching will be 1−(1− 1
k )k → 1− 1

e . This example clearly shows138

that no constant ratio is possible if the patience is sublinear in k = |U |. Thus, the standard in139

the literature is to instead benchmark the performance of an online probing algorithm against140

an optimal offline probing algorithm. An offline probing algorithm knows G = (U, V, E),141

but initially the edge states (st(e))e∈E are hidden. It can adaptively probe the edges of E in142

any order, but must satisfy the probing constraints (Cv)v∈V at each step of its execution3,143

while respecting commitment; that is, if a probed edge e = (u, v) turns out to be active,144

then e is added to the matching (if possible). The goal of an offline probing algorithm is145

to construct a matching with optimal weight in expectation. We define the committal146

benchmark OPT(G) for G as the value of an optimal offline probing algorithm. We abuse147

notation slightly, and also use OPT(G) to refer to the strategy of the committal benchmark148

on G. In the arXiv version of the paper [4], we introduce the stronger non-committal149

benchmark, and indicate which of our results hold against it.150

1.2 Our Results151

We first consider the case when the stochastic graph G = (U, V, E) has (offline) vertex152

weights – i.e., there exists (wu)u∈U such that wu,v = wu for each v ∈ N(u), and arbitrary153

downward-closed probing constraints (Cv)v∈V . We consider a greedy online probing algorithm.154

That is, upon the arrival of v, the probes to ∂(v) are made in such a way that v gains as much155

value as possible (in expectation), provided the currently unmatched nodes of U are equal to156

R ⊆ U . As such, we must follow the probing strategy of the committal benchmark when157

restricted to the induced stochastic graph4 G[{v} ∪R], which we denote by OPT(R, v)158

for convenience.159

Observe that if v has unit patience, then OPT(R, v) reduces to probing the adjacent edge160

(u, v) ∈ R × {v} such that the value wu · pu,v is maximized. Moreover, if v has unlimited161

patience, then OPT(R, v) corresponds to probing the adjacent edges of R × {v} in non-162

increasing order of the associated vertex weights. Building on a result in Purohit et al. [24],163

Brubach et al. [8] showed how to devise an efficient probing strategy for v whose expected164

value matches OPT(R, v), for any patience value. Using this probing strategy, they devised165

an online probing algorithm which achieves a competitive ratio of 1/2 for arbitrary patience166

values. The challenge in extending this competitive ratio to more general probing constraints167

comes from the fact that it is unclear how to compute OPT(R, v) efficiently. We show that168

this is possible to do when the probing constraints are downward-closed, and provide a169

primal-dual proof of the following theorem:170

3 Edges e ∈ E(∗) may be probed in the order specified by e, provided ev ∈ Cv for each v ∈ V , where ev

is the substring of e restricted to edges of ∂(v).
4 Given R ⊆ U, V ′ ⊆ V , the induced stochastic graph G[R ∪ V ′] is formed by restricting the edges weights

and probabilities of G to those edges within R × V ′. Similarly, each probing constraint Cv is restricted
to those strings whose entries lie entirely in R × {v}.
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▶ Theorem 1.1. Suppose the adversary presents a vertex weighted stochastic graph G =171

(U, V, E), with downward-closed probing constraints (Cv)v∈V . If M is the matching returned172

by Algorithm 1 when executing on G, then173

E[w(M)] ≥ 1
2 ·OPT(G),174

provided the vertices of V arrive in adversarial order. Moreover, Algorithm 1 can be175

implemented efficiently in the membership oracle model.176

Since Algorithm 1 is deterministic, the 1/2 competitive ratio is best possible for determ-177

inistic algorithms in the adversarial arrival setting. One direction is thus to instead consider178

what can be done if the online probing algorithm is allowed randomization, which has received179

much attention in the case of unit patience [22, 23, 12, 16]. We instead make partial progress180

to understanding the performance of Algorithm 1 for downward-closed probing constraints in181

the ROM setting. However, unlike the adversarial setting, the complexity of the constraints182

greatly impacts what we are able to prove. The first part of our result is asymptotic in183

that it yields a good competitive ratio when applied to a stochastic graph whose maximum184

edge probability pv := maxe∈∂(v) pe vanishes sufficiently fast relevant to the maximum string185

length of Cv, namely cv := maxe∈Cv
|e|, for each v ∈ V . Note that the vanishing probability186

setting is similar in spirit to the small bid to budget assumption in the Adwords problem187

(see Goyal and Udwani [12] for details). The second part of our result applies to stochastic188

graphs which we refer to as rankable. Roughly speaking, a vertex v ∈ V of G is rankable,189

provided there exists a fixed/non-adaptive ranking πv of ∂(v) which can be used to specify190

the greedy strategy OPT(v, R) of v, no matter which vertices R ⊆ U are available when191

v is processed. For example, this includes the well-studied unit patience setting, in which192

case v ranks its adjacent edges in non-increasing order of (wupu,v)u∈U , as well as when G193

is unweighted and has arbitrary patience values, in which case v ranks its adjacent edges194

in non-increasing order of edge probability. A stochastic graph is rankable if all its online195

vertices are rankable. We defer the precise definition to Section 2.196

▶ Theorem 1.2. Suppose Algorithm 1 returns the matching M when executing on the vertex197

weighted stochastic graph G = (U, V, E) with downward-closed constraints (Cv)v∈V , and the198

vertices of V arrive u.a.r.. We then have the following two results:199

1. If cv := maxe∈Cv
|e| and pv := maxe∈∂(v) pe, then200

E[w(M)] ≥ min
v∈V

(1− pv)cv ·
(

1− 1
e

)
·OPT(G).201

Thus, if cv · pv → 0 (as |G| → ∞) for each v ∈ V , then E[w(M)] ≥ (1− o(1)) (1− 1/e) ·202

OPT(G).203

2. If G is rankable (which includes the specific cases outlined in the abstract), then204

E[w(M)] ≥
(

1− 1
e

)
·OPT(G).205

▶ Remark 1.3. The analysis of Algorithm 1 is tight, as an execution of Algorithm 1 corresponds206

to the seminal Karp et al. [17] Ranking algorithm for unweighted non-stochastic (i.e.,207

pe ∈ {0, 1} for all e ∈ E) bipartite matching.208

In the unit patience setting of [22], Mehta and Panigrahi showed that .621 < 1 − 1
e is209

a randomized inapproximation with regard to guarantees made against LP-std-unit, the210

LP introduced by [22] to upper bound/relax the committal benchmark in the unit patience211

APPROX/RANDOM 2021



13:6 Secretary Matching Meets Probing with Commitment

setting. This hardness result led Goyal and Udwani [12] to consider a new unit patience212

LP that is a tighter relaxation of OPT(G) than LP-std-unit, thereby allowing them to213

prove a 1− 1/e competitive ratio for the case of vertex-decomposable5 edge probabilities.214

However, they also discuss the difficulty of extending this result to the case of arbitrary edge215

probabilities in the context of the Adwords problem with arbitrary budget to bid ratios. It216

remains open whether a randomized algorithm can attain a competitive ratio of 1 − 1/e217

against the committal benchmark for adversarial arrivals and arbitrary edge probabilities. A218

corollary of Theorem 1.2 is that in the ROM setting these difficulties do not arise.219

▶ Corollary 1.4. Suppose the adversary presents a vertex weighted stochastic graph G =220

(U, V, E), with unit patience values. If M is the matching returned by Algorithm 1 when221

executing on G, then222

E[w(M)] ≥
(

1− 1
e

)
OPT(G),223

provided the vertices of V arrive in random order.224

▶ Remark 1.5. The guarantee of Theorem 1.2 is proven against a new LP relaxation (LP-DP)225

whose optimum value we denote by LPOPTDP(G). In the special case when G has unit226

patience, LPOPTstd(G) ≤ LPOPTDP(G). Thus, the 0.621 inapproximation of Mehta and227

Panigraphi against LP-std-unit does not apply (even for deterministic probing algorithms) to228

the ROM setting. Corollary 1.4 therefore implies that deterministic probing algorithms in the229

ROM setting have strictly more power than randomized probing algorithms in the adversarial230

order model. This contrasts with the classic ROM setting where it is unknown whether a231

deterministic algorithm can improve upon 1− 1/e, the optimal competitive attainable by232

randomized algorithms in the adversarial setting.233

We next consider the unknown stochastic matching problem in the most general setting234

of arbitrary edge weights, and downward-closed probing constraints. Since no non-trivial235

competitive ratio can be proven in the case of adversarial arrivals, even in the classical setting,236

we work in the ROM setting. We generalize the matching algorithm of Kesselheim et al. [18]237

so as to apply to the stochastic probing setting.238

▶ Theorem 1.6. Suppose the adversary presents an edge-weighted stochastic graph G =239

(U, V, E), with downward-closed probing constraints (Cv)v∈V . If M is the matching returned240

by Algorithm 2 when executing on G, then241

E[w(M)] ≥
(

1
e
− 1
|V |

)
·OPT(G),242

provided the vertices of V arrive uniformly at random (u.a.r.). Moreover, Algorithm 2 can243

be implemented efficiently in the membership oracle model.244

▶ Remark 1.7. For context, the previous best known approximation ratio known for the245

offline bipartite stochastic matching problem with two-sided or one-sided patience is 0.352246

due to Adamczyk et al. [3]. Since 1/e > 0.352, Theorem 1.6 in fact improves on this result247

for the case of one-sided patience, despite the fact that Algorithm 2 works in the unknown248

graph setting and for more general one-sided probing constraints. Very recently, Brubach et249

al. [7] proved an approximation ratio of 0.382 for general stochastic graphs.250

5 Vertex-decomposable means that there exists probabilities (pu)u∈U and (pv)v∈V , such that p(u,v) = pu·pv

for each (u, v) ∈ E.
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1.3 Our Technical Contributions251

In the vertex weighted setting, the first challenge is to establish a greedy strategy for a single252

online vertex which runs efficiently for general probing constraints. We provide a dynamic253

programming based algorithm (DP-OPT) for solving this problem, which builds upon the254

work of Brubach et al. [8], and before that, Purohit et al. [24] (see Theorem 2.1). In the255

adversarial arrival setting, we prove a competitive ratio of 1/2 by comparing the performance256

of Algorithm 1 to the dual of LP-DP, an extension of the LP considered by Brubach et al.257

[8] from patience values to general probing constraints.258

We next move to the ROM/secretary setting. In the unit patience setting of Corollary 1.4,259

DP-OPT reduces to probing a single edge which yields the largest value in expectation, and260

LP-DP is a relaxation of LP-std-unit (upper bounds its optimum value). While we do not261

show this, one could work directly with LP-std-unit and follow the primal-dual argument of262

Devanur et al. [10]. In contrast, Theorem 1.2 applies to downward-closed probing constraints263

which comes with two main technical challenges. First, Brubach et al. [8] showed that even264

the offline committal benchmark has a 0.544 inapproximation against the generalization of265

LP-std-unit to arbitrary patience (LP-std). Moreover, this inapproximation applies to a266

stochastic graph which is both rankable and has vanishingly small edge probabilities. Thus,267

Theorem 1.2 cannot be proven by comparing the performance of Algorithm 1 to LP-std268

and its dual, even for patience values. Our solution is to instead work with LP-DP and269

its dual, LP-dual-DP. When a match between u ∈ U and v ∈ V is successfully made, we270

apply the well-studied cost sharing function g(z) := exp(z − 1) to split the weight of u, as in271

[10]. However, LP-dual-DP contains variables which do not have an analogue in the classical272

setting. Specifically, the online vertices are associated with exponentially many variables, and273

we cost share with the offline vertices which were available when v was matched to u, opposed274

to just v itself. The second main technical challenge is that when moving away from the unit275

patience setting, the executions of Algorithm 1 become non-monotonic. Specifically, while276

v may get matched to u, if a new online vertex v∗ is added to the graph ahead of v, then u277

may not be matched at all. This complicates the analysis, and is the reason the competitive278

ratio of Theorem 1.2 does not hold unconditionally, as we explain in Section 2.279

In the edge weighted setting, upon receiving the online vertices Vt := {v1, . . . , vt}, in280

order to generalize the matching algorithm of Kesselheim et al. [18], Algorithm 2 would281

ideally probe the edges of ∂(vt) suggested by OPT(Gt), where Gt := G[U ∪Vt] is the induced282

stochastic graph on U ∪ Vt. However, since we wish for our algorithms to be efficient in283

addition to attaining optimal competitive ratios, this strategy is not feasible. We instead284

make use of a new LP (LP-config) recently introduced by the authors in [5] and independently285

by Brubach et al. in [6, 13] for the special case of patience values, an updated version of [8].286

This LP has exponentially many variables which accounts for the many probing strategies287

available to an arriving vertex v with probing constraint Cv. We solve this LP efficiently by288

using DP-OPT as a deterministic separation oracle for LP-config-dual, the dual of LP-config,289

in conjunction with the ellipsoid algorithm [26, 11]. This LP closely resembles what the290

committal benchmark is capable of doing, and thus leads to a probing algorithm with an291

optimum competitive ratio.292

2 Vertex Weights293

In this section, we define Algorithm 1 and introduce the techniques needed to prove Theorems294

1.1 and 1.2. However, for space considerations, we defer the dual-fitting argument used in295

the adversarial arrival setting of Theorem 1.1 to Appendix B.296
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13:8 Secretary Matching Meets Probing with Commitment

Suppose that G = (U, V, E) is a vertex weighted stochastic graph with weights (wu)u∈U .297

Let us now fix s ∈ V , and define val(e) to be the expected weight of the edge matched,298

provided the edges of e are probed in order, where e ∈ Cs. Observe then the following claim:299

▶ Theorem 2.1. There exists a dynamic programming (DP) based algorithm DP-OPT,300

which given access to G[{s} ∪ U ], computes a tuple e′ ∈ Cs, such that OPT(s, U) = val(e′).301

Moreover, DP-OPT executes in time O(|U |2), assuming access to a membership oracle for302

the downward-closed constraint Cs.303

Proof of Theorem 2.1. It will be convenient to denote wu,s := wu for each u ∈ U such that304

(u, s) ∈ ∂(s). We first must show that there exists some e′ ∈ Cs such that val(e′) = OPT(s, U),305

where306

val(e) :=
|e|∑
i=1

pei
wei

i−1∏
j=1

(1− pei
), (2.1)307

for e ∈ Cs, and OPT(s, U) is the value of the committal benchmark on G[{s} ∪ U ]. Since308

the committal benchmark must respect commitment – i.e., match the first edge to s which it309

reveals to be active – it is clear that e′ exists.310

Our goal is to now show that e′ can be computed efficiently. Now, for any e ∈ Cs, let311

er be the rearrangement of e, based on the non-increasing order of the weights (we)e∈e.312

Since Cs is downward-closed, we know that er is also in Cs. Moreover, val(er) ≥ val(e)313

(following observations in [24, 8]). Hence, let us order the edges of ∂(s) as e1, . . . , em, such314

that we1 ≥ . . . ≥ wem
, where m := |∂(s)|. Observe then that it suffices to maximize (2.1) over315

those strings within Cs which respect this ordering on ∂(s). Stated differently, let us denote Is316

as the family of subsets of ∂(s) induced by Cs, and define the set function f : 2∂(s) → [0,∞),317

where f(B) := val(b) for B = {b1, . . . , b|B|} ⊆ ∂(s), such that b = (b1, . . . , b|B|) and318

wb1 ≥ . . . ≥ wb|B| . Our goal is then to efficiently maximize f over the set-system (∂(s), Is).319

Observe that Is is downward-closed and that we can simulate oracle access to Is, based on320

our oracle access to Cs.321

For each i = 0, . . . , m− 1, denote ∂(s)>i := {ei+1, . . . , em}, and ∂(s)>m := ∅. Moreover,322

define the family of subsets I>i
s := {B ⊆ ∂(s)>i : B ∪ {ei} ∈ Is} for each 1 ≤ i ≤ m,323

and I>0
s := Is. Observe then that (∂(s)>i, I>i

s ) is a downward-closed set system, as Is is324

downward-closed. Moreover, we may simulate oracle access to I>i
s based on our oracle access325

to Is.326

Denote OPT(I>i
s ) as the maximum value of f over constraints I>i

s . Observe then that327

for each 0 ≤ i ≤ m− 1, the following recursion holds:328

OPT(I>i
s ) := max

j∈{i+1,...,m}
(pej
· wej

+ (1− pej
) ·OPT(I>j

s )) (2.2)329

Hence, given access to the values OPT(I>i+1
s ), . . . , OPT(I>m

s ), we can compute OPT(I>i
s )330

efficiently. Moreover, OPT(I>m
s ) = 0 by definition. Thus, it is clear that we can use (2.2)331

to recover an optimal solution to f . We can define DP-OPT to be a memoization based332

implementation of (2.2). It is clear DP-OPT can be implemented in the claimed time333

complexity. ◀334

Given R ⊆ U , consider the induced stochastic graph, G[{s} ∪ R] for R ⊆ U which has335

probing constraint CR
s ⊆ Cv, constructed by restricting Cs to those strings whose entries336

all lie in R × {s}. Moreover, denote the output of executing DP-OPT on G[{s} ∪ R] by337

DP-OPT(s, R). Consider now the following online probing algorithm:338
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Algorithm 1 Greedy-DP

Input: offline vertices U with vertex weights (wu)u∈U .
Output: a matching M of active edges of the unknown stochastic graph G = (U, V, E).

1: M← ∅.
2: R← U .
3: for t = 1, . . . , n do
4: Let vt be the current online arrival node, with constraint Cvt

.
5: Set e← DP-OPT(vt, R)
6: for i = 1, . . . , |e| do
7: Probe ei.
8: if st(ei) = 1 then
9: Add ei to M, and update R← R \ {ui}, where ei = (ui, vt).

10: return M.

In general, the behaviour of the committal benchmark, namely OPT(s, R), can change339

very much, even for minor changes to R. For instance, if R = U , then OPT(s, U) may340

probe the edge (u, s) first – thus giving it highest priority – whereas if u∗ ∈ U is removed341

from U (where u∗ ̸= u), OPT(s, U \ {u∗}) may not probe (u, v) at all (see Example B.1 for342

an explicit instance of this behaviour). As a result, it is easy to consider an execution of343

Algorithm 1 on G where v is matched to u, but if a new vertex v∗ is added to G ahead of v,344

u is never matched. We thus refer to Algorithm 1 as being non-monotonic. This contrasts345

with the classical setting, in which the deterministic greedy algorithm in the ROM setting346

does not exhibit this behaviour, and thus is monotonic. The absence of monotonicity isn’t347

problematic in the adversarial setting of Theorem 1.1 because our primal-dual charging348

assignment does not depend on the order of the online vertex arrivals (see Appendix B). This349

contrasts with the ROM setting, in which Example B.1 can be extended to show that the350

cost sharing rule g(z) := exp(z− 1) will not work in general. Our approach is thus to restrict351

our attention to stochastic graphs in which executions of Algorithm 1 are either monotonic,352

or monotonic with high probability. This leads us to the definition of rankability, which353

characterizes a large number of settings in which Algorithm 1 is monotonic.354

Given a vertex v ∈ V , and an ordering πv on ∂(v), if R ⊆ U , then define πv(R) to be the355

longest string constructible by iteratively appending the edges of R × {v} via πv, subject356

to respecting constraint CR
v . More precisely, given e′ after processing e1, . . . , ei of R× {v}357

ordered according to πv, if (e′, ei+1) ∈ CR
v , then update e′ by appending ei+1 to its end,358

otherwise move to the next edge ei+2 in the ordering πv, assuming i + 2 ≤ |R|. If i + 2 > |R|,359

return the current string e′ as πv(R). We say that v is rankable, provided there exists360

a choice of πv which depends solely on (pe)e∈∂(v), (we)e∈∂(v) and Cv, such that for every361

R ⊆ U , the strings DP-OPT(v, R) and πv(R) are equal. Crucially, if v is rankable, then362

when vertex v arrives while executing Algorithm 1, one can compute the ranking πv on363

∂(v) and probe the adjacent edges of R× {v} based on this order, subject to not violating364

the constraint CR
v . By following this probing strategy, the optimality of DP-OPT ensures365

that the expected weight of the match made to v will be OPT(v, R). We consider three366

(non-exhaustive) examples of rankability:367

▶ Proposition 2.2. Let G = (U, V, E) be a stochastic graph, and suppose that v ∈ V . If v368

satisfies either of the following conditions, then v is rankable:369

1. v has unit patience or unlimited patience; that is, ℓv ∈ {1, |U |}.370

2. v has patience ℓv, and for each u1, u2 ∈ U , if pu1,v ≤ pu2,v then wu1 ≤ wu2 .371
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3. G is unweighted, and v has a budget Bv with edge probing costs (bu,v)u∈U , and for each372

u1, u2 ∈ U , if pu1,v ≤ pu2,v then bu1,v ≥ bu2,v.373

▶ Remark 2.3. Note that the cases of Proposition 2.2 subsume all the settings listed in the374

abstract. The rankable assumption is similar to assumptions referred to as laminar, agreeable375

and compatible in other applications.376

We refer to the stochastic graph G as rankable, provided all of its vertices are themselves377

rankable. We emphasize that distinct vertices of V may each use their own separate rankings378

of their adjacent edges.379

As discussed in Subsection 1.3, the 0.544 inapproximation against LP-std [8] prevents us380

from proving a performance guarantee against LP-std, even for patience values. We instead381

upper bound OPT(G) using a tighter LP relaxation that comes with the additional benefit382

of applying to downward-closed probing constraints. For each u ∈ U and v ∈ V , let xu,v be383

a decision variable corresponding to the probability that OPT(G) probes the edge (u, v).384

maximize
∑
u∈U

∑
v∈V

wu · pu,v · xu,v (LP-DP)385

subject to
∑
v∈V

pu,v · xu,v ≤ 1 ∀u ∈ U (2.3)386 ∑
u∈R

wu · pu,v · xu,v ≤ OPT(v, R) ∀v ∈ V, R ⊆ U (2.4)387

xu,v ≥ 0 ∀u ∈ U, v ∈ V (2.5)388
389

Denote LPOPTDP(G) as the optimal value of this LP. Constraint (2.3) can be viewed as390

ensuring that the expected number of matches made to u ∈ U is at most 1. Similarly,391

(2.4) can be interpreted as ensuring that expected stochastic reward of v, suggested by392

the solution (xu,v)u∈U,v∈V , is actually attainable by the committal benchmark. Thus,393

OPT(G) ≤ LPOPTDP(G) (a formal proof specific to patience values is proven in [8]).394

2.0.1 Defining the Primal-Dual Charging Schemes395

In order to prove Theorems 1.1 and 1.2, we employ primal-dual charging arguments based396

on the dual of LP-DP. For each u ∈ U , define the variable αu. Moreover, for each R ⊆ U397

and v ∈ V , define the variable ϕv,R (these latter variables correspond to constraint (2.4)).398

minimize
∑
u∈U

αu +
∑
v∈V

∑
R⊆U

OPT(v, R) · ϕv,R (LP-dual-DP)399

subject to pu,v · αu +
∑

R⊆U :
u∈R

wu · pu,v · ϕv,R ≥ wu · pu,v ∀u ∈ U, v ∈ V (2.6)400

αu ≥ 0 ∀u ∈ U (2.7)401

ϕv,R ≥ 0 ∀v ∈ V, R ⊆ U (2.8)402
403

The dual-fitting argument used to prove Theorem 1.2 has an initial set-up which proceeds404

similarly to the argument in Devanur et al. [10]. Specifically, first define g : [0, 1] → [0, 1]405

where g(z) := exp(z − 1) for z ∈ [0, 1]. We shall use g to perform our charging/cost sharing.406

Moreover, recall that given v ∈ V , we defined cv := maxe∈Cv
|e| and pv := maxe∈∂(v) pe.407

Using these definitions, we define F = F (G), where408

F (G) :=
{

1− 1
e G is rankable(

1− 1
e

)
·minv∈V (1− pv)cv otherwise

(2.9)409
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In order to prove Theorem 1.2, we shall prove that Algorithm 1 returns a matching of410

expected weight at least F (G) · LPOPTDP(G) when executing on the stochastic graph G in411

the ROM setting. Clearly, we may assume F (G) > 0, as otherwise there is nothing to prove,412

so we shall make this assumption for the rest of the section. Note that F (G) ≤ 1− 1/e no413

matter the stochastic graph G.414

For each v ∈ V , draw Yv ∈ [0, 1] independently and uniformly at random. We assume415

that the vertices of V are presented to Algorithm 1 in a non-decreasing order, based on the416

values of (Yv)v∈V . We now describe how the charging assignments are made while Algorithm417

1 executes on G. First, we initialize a dual solution ((αu)u∈U , (ϕv,R)v∈V,R⊆U ) where all the418

variables are set equal to 0. Next, we take v ∈ V, u ∈ U , and R ⊆ U , where u ∈ R. If419

R consists of the unmatched vertices of v when it arrives at time Yv, then suppose that420

Algorithm 1 matches v to u while making its probes to a subset of the edges of R × {v}.421

In this case, we charge wu · (1 − g(Yv))/F to αu and wu · g(Yv)/(F · OPT(v, R)) to ϕv,R.422

Observe that each subset R ⊆ U is charged at most once, as is each u ∈ U . Thus,423

E[w(M)] = F ·

∑
u∈U

E[αu] +
∑
v∈V

∑
R⊆U

OPT(v, R) · E[ϕv,R]

 , (2.10)424

where the expectation is over the random variables (Yv)v∈V and (st(e))e∈E . If we now set425

α∗
u := E[αu] and ϕ∗

v,R := E[ϕv,R] for u ∈ U, v ∈ V and R ⊆ U , then (2.10) implies the426

following lemma:427

▶ Lemma 2.4. Suppose G = (U, V, E) is a stochastic graph for which Algorithm 1 returns the428

matching M when presented V based on (Yv)v∈V generated u.a.r. from [0, 1]. In this case, if429

the variables ((α∗
u)u∈U , (ϕ∗

v,R)v∈V,R⊆U ) are defined through the above charging scheme, then430

E[w(M)] = F ·

∑
u∈U

α∗
u +

∑
v∈V

∑
R⊆U

OPT(v, R) · ϕ∗
v,R

 .431

We claim the following regarding ((α∗
u)u∈U , (ϕ∗

v,R)v∈V,R⊆U ):432

▶ Lemma 2.5. If the online nodes of G = (U, V, E) are presented to Algorithm 1 based on433

(Yv)v∈V generated u.a.r. from [0, 1], then the solution ((α∗
u)u∈U , (ϕ∗

v,R)v∈V,R⊆U ) is a feasible434

solution to LP-dual-DP.435

Since LP-DP is a relaxation of the committal benchmark, Theorem 1.2 follows from Lemmas436

2.4 and 2.5 in conjunction with weak duality.437

2.0.2 Proving Dual Feasibility: Lemma 2.5438

Let us suppose that the variables ((αu)u∈U , (ϕv,R)v∈V,R⊆U ) are defined as in the charging439

scheme of Section 2.0.1. In order to prove Lemma 2.5, we must show that for each fixed440

u0 ∈ U and v0 ∈ V , we have that441

E[pu0,v0 · αu0 + wu0 · pu0,v0

∑
R⊆U :
u0∈R

ϕv0,R] ≥ wu0 · pu0,v0 . (2.11)442

Our strategy for proving (2.11) first involves the same approach as used in Devanur et al.443

[10]. Specifically, we define the stochastic graph G̃ := (U, Ṽ , Ẽ), where Ṽ := V \ {v0} and444

G̃ := G[U ∪ Ṽ ]. We wish to compare the execution of the algorithm on the instance G̃ to its445

execution on the instance G. It will be convenient to couple the randomness between these446

two executions by making the following assumptions:447
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1. For each e ∈ Ẽ, e is active in G̃ if and only if it is active in G.448

2. The same random variables, (Yv)
v∈Ṽ

, are used in both executions.449

If we now focus on the execution of G̃, then define the random variable Ỹc where Ỹc := Yvc
if450

u0 is matched to some vc ∈ Ṽ , and Ỹc := 1 if u0 remains unmatched after the execution on451

G̃. We refer to the random variable Ỹc as the critical time of vertex u0 with respect to v0.452

We claim the following lower bounds on αu0 in terms of the critical time Ỹc.453

▶ Proposition 2.6.454

If G is rankable, then αu0 ≥
(
1− 1

e

)−1
wu0(1− g(Ỹc)).455

Otherwise, E[αu0 | (Yv)v∈V , (st(e))
e∈Ẽ

] ≥
(
1− 1

e

)−1
wu0(1− g(Ỹc)).456

▶ Remark 2.7. Note that Proposition 2.6 is the only part of the proof of Theorem 1.2 which is457

affected by whether or not G is rankable. We defer the proof of Proposition 2.6 to Appendix458

B.459

By taking the appropriate conditional expectation, we can also lower bound the random460

variables (ϕv0,R)R⊆U :
u0∈R

.461

▶ Proposition 2.8.

∑
R⊆U :
u0∈R

E[ϕv0,R | (Yv)
v∈Ṽ

, (st(e))
e∈Ẽ

] ≥ 1
F

∫ Ỹc

0
g(z) dz.462

Proof of Proposition 2.8. We first define Rv0 as the unmatched vertices of U when v0463

arrives (this is a random subset of U). We also once again use M to denote the matching464

returned by Algorithm 1 when executing on G. If we now take a fixed subset R ⊆ U , then465

the charging assignment to ϕv0,R ensures that466

ϕv0,R = w(M(v0)) · g(Yv0)
F ·OPT(v0, R) · 1[Rv0 =R],467

where w(M(v0)) corresponds to the weight of the vertex matched to v0 (which is zero if468

v0 remains unmatched after the execution on G). In order to make use of this relation, let469

us first condition on the values of (Yv)v∈V , as well as the states of the edges of Ẽ; that is,470

(st(e))
e∈Ẽ

. Observe that once we condition on this information, we can determine g(Yv0), as471

well as Rv0 . As such,472

E[ϕv0,R | (Yv)v∈V , (st(e))
e∈Ẽ

] = g(Yv0)
F ·OPT(v0, R) E[w(M(v0)) | (Yv)v∈V , (st(e))

e∈Ẽ
]·1[Rv0 =R].473

On the other hand, the only randomness which remains in the conditional expectation474

involving w(M(v0)) is over the states of the edges adjacent to v0. Observe now that since475

Algorithm 1 behaves optimally on G[{v0} ∪Rv0 ], we get that476

E[w(M(v0)) | (Yv)v∈V , (st(e))
e∈Ẽ

] = OPT(v0, Rv0), (2.12)477

and so for the fixed subset R ⊆ U ,478

E[w(M(v0)) | (Yv)v∈V , (st(e))
e∈Ẽ

] · 1[Rv0 =R] = OPT(v0, R) · 1[Rv0 =R]479

after multiplying each side of (2.12) by the indicator random variable 1[Rv0 =R]. Thus,480

E[ϕv0,R | (Yv)v∈V , (st(e))
e∈Ẽ

] = g(Yv0)
F

1[Rv0 =R],481
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after cancellation. We therefore get that482

∑
R⊆U :
u0∈R

E[ϕv0,R | (Yv)v∈V , (st(e))
e∈Ẽ

] = g(Yv0)
F

∑
R⊆U :
u0∈R

1[Rv0 =R].483

Let us now focus on the case when v0 arrives before the critical time; that is, 0 ≤ Yv0 < Ỹc.484

Up until the arrival of v0, the executions of the algorithm on G̃ and G proceed identically,485

thanks to the coupling between the executions. As such, u0 must be available when v0 arrives.486

We interpret this observation in the above notation as saying the following:487

1[Yv0 <Ỹc] ≤
∑

R⊆U :
u0∈R

1[Rv0 =R].488

As a result,489

∑
R⊆U :
u0∈R

E[ϕv0,R | (Yv)v∈V , (st(e))
e∈Ẽ

] ≥ g(Yv0)
F

1[Yv0 <Ỹc].490

Now, if we take expectation over Yv0 , while still conditioning on the random variables (Yv)
v∈Ṽ

,491

then we get that492

E[g(Yv0) · 1[Yv0 <Ỹc] | (Yv)
v∈Ṽ

, (st(e))
e∈Ẽ

] =
∫ Ỹc

0
g(z) dz,493

as Yv0 is drawn uniformly from [0, 1], independently from (Yv)
v∈Ṽ

and (st(e))
e∈Ẽ

. Thus,494

after applying the law of iterated expectations,495

∑
R⊆U :
u0∈R

E[ϕv0,R | (Yv)
v∈Ṽ

, (st(e))
e∈Ẽ

] ≥ 1
F

∫ Ỹc

0
g(z) dz,496

and so the claim holds.497

◀498

With Propositions 2.6 and 2.8, the proof of Lemma 2.5 follows easily (see Appendix B),499

and so Theorem 1.2 is proven.500

3 Edge Weights501

Let us suppose that G = (U, V, E) is a stochastic graph with arbitrary edge weights,502

probabilities and downward-closed probing constraints (Cv)v∈V . For each k ≥ 1 and e =503

(e1, . . . , ek) ∈ E(k), define g(e) :=
∏k

i=1(1 − pei). Notice that g(e) corresponds to the504

probability that all the edges of e are inactive, where g(λ) := 1 for the empty string λ. We505

also define e<ei := (e1, . . . , ei−1) for each 2 ≤ i ≤ k, which we denote by e<i when clear. By506

convention, e<1 := λ. Observe then that val(e) :=
∑|e|

i=1 pei
wei
· g(e<i) corresponds to the507

expected weight of the first active edge if e is probed in order of its indices, where val(λ) := 0.508

For each v ∈ V , we introduce a decision variable denoted xv(e), which may loosely be509

interpreted as the likelihood the committal benchmark probes the edges in the order specified510
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by e = (e1, . . . , ek) 6. With this notation, we express the following LP:511

maximize
∑
v∈V

∑
e∈Cv

val(e) · xv(e) (LP-config)512

subject to
∑
v∈V

∑
e∈Cv:

(u,v)∈e

pu,v · g(e<(u,v)) · xv(e) ≤ 1 ∀u ∈ U (3.1)513

∑
e∈Cv

xv(e) = 1 ∀v ∈ V, (3.2)514

xv(e) ≥ 0 ∀v ∈ V, e ∈ Cv (3.3)515
516

Denote LPOPTconf(G) as the optimal value of LP-config. This LP was developed from517

insights relevant to both the secretary and prophet settings. Specifically, the DP-OPT518

algorithm of Theorem 2.1 can be used as a (deterministic) polynomial time separation oracle519

for the dual of LP-config. This ensures that LP-config can be solved in polynomial time as a520

consequence of how the ellipsoid algorithm [26, 11] executes (see Theorem A.1 in Appendix521

A for details). In [5], we prove that LP-config is a relaxation of the committal benchmark.522

Unlike previous LP relaxations of the committal benchmark, we are not aware of an easy523

proof of this fact, and we consider it to be a technical contribution.524

We now define a fixed vertex probing algorithm, called VertexProbe, which is applied525

to an online vertex s of an arbitrary stochastic graph (potentially distinct from G) with526

probing constraints Cs on ∂(s). Specifically, given non-negative values (z(e))e∈Cs which527

satisfy
∑

e∈Cs
z(e) = 1, draw e′ with probability z(e′). If e′ = (e′

1, . . . , e′
k) for k := |e′| ≥ 1,528

then probe the edges of e′ in order, and match s to the first edge revealed to be active. If no529

such edge exists, or e′ = λ, then return ∅.530

▶ Lemma 3.1. Suppose VertexProbe is passed a fixed online node s of a stochastic graph,531

and values (z(e))e∈Cs
which satisfy

∑
e∈Cs

z(e) = 1. If for each e ∈ ∂(s),532

z̃e :=
∑

e′∈Cv:
e∈e′

g(e′
<e) · zv(e′),533

then e is probed with probability z̃e, and returned by the algorithm with probability pe · z̃e.534

▶ Remark 3.2. If VertexProbe outputs the edge e = (u, s) when executing on the fixed535

node s, then we say that s commits to the edge e = (u, s), or that s commits to u.536

Returning to the problem of designing an online probing algorithm for G, let us assume that537

n := |V |, and that the online nodes of V are denoted v1, . . . , vn, where the order is generated538

u.a.r. Denote Vt as the set of first t arrivals of V ; that is, Vt := {v1, . . . , vt}. Moreover, set539

Gt := G[U ∪ Vt], and LPOPTconf(Gt) as the value of an optimal solution to LP-config (this540

is a random variable, as Vt is a random subset of V ). The following inequality then holds:541

▶ Lemma 3.3. For each t ≥ 1, E[LPOPTconf (Gt)] ≥ t
n LPOPTconf (G).542

In light of this observation, we design an online probing algorithm which makes use of Vt,543

the currently known nodes, to derive an optimal LP solution with respect to Gt. As such,544

6 While this is the natural interpretation of the decision variables of LP-config, to the best of our
knowledge, formally defining the variables in this way does not lead to a proof that LP-config relaxes
the committal benchmark. We discuss this in detail in [5].
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each time an online node arrives, we must compute an optimal solution for the LP associated545

to Gt, distinct from the solution computed for that of Gt−1.546

Algorithm 2 Unknown Stochastic Graph ROM

Input: U and n := |V |.
Output: a matching M from the (unknown) stochastic graph G = (U, V, E) of active edges.

1: Set M← ∅.
2: Set G0 = (U, ∅, ∅)
3: for t = 1, . . . , n do
4: Input vt, with (we)e∈∂(vt), (pe)e∈∂(vt) and Cvt

.
5: Compute Gt, by updating Gt−1 to contain vt (and its relevant information).
6: if t < ⌊n/e⌋ then
7: Pass on vt.
8: else
9: Solve LP-config for Gt and find an optimal solution (xv(e))v∈Vt,e∈Cv

.
10: Set et ← VertexProbe(vt, ∂(vt), (xv(e))e∈Cvt

).
11: if et = (ut, vt) ̸= ∅ and ut is unmatched then
12: Add et to M.
13: return M.

▶ Remark 3.4. Unlike the algorithm of Kesselheim et al., our algorithm is randomized,547

and we do not know whether the polytope LP-config always admits an optimum integral548

solution. We leave it as an interesting open question as to whether or not Algorithm 2 can549

be derandomized.550

Let us consider the matching M returned by the algorithm, as well as its weight, which551

we denote by w(M). Set α := 1/e for clarity, and take t ≥ ⌈αn⌉. For each αn ≤ t ≤ n,552

define Rt as the unmatched vertices of U when vertex vt arrives. Note that committing to553

et = (ut, vt) is necessary, but not sufficient, for vt to match to ut. With this notation, we554

have that E[w(M)] =
∑n

t=αn E[w(ut, vt) · 1[ut∈Rt]]. Moreover, we claim the following:555

▶ Lemma 3.5. For each t ≥ ⌈αn⌉, E[w(et)] ≥ LPOPTconf (G)/n.556

▶ Lemma 3.6. For each t ≥ ⌈αn⌉, define f(t, n) := ⌊αn⌋/(t − 1). In this case, P[ut ∈557

Rt |Vt, vt] ≥ f(t, n), where Vt = {v1, . . . , vt} and vt is the tth arriving node of V 7.558

The proofs of Lemmas 3.5 and 3.6 mostly follow the analogous claims as proven by Kesselheim559

et al in the classic secretary matching problem. We present formal proofs in the arXiv version560

[4]. With these lemmas, together with the efficient solvability of LP-config, the proof of561

Theorem 1.6 follows easily (see Appendix C).562

4 Conclusion and Open Problems563

We considered the online stochastic bipartite matching with commitment in a number of564

different settings establishing several competitive bounds against the committal benchmark.565

Our work leaves open a number of challenging problems. For context we note that currently,566

even for the classical (i.e., non-probing) setting, 1− 1
e is the best known ratio for deterministic567

7 Note that since Vt is a set, conditioning on Vt only reveals which vertices of V encompass the first t
arrivals, not the order they arrived in. Hence, conditioning on vt as well reveals strictly more information.
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algorithms operating on unweighted or vertex weighted graphs with random order vertex568

arrivals. The best known ROM inapproximation of 0.823 (due to Manshadi et al. [21]) comes569

from the classical i.i.d. unweighted graph setting for a known distribution and applies to570

randomized as well as deterministic algorithms.571

What is the best ratio that a deterministic or randomized online algorithm can obtain for572

all vertex weighted stochastic graphs in the ROM setting? That is, what competitive ratio573

can be achieved without the rankable assumption? Is there an online probing algorithm574

which can surpass the 1− 1/e “barrier” with or without the rankable assumption? Here575

we note that in the classical ROM setting, the Ranking algorithm achieves a 0.696 ratio576

for unweighted graphs (due to Mahdian and Yan [20]) and a 0.6534 ratio (due to Huang577

et al. [15]) for vertex weighted graphs. Thus, randomization seems to significantly help578

in the classical ROM setting.579

What is the best ratio that a randomized online algorithm can obtain for stochastic graphs580

in the adversarial arrival model? The Mehta and Panigraphi [22] 0.621 inapproximation581

shows that randomized probing algorithms (even for unweighted graphs and unit patience)582

cannot achieve a 1− 1/e performance guarantee against LP-std-unit, however the work of583

Goyal and Udwani [12] suggests that this is because LP-std-unit is too loose a relaxation584

of the committal benchmark.585

For edge weighted graphs, can we achieve a 1
e competitive ratio (or any constant ratio)586

by a combinatorial (and more efficient) algorithm? Our vertex weighted algorithm can be587

viewed as a truthful online (or random order) posted price mechanism. Can we modify588

the edge weighted algorithm to be a truthful mechanism thereby generalizing the truthful589

mechanism of Reiffenhauser [25]? Note that unlike the vertex weighted algorithm, our590

algorithm for edge weights does not necessarily make an optimal social welfare decision591

for each online node.592
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A Solving LP-config Efficiently683

Suppose that we are given an arbitrary stochastic graph G = (U, V, E). We contrast LP-config684

with LP-std, which is defined only when G has patience values (ℓv)v∈V :685

maximize
∑
e∈E

we · pe · xe (LP-std)686

subject to
∑

e∂(u)

pe · xe ≤ 1 ∀u ∈ U (A.1)687

∑
e∈∂(v)

pe · xe ≤ 1 ∀v ∈ V (A.2)688

∑
e∈∂(v)

xe ≤ ℓv ∀v ∈ V (A.3)689

0 ≤ xe ≤ 1 ∀e ∈ E. (A.4)690
691

Observe that LP-config and LP-std are the same LP in the case of unit patience:692

maximize
∑
v∈V

∑
e∈∂(v)

we · pe · xe (LP-std-unit)693

subject to
∑

e∈∂(u)

pe · xe ≤ 1 ∀u ∈ U (A.5)694

∑
e∈∂(v)

xe ≤ 1 ∀v ∈ V (A.6)695

xe ≥ 0 ∀e ∈ E (A.7)696
697

A.1 Solving LP-config Efficiently698

We now show how LP-config be solved efficiently under the assumptions of Theorem 1.6.699

▶ Theorem A.1. Suppose that G = (U, V, E) in a stochastic graph with downward-closed700

probing constraints (Cv)v∈V . In the membership oracle model, LP-config is efficiently solvable701

in |G|.702



A. Borodin, C. MacRury, and A. Rakheja 13:19

We prove Theorem A.1 by first considering the dual of LP-config. Note, that in the below LP703

formulation, if e = (e1, . . . , ek) ∈ Cv, then we set ei = (ui, v) for i = 1, . . . , k for convenience.704

minimize
∑
u∈U

αu +
∑
v∈V

βv (LP-config-dual)705

subject to βv +
|e|∑

j=1
pej
· g(e<j) · αuj

≥
|e|∑

j=1
pej
· wej

· g(e<j) ∀v ∈ V, e ∈ Cv706

αu ≥ 0 ∀u ∈ U707

βv ∈ R ∀v ∈ V708
709

Observe that to prove Theorem A.1, it suffices to show that LP-config-dual has a710

(deterministic) polynomial time separation oracle, as a consequence of how the ellipsoid711

algorithm [26, 11] executes (see [28, 27, 2, 19] for more detail).712

Suppose that we are presented a particular selection of dual variables, say (αu)u∈U and713

(βv)v∈V , which may or may not be a feasible solution to LP-config-dual. Our separation oracle714

must determine efficiently whether these variables satisfy all the constraints of LP-config-dual.715

In the case in which the solution is infeasible, the oracle must additionally return a constraint716

which is violated.717

It is clear that we can accomplish this for the non-negativity constraints, so let us718

fix a particular v ∈ V in what follows. We wish to determine whether there exists some719

e = (e1, . . . , e|e|) ∈ Cv, such that if ei = (ui, v) for i = 1, . . . , k, then720

f(e) :=
|e|∑

j=1
(wej

− αuj
) · pej

· g(e<j) > βv, (A.8)721

where f(e) := 0 if e = λ.722

▶ Lemma A.2. In the membership oracle model, DP-OPT of Proposition 2.1 can be used723

to efficiently check whether f(e′) > βv for some e′ ∈ Cv, provided Cv is downward-closed.724

Moreover, if such a tuple exists, then it can be found efficiently.725

Proof. In order to make this statement, it suffices to show how one can use DP-OPT to726

maximize the function f efficiently.727

Compute w̃e := we − αu for each e = (u, v) ∈ ∂(v), and define P := {e ∈ ∂(v) : w̃e ≥ 0}.728

First observe that if P = ∅, then (A.8) is maximized by the empty-string λ. Thus, for now on729

assume that P ̸= ∅. Since Cv is downward-closed, it suffices to consider those e ∈ Cv whose730

edges all lie in P . As such, for notational convenience, let us hereby assume that ∂(v) = P .731

Observe then that maximizing f corresponds to executing DP-OPT on the stochastic graph732

G[U ∪ {v}], with edge weights replaced by (w̃e)e∈∂(v).733

◀734

B Proofs and Additions to Section 2735

Proof of Theorem 1.1. Let G = (U, V, E) be a vertex weighted stochastic graph, and assume736

that Algorithm 1 returns the matchingM when the online vertices of G are presented to the737

algorithm in adversarial order.738

We now define a charging assignment as Algorithm 1 executes on G. First, initialize a739

dual solution ((αu)u∈U , (ϕv,R)v∈V,R⊆U ) where all the variables are set equal to 0. Let us740

now take v ∈ V, u ∈ U , and R ⊆ U , where u ∈ R. If R consists of the unmatched vertices741
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when v it arrives, then suppose that Algorithm 1 matches v to u while making its probes to742

a subset of the edges of R × {v}. In this case, we charge wu to αu and wu/OPT(v, R) to743

ϕv,R. Observe that each subset R ⊆ U is charged at most once, as is each u ∈ U . Thus,744

E[w(M)] = 1
2 ·

∑
u∈U

E[αu] +
∑
v∈V

∑
R⊆U

OPT(v, R) · E[ϕv,R]

 , (B.1)745

where the expectation is over (st(e))e∈E . Let us now set α∗
u := E[αu] and ϕ∗

v,R := E[ϕv,R]746

for u ∈ U, v ∈ V and R ⊆ U . We claim that ((α∗
u)u∈U , (ϕ∗

v,R)v∈V,R⊆U ) is a feasible solution747

to LP-dual-DP. To show this, we must prove that for each fixed u0 ∈ U and v0 ∈ V , we have748

that749

E[pu0,v0 · αu0 + wu0 · pu0,v0

∑
R⊆U :
u0∈R

ϕv0,R] ≥ wu0 · pu0,v0 . (B.2)750

We first define Rv0 as the unmatched vertices of U when v0 arrives (this is a random subset751

of U). Moreover, define Ẽ := E \ ∂(v0). We claim the following inequality:752 ∑
R⊆U :
u0∈R

E[ϕv0,R | (st(e))
e∈Ẽ

] = 1[u0∈Rv0 ].753

To see this, observe that if we take a fixed subset R ⊆ U , then the charging assignment to754

ϕv0,R ensures that755

ϕv0,R = w(M(v0)) · 1
OPT(v0, R) · 1[Rv0 =R],756

where w(M(v0)) corresponds to the weight of the vertex matched to v0 (which is zero if v0757

remains unmatched after the execution on G). In order to make use of this relation, let us758

first condition on (st(e))
e∈Ẽ

. Observe that once we condition on this information, we can759

determine Rv0 . As such,760

E[ϕv0,R | (st(e))
e∈Ẽ

] = 1
OPT(v0, R) E[w(M(v0)) | (st(e))

e∈Ẽ
] · 1[Rv0 =R].761

On the other hand, the only randomness which remains in the conditional expectation762

involving w(M(v0)) is over (st(e))e∈∂(v0). However, since Algorithm 1 behaves optimally on763

G[{v0} ∪Rv0 ], we get that764

E[w(M(v0)) | (Yv)v∈V , (st(e))
e∈Ẽ

] = OPT(v0, Rv0), (B.3)765

and so for the fixed subset R ⊆ U ,766

E[w(M(v0)) | (st(e))
e∈Ẽ

] · 1[Rv0 =R] = OPT(v0, R) · 1[Rv0 =R]767

after multiplying each side of (B.3) by the indicator random variable 1[Rv0 =R]. Thus,768

E[ϕv0,R | (st(e))
e∈Ẽ

] = 1[Rv0 =R],769

after cancellation. We therefore get that770 ∑
R⊆U :
u0∈R

E[ϕv0,R | (st(e))
e∈Ẽ

] =
∑

R⊆U :
u0∈R

1[Rv0 =R] = 1[u0∈Rv0 ],771



A. Borodin, C. MacRury, and A. Rakheja 13:21

as claimed. On the other hand, if we focus on the vertex u0, then observe that if u0 /∈ Rv0 ,772

then αu0 must have been charged wu. In other words, αu0 ≥ wu · 1[u0 /∈Rv0 ]. As a result,773

E[pu0,v0αu0 +wu0pu0,v0

∑
R⊆U :
u0∈R

ϕv,R | (st(e))
e∈Ẽ

] ≥ wu0pu0,v0 ·1[u0 /∈Rv0 ] +wu0pu0,v0 ·1[u0∈Rv0 ],774

and so (B.2) follows after taking expectations. The solution ((α∗
u)u∈U , (ϕ∗

v,R)v∈V,R⊆U ) is775

therefore feasible, and so since OPT(G) ≤ LPOPTDP(G), the proof is complete after applying776

weak duality and (B.1). ◀777

▶ Example B.1. Let G = (U, V, E) be a bipartite graph with U = {u1, u2, u3, u4}, V = {v}778

and ℓv = 2. Set pu1,v = 1/3, pu2,v = 1, pu3,v = 1/2, pu4,v = 2/3. Fix ε > 0, and let the779

weights of offline vertices be wu1 = 1 + ε, wu2 = 1 + ε/2, wu3 = wu4 = 1. We assume that ε780

is sufficiently small – concretely, ε ≤ 1/12. If R1 := U , then OPT(v, R1) probes (u1, v) and781

then (u2, v) in order. On the other hand, if R2 = R1 \ {v2}, then OPT(v, R2) does not probe782

(u1, v). Specifically, OPT(v, R2) probes (u3, v) and then (u4, v).783

Proof of Proposition 2.6. For each v ∈ V , denote Raf
v (G) as the unmatched (remaining)784

vertices of U right after v is processed (attempts its probes) in the execution on G. We785

emphasize that if a probe of v yields an active edge, thus matching v, then this match is786

excluded from Raf
v (G). Similarly, define Raf

v (G̃) in the same way for the execution on G̃787

(where v is now restricted to Ṽ ).788

We first consider the case when G is rankable, and so F (G) = 1 − 1/e. Observe that789

since the constraints (Cv)v∈V are substring-closed, we can use the coupling between the two790

executions to inductively prove that791

Raf
v (G) ⊆ Raf

v (G̃), (B.4)792

for each v ∈ Ṽ 8. Now, since g(1) = 1 (by assumption), there is nothing to prove if Ỹc = 1.793

Thus, we may assume that Ỹc < 1, and as a consequence, that there exists some vertex794

vc ∈ V which matches to u0 at time Ỹc in the execution on G̃.795

On the other hand, by assumption we know that u0 /∈ Raf
vc

(G̃) and thus by (B.4), that796

u0 /∈ Raf
vc

(G). As such, there exists some v′ ∈ V which probes (u0, v′) and succeeds in797

matching to u0 at time Yv′ ≤ Ỹc. Thus, since g is monotone,798

αu0 ≥
(

1− 1
e

)−1
wu0 · (1− g(Yv′)) · 1[Ỹc<1] ≥

(
1− 1

e

)−1
wu0 · (1− g(Ỹc)),799

and so the rankable case is complete.800

We now consider the case when G is not rankable. Suppose that M(v0) is the vertex801

matched to v0 when the algorithm executes on G, where M(v0) := ∅ provided no match is802

made. Observe then that if no match is made to v0 in this execution, then the execution803

proceeds identically to the execution on G̃. As a result, we get the following relation:804

αu0 ≥
wu0

F
(1− g(Ỹc)) · 1[M(v0)=∅].805

Now, let us condition on (st(e))
e∈Ẽ

and (Yv)v∈V , and recall the definitions of pv0 :=806

maxe∂(v0) pe and cv0 := maxe∈Cv0
|e|. Observe that if every probe involving an edge of807

8 Example B.1 shows why (B.4) will not hold if G is not rankable.
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∂(v0) is inactive, then M(v0) = ∅. On the other hand, each probe independently fails with808

probability at least (1− pv0), and there are at most cv0 probes made to ∂(v0). Thus,809

P[M(v0) = ∅ | (st(e))
e∈Ẽ

, (Yv)v∈V ] ≥ (1− pv0)cv0810

Now, since F (G) = (1− 1/e) ·minv∈V (1− pv)cv , we get that811

E[αu0 | (Yv)v∈V , (st(e))
e∈Ẽ

] ≥
(

1− 1
e

)−1
wu0(1− g(Ỹc)),812

and so the proof is complete. ◀813

Proof of Lemma 2.5. We first observe that by taking the appropriate conditional expecta-814

tion, Proposition 2.6 ensures that815

E[αu0 | (Yv)
v∈Ṽ

, (st(e))
e∈Ẽ

] ≥
(

1− 1
e

)−1
wu0 · (1− g(Ỹc)),816

where the right-hand side follows since Ỹc is entirely determined from (Yv)
v∈Ṽ

and (st(e))
e∈Ẽ

.817

Thus, combined with Proposition 2.8,818

E[pu0,v0 · αu0 + wu0 · pu0,v0 ·
∑

R⊆U :
u0∈R

ϕv,R | (Yv)
v∈Ṽ

, (st(e))
e∈Ẽ

], (B.5)819

is lower bounded by820

(
1− 1

e

)−1
wu0 · pu0,v0 · (1− g(Ỹc)) + wu0 pu0,v0

F

∫ Ỹc

0
g(z) dz. (B.6)821

However, g(z) := exp(z − 1) for z ∈ [0, 1] by assumption, so822

(1− g(Ỹc)) +
∫ Ỹc

0
g(z) dz =

(
1− 1

e

)
,823

no matter the value of the critical time Ỹc. Thus,824

(
1− 1

e

)−1
(

(1− g(Ỹc)) + 1− 1/e

F

∫ Ỹc

0
g(z) dz

)
≥ 1, (B.7)825

as F ≤ 1− 1/e by definition (see (2.9)). If we now lower bound (B.6) using (B.7) and take826

expectations over (B.5), it follows that827

E[pu0,v0 · αu0 + wu0 · pu0,v0 ·
∑

R⊆U :
u0∈R

ϕv,R] ≥ wu0 · pu0,v0 .828

829

As the vertices u0 ∈ U and v0 ∈ V were chosen arbitrarily, the proposed dual solution of830

Lemma 2.5 is feasible, and so the proof is complete.831

◀832
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C Proofs and Additions to Section 3833

Proof of Theorem 1.6. Clearly, Algorithm 2 can be implemented efficiently, since LP-config834

is efficiently solvable. Thus, we focus on proving the algorithm attains the desired asymptotic835

competitive ratio.836

Let us consider the matching M returned by the algorithm, as well as its weight, which837

we denote by w(M). Set α := 1/e for clarity, and take t ≥ ⌈αn⌉, where we define Rt to838

be the unmatched vertices of U when vertex vt arrives. Moreover, define et as the edge vt839

commits to, which is the empty-set by definition if no such commitment is made. Observe840

that841

E[w(M)] =
n∑

t=⌈αn⌉

E[w(ut, vt) · 1[ut∈Rt]]. (C.1)842

Fix ⌈αn⌉ ≤ t ≤ n, and first observe that w(ut, vt) and {ut ∈ Rt} are conditionally independent843

given (Vt, vt), as the probes involving ∂(vt) are independent from those of v1, . . . , vt−1. Thus,844

E[w(ut, vt) · 1[ut∈Rt] |Vt, vt] = E[w(ut, vt) |Vt, vt] · P[ut ∈ Rt |Vt, vt].845

Moreover, Lemma 3.6 implies that846

E[w(ut, vt) |Vt, vt] · P[ut ∈ Rt |Vt, vt] ≥ E[w(ut, vt) |Vt, vt]f(t, n),847

and so E[w(ut, vt) 1[ut∈Rt] |Vt, vt] ≥ E[w(ut, vt) |Vt, vt] f(t, n). Thus, by the law of iterated848

expectations9
849

E[w(ut, vt) · 1[ut∈Rt]] = E[E[w(ut, vt) · 1[ut∈Rt] |Vt, vt] ]850

≥ E[E[w(ut, vt) |Vt, vt]f(t, n) ] = f(t, n)E[w(ut, vt)].851
852

As a result, using (C.1), we get that853

E[w(M)] =
n∑

t=⌈αn⌉

E[w(ut, vt) 1[ut∈Rt]] ≥
n∑

t=⌈αn⌉

f(t, n)E[w(ut, vt)].854

855

We may thus conclude that856

E[w(M)] ≥ LPOPTconf (G)
n∑

t=⌈αn⌉

f(t, n)
n

,857

after applying Lemma 3.5. As
∑n

t=⌈αn⌉ f(t, n)/n ≥ (1/e− 1/n), the result holds.858

◀859

9 E[w(ut, vt)·1[ut∈Rt] | Vt, vt] is a random variable which depends on Vt and vt, and so the outer expectation
is over the randomness in Vt and vt.
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