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Abstract

We consider the online stochastic matching problem for bipartite graphs where edges adjacent to an
online node must be probed to determine if they exist, based on known edge probabilities. Our algorithms
respect commitment, in that if a probed edge exists, it must be used in the matching. We study this
matching problem subject to a downward-closed constraint on each online node’s allowable edge probes.
Our setting generalizes the commonly studied patience (or time-out) constraint which limits the number
of probes that can be made to an online node’s adjacent edges. The generality of our setting leads
to some modelling and computational efficiency issues that are not encountered in previous works. To
resolve these issues, we introduce a new LP that we prove is a relaxation of an optimal offline probing
algorithm (the adaptive benchmark) and which overcomes the limitations of previous LP relaxations. We
establish new competitive bounds all of which generalize the classical non-probing setting when edges
do not need to be probed (i.e., exist with certainty). Specifically, we establish the following competitive
ratio results for a general formulation of edge probing constraints, arbitrary edge weights, and arbitrary
edge probabilities:

1. A tight 1
2

ratio when the stochastic graph is generated from a known stochastic type graph where the

tth online node is drawn independently from a known distributionDπ(t) and π is chosen adversarially.
We refer to this setting as the known i.d. stochastic matching problem with adversarial arrivals.

2. A 1− 1/e ratio when the stochastic graph is generated from a known stochastic type graph where
the tth online node is drawn independently from a known distribution Dπ(t) and π is a random
permutation. We refer to this setting as the known i.d. stochastic matching problem with random
order arrivals.

Our results improve upon the previous best competitive ratio of 0.46 in the known i.i.d. setting
against the standard adaptive benchmark. Moreover, we are the first to study the prophet secretary
matching problem in the context of probing, where we match the best known classical result.

1 Introduction

Stochastic probing problems are part of the larger area of decision making under uncertainty and more
specifically, stochastic optimization. Unlike more standard forms of stochastic optimization, it is not just
that there is some stochastic uncertainty in the set of inputs, stochastic probing problems involve inputs
that cannot be determined without probing (at some cost and/or within some constraint). Applications
of stochastic probing occur naturally in many settings, such as in matching problems where compatibility
cannot be determined without some trial or investigation (for example, in online dating and kidney exchange
applications). There is by now an extensive literature for stochastic matching problems.

Although we are only considering “one-sided online bipartite matching”, stochastic matching1 was first
considered in the context of a general graph by Chen et al. [18]. In this problem, the algorithm is presented
an adversarially generated stochastic graph G = (V,E) as input, which has a probability pe associated with
each edge e and a patience (or time-out) parameter `v associated with each vertex v. An algorithm probes
edges in E within the constraint that at most `v edges are probed incident to any particular vertex v. The
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1Unfortunately, the term “stochastic matching” is also used to refer to more standard optimization where the input (i.e.,

edges or vertices) are drawn from some known or unknown distributions but no probing is involved.
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patience parameter can be viewed as a simple budgetary constraint, where each probe has unit cost and
the patience constraint is the budget. When an edge e is probed, it is guaranteed to exist with probability
exactly pe. If an edge (u, v) is found to exist, then the algorithm must commit to the edge – that is, it
must be added to the current matching (if u and v are currently unmatched). The goal is to maximize the
expected size of a matching constructed in this way.

In addition to generalizing the results of Chen et al. to edge weights, Bansal et al. [6] introduced a
known i.i.d. bipartite version of the problem where nodes on one side of the partition arrive online and
edges adjacent to that node are then probed. In their model, each online vertex is drawn independently and
identically from a known distribution. That is, the possible “type” of each online node (i.e., its adjacent edge
probabilities, edge weights and patience) is known in advance and the input sequence is then determined
i.i.d. from this known distribution, where the instantiation of each node is presented to the algorithm upon
arrival. In the Bansal et al. model, each offline node has unbounded patience. The match for an online
node must be made before the next online arrival. As in the Chen et al. model, if an edge is probed and
confirmed to exist, then it must be included in the current matching (if possible). This problem is referred
to as the online stochastic matching problem and also referred to as the stochastic rewards problem.

We study the online bipartite stochastic matching problem in the more general known i.d. setting.
Specifically, each online vertex is drawn from a (potentially) distinct distribution, and these distributions
are independent. When online vertices arrive adversarially, we generalize the prophet inequality matching
problem of Alaei et al. [4]. When online vertices arrive in random order, we generalize the prophet secretary
matching problem of Ehsani et al. [23]. We note that prophet inequalities give rise to (and in some sense
are equivalent to) order oblivious posted price mechanisms, as first studied in Hajiaghayi et al. [30] and
further developed for multi-parameter settings in Chawla et al. [17] and recently in Correa et al. [19].
Furthermore, we generalize the patience constraint to apply to any downward-closed constraint including
budget (equivalently, knapsack) constraints.

Amongst other applications, the online bipartite stochastic matching problem notably models online
advertising where the probability of an edge can correspond to the probability of a purchase in online stores
or to pay-per-click revenue in online searching. One may also consider a real estate agent (or owner) of several
properties working with individual clients each day who first look at properties online. Each buyer has a
value for each property but will not purchase until they see the house in person or until the house has been
inspected at which time she will commit to buy. An agent can only probabilistically estimate the likelihood
of the buyer being satisfied. But the buyer or agent may have limited patience (or time or budget) to visit
properties and will usually want to do so in a reasonably efficient way. In these two examples, the objective
is clearly (respectively) to maximize the revenue of actual sales or clicks and (respectively) to maximize the
value of the properties sold.

2 Preliminaries and Our Results

We define a (bipartite) stochastic graph to be a (simple) bipartite graph G = (U, V,E) with edge weights
(we)e∈E and edge probabilities (pe)e∈E . We refer to U as the offline vertices of G and V as its online nodes.
Each e ∈ E of G = (U, V,E) is active independently with probability pe, and st(e) ∼ Ber(pe) corresponds
to the state of the edge. Given an arbitrary set S, let S(∗) denote the set of all tuples (strings) formed
from S, whose entries (characters) are all distinct. Note that we use tuple/string notation and terminology
interchangeably. Each v ∈ V has its own (online) probing constraint Cv ⊆ ∂(v)(∗), where ∂(v) is the set
of edges adjacent to v. We make the minimal assumption that Cv is downward-closed; that is, if e ∈ Cv,
then any substring or permutation of e is also in Cv. This includes matroid constraints, as well when each
v ∈ V has a budget Bv ≥ 0, and (edge) probing costs (ce)e∈∂(v), such that e = (e1, . . . , ek) ∈ Cv provided∑k
i=1 ci ≤ Bv. Observe that if each v has uniform probing costs, then this corresponds to the previously

discussed case of one-sided patience values (`v)v∈V . We shall assume w.l.o.g. that each stochastic graph
G = (U, V,E) we work with satisfies E = U × V , as we may always exclude an edge e from being active by
setting pe = 0.

A solution to the online stochastic matching problem with known i.d. arrivals is an online
probing algorithm. An online probing algorithm is first presented a stochastic graph Htyp = (U,B, F )
with edge weights (wf )f∈F , edge probabilities (pf )f∈F , and online probing constraints (Cb)b∈B . We refer to
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Htyp as a (stochastic) type graph, and the vertices of B as the online type nodes of Htyp. The online
probing algorithm does not execute on Htyp. Instead, the adversary fixes a integer n ≥ 1, and a sequence
of distributions (Di)ni=1 supported on B, both of which are known to the online probing algorithm. In the
adversarial arrival model, a permutation π is generated by an oblivious adversary, in which case π is
a function of Htyp and (Di)ni=1, and so it cannot depend on the instantiation of the online vertices, nor the
decisions of the online probing algorithm. In the random order arrival model, π is generated uniformly at
random (u.a.r.), independently of all other randomization. In either setting, π is unknown to the algorithm.
For each t = 1, . . . , n, vertex vπ(t) is drawn from Dπ(t) and presented to the algorithm, along with its edge
weights, probabilities, and online probing constraint. Note that the algorithm is presented the value π(t),
and thus learns which distribution vπ(t) was drawn from. However, the edge states (st(e))e∈∂(vπ(t)) initially
remain hidden to the algorithm. Instead, using all past available information regarding vπ(1), . . . , vπ(t−1),
the algorithm must probe the edges of ∂(vπ(t)) to reveal their states, while adhering to the constraint Cvπ(t)

.

That is, it may probe a tuple of edges e ∈ ∂(vπ(t))
(∗) which satisfies e ∈ Cvπ(t)

. The algorithm operates in the
probe-commit model, in which there is a commitment requirement upon probing an edge. Specifically,
if an edge e = (u, v) is probed and turns out to be active, then the online probing algorithm must make
an irrevocable decision as to whether or not to include e in its matching, prior to probing any subsequent
edges. The goal of the algorithm is to build a matching of largest possible expected weight. This definition
of commitment is the one considered by Gupta et al. [29], and in fact has equivalent power as the previously
described Chen et al. [18] model. An online probing algorithm may simply pass on probing an edge if it
doesn’t intend to add the edge to its matching.

We refer to the randomly generated stochastic graph G = (U, V,E) on which the online probing algorithm
executes as the instantiated stochastic graph, and denote G ∼ (Htyp, (Di)ni=1) to indicate G is drawn from
(Htyp, (Di)ni=1). Note that technically V and E are each multi-sets, as multiple copies of a type node b ∈ B
may appear. In general, it is easy to see we cannot hope to obtain a non-trivial competitive ratio against
the expected weight of an optimal matching of the instantiated stochastic graph2. The standard approach
in the literature is to instead consider the offline stochastic matching problem and benchmark against
an optimal offline probing algorithm [6, 2, 15, 16]. An offline probing algorithm knows G = (U, V,E),
but initially the edge states (st(e))e∈E are hidden. It can adaptively probe the edges of E in any order,
but must satisfy the probing constraints (Cv)v∈V at each step of its execution3 while operating in the same
probe-commit model as an online probing algorithm. The goal of an offline probing algorithm is to construct
a matching with optimal weight in expectation. We define the adaptive (committal) benchmark as
an optimal offline probing algorithm, and denote OPT(G) as the expected weight of its matching when
executing on G. An alternative weaker benchmark used by Brubach et al. [11, 12] is the online adaptive
benchmark. This is defined as an optimal offline probing algorithm which executes on G and whose edge
probes respect some adaptive vertex ordering on V . Equivalently, the edge probes involving each v ∈ V occur
contiguously: if e′ = (u, v′) ∈ E is probed after e = (u, v) for v′ 6= v, then no edge of ∂(v) is probed following
e′. We benchmark against E[OPT(G)], where the expectation is over the randomness in G ∼ (Htyp, (Di)ni=1).
For convenience, we denote OPT(Htyp, (Di)ni=1) := E[OPT(G)], and refer to (Htyp, (Di)ni=1) as a known i.d.
input.

Theorem 2.1. Suppose (Htyp, (Di)ni=1) is a known i.d. input, to which Algorithm 9 is given full access. If
M(π) is the matching returned by the algorithm when presented the online vertices of G ∼ (Htyp, (Di)ni=1)
in an adversarial order π : [n]→ [n], then E[w(M(π))] ≥ 1

2OPT(Htyp, (Di)ni=1).

Remark 2.2. This is a tight bound since the problem generalizes the classic single item prophet inequality
for which 1

2 is an optimal competitive ratio. Recently, Brubach et al. [11, 12] independently4 proved the
same competitive ratio against the online adaptive benchmark when G has unknown patience values. Our
results are incomparable, as their results apply to an unknown patience framework, whereas our results apply
to downward-closed online probing constraints, and hold against a stronger benchmark.

2Consider a single online with a unit patience value, and k ≥ 1 offline (unweighted) vertices where each edge e has probability
1
k

of being present. The expectation of an online probing algorithm will be at most 1
k

while the expected size of an optimal

matching will be 1− (1− 1
k

)k → 1− 1
e

as k →∞.
3Edges e ∈ E(∗) may be probed in order, provided ev ∈ Cv for each v ∈ V , where ev is the substring of e restricted to edges

of ∂(v).
4Our work has been motivated by early results of Brubach et al. Since then, we have been improving and extending results

independent of improvements and extensions by Brubach et al.
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We say that an online probing algorithm is non-adaptive, provided for each t ∈ [n], the probes of
∂(vπ(t)) are a (randomized) function of Htyp, and the type of arrival vπ(t). In particular, when probing edges
adjacent to the online node vπ(t), the algorithm does not make use of the previously probed edge states of
the online nodes vπ(1), . . . , vπ(t−1), their types, nor the matching decisions made thus far. The algorithm will
therefore possibly waste some probes to edges (u, vπ(t)) of which u ∈ U is unavailable, but it will not violate
the matching constraint. Our definition generalizes the notion of non-adaptivity introduced by Manshadi et
al. [34] in the classic matching problem with known i.i.d. arrivals.

Theorem 2.3. Suppose (Htyp, (Di)ni=1) is a known i.d. input, to which Algorithm 10 is given full access. If
M is the matching returned by the algorithm when presented the online vertices of G ∼ (Htyp, (Di)ni=1) in
random order, then E[w(M)] ≥

(
1− 1

e

)
OPT(Htyp, (Di)ni=1). Moreover, Algorithm 10 is non-adaptive.

Remark 2.4. The special case of identical distributions with one-sided patience values has been studied in
multiple works [6, 2, 15, 16], beginning with the 0.12 competitive ratio of Bansal et al. [6], and for which the
previously best known competitive ratio of 0.46 is due to Brubach et al. [16]. Note that all these previous
competitive ratios are proven against the adaptive benchmark. Theorem 2.3 improves on this result, and
also is the first to apply to non-identical distributions, as well as to more general probing constraints. We
also proved this in an earlier arXiv version of this paper [8]. Recently, Brubach et al. [11] posted an updated
version of [14] which independently achieves the same competitive ratio for the case of unknown patience
values in the known i.i.d. setting, however again their result is proven against the online adaptive benchmark.
Note that 1 − 1/e is also the best known competitive ratio in the classic matching problem for known i.d.
random order arrivals, due to Ehsani et al. [23].

In order to discuss the efficiency of our algorithms, we work in the membership oracle model. An
online probing algorithm may make a membership query to any string e ∈ ∂(b)(∗) for b ∈ B, thus
determining in a single operation whether or not e ∈ ∂(b)(∗) is in Cb.

Theorem 2.5. Suppose that (Htyp, (Di)ni=1) is a known i.d. input, where Htyp = (U,B, F ) has downward-
closed probing constraints (Cb)b∈B. If |Htyp| is the size of Htyp (excluding (Cb)b∈B), and |Di| is the amount
of space needed to encode the distribution Di, then the following claim holds:

• In the membership oracle model, Algorithms 9 and 10 execute in time poly(|Htyp|, (|Di|)ni=1), provided
for each b ∈ B, Cb is downward-closed.

Remark 2.6. |Htyp| may be exponentially large in the size of G ∼ (Htyp, (Di)ni=1), however for each ε > 0,
our results can be made to run in time poly(|G|, log(1/ε)) using Monte Carlo simulation (at a loss of (1− ε)
in performance), assuming we have oracle access to samples drawn from (Di)ni=1.

An important special case of the online stochastic matching problem is the case of a known stochastic
graph. In this setting, the input Htyp = (V,B, F ) satisfies n = |B|, and the distributions (Di)ni=1 are all
point-mass on distinct vertices of B. Thus, the online vertices of G are not randomly drawn, and G is instead
equal to Htyp. The online probing algorithm thus knows the stochastic graph G in advance, but remains
unaware of the edge states (st(e))e∈E , and so it still must sequentially probe the edges to reveal their states.
Again, it must operate in the probe-commit model, and respect the probing constraints (Cv)v∈V as well as
the arrival order π on V . Since all the vertices are known a priori, non-adaptivity reduces to requiring that
the probes of the algorithm are a function of G. We define non-adaptivity for offline probing algorithms in
the same way.

Corollary 2.7. Suppose G = (U, V,E) is a known stochastic graph to which Algorithm 10 is given full
access. If M is the matching returned by the algorithm when presented the online vertices of G in random
order, then E[w(M)] ≥

(
1− 1

e

)
OPT(G). Moreover, Algorithm 10 is non-adaptive.

Remark 2.8. Gamlath et al. [26] consider an online probing algorithm in the unconstrained or un-
bounded patience setting – i.e., Cv = ∂(v)(∗) for v ∈ V – when G is known. Both our algorithm and
theirs attain a performance guarantee of 1 − 1/e against different non-standard LPs. In the special case of
unbounded patience, our LPs take on the same value, as we prove in Proposition A.1 of Appendix A. Thus,
Theorem 2.3 can be viewed as a generalization of their work to downward-closed online probing constraints
and known i.d. random order arrivals.
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We complement Corollary 2.7 with a hardness result which applies to all non-adaptive probing algorithms
(even probing algorithms which execute offline, and thus do not respect the arrival order π of V ):

Theorem 2.9. In the known stochastic graph setting, no non-adaptive offline probing algorithm can attain
an approximation ratio against the adaptive benchmark which is greater than 1− 1/e.

2.1 An Overview of Our Techniques

In order to describe the majority of our technical contributions, it suffices to focus on the known stochastic
graph setting. Let us suppose we are presented a stochastic graph G = (U, V,E). For the case of patience
values (`v)v∈V , a natural solution is to solve an LP introduced by Bansal et al. [6] (see LP-std in Appendix
A) to obtain fractional values for the edges of G, say (xe)e∈E , such that xe upper bounds the probability
e is probed by the adaptive benchmark. Clearly,

∑
e∈∂(v) xe ≤ `v is a constraint for each v ∈ V , and so

by applying a dependent rounding algorithm (such as the GKSP algorithm of Gandhi et al. [27]), one can
round the values (xe)e∈∂(v) to determine `v edges of ∂(v) to probe. By probing these edges in a carefully
chosen order, and matching v to the first edge revealed to be active, one can guarantee that each e ∈ ∂(v)
is matched with probability reasonably close to pexe. This is the high-level approach used in many previous
stochastic matching algorithms (for example [6, 2, 7, 16, 13]). However, even for a single online node, LP-std
overestimates the value of the adaptive benchmark, and so any algorithm designed in this way will match
certain edges with probability strictly less than pexe. This is problematic, for the value of the match made to
v is ultimately compared to

∑
e∈∂(v) pewexe, the contribution of the variables (xe)e∈∂(v) to the LP solution.

In fact, Brubach et al. [14] showed that the ratio between OPT(G) and an optimum solution to LP-std can
be as small as 0.544, so the 1− 1/e competitive ratio of Theorem 2.3 cannot be achieved via a comparison
to LP-std, even for the special case of patience values.

Our approach is to introduce a new configuration LP (LP-config) with exponentially many variables which
accounts for the many probing strategies available to an arriving vertex v with probing constraint Cv. For each

e = (e1, . . . , e|e|) ∈ E(∗), define g(e) :=
∏|e|
i=1(1−pei), where g(e) corresponds to the probability that all the

edges of e are inactive, and g(λ) := 1 for the empty string/character λ. We also define e<ei := (e1, . . . , ei−1)
for each 2 ≤ i ≤ |e|, which we denote by e<i when clear, where e<1 := λ by convention. Observe then

that val(e) :=
∑|e|
i=1 peiweig(e<i) corresponds to the expected weight of the first active edge revealed if e is

probed in order of its indices. For each v ∈ V , we introduce a decision variable xv(e):

maximize
∑
v∈V

∑
e∈Cv

val(e) · xv(e) (LP-config)

subject to
∑
v∈V

∑
e∈Cv:
(u,v)∈e

pu,v · g(e<(u,v)) · xv(e) ≤ 1 ∀u ∈ U (2.1)

∑
e∈Cv

xv(e) = 1 ∀v ∈ V, (2.2)

xv(e) ≥ 0 ∀v ∈ V, e ∈ Cv (2.3)

When each Cv is downward-closed, LP-config can be solved efficiently by using a deterministic separation
oracle for LP-new-dual, the dual of LP-config, in conjunction with the ellipsoid algorithm [36, 28], as we
prove in Theorem 5.1 of Section 5. Crucially, LP-config is also a relaxation of the adaptive benchmark.

Theorem 2.10. If G = (U, V,E) has downward-closed probing constraints, then OPT(G) ≤ LPOPT(G).

Remark 2.11. For the case of patience values, LP-config was also recently independently introduced by
Brubach et al. [11, 12] to design probing algorithms for known i.i.d. arrivals and known i.d. adversarial
arrivals. Their competitive ratios are proven against an optimal solution to LP-config, which they argue
upper bounds the online adaptive benchmark. Theorem 2.10 thus implies that their results in fact hold
against the stronger adaptive benchmark.

In order to prove Theorem 2.10, the natural approach is to view xv(e) as the probability that the adaptive
benchmark probes the edges of e in order, where v ∈ V and e ∈ Cv. Let us suppose that hypothetically we
could make the following restrictive assumptions regarding the adaptive benchmark:
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(P1) If e = (u, v) is probed and st(e) = 1, then e is included in the matching, provided v is currently
unmatched.

(P2) For each v ∈ V , the edge probes involving ∂(v) are made independently of the edge states (st(e))e∈∂(v).

Observe then that (P1) and (P2) would imply that the expected weight of the edge assigned to v is∑
e∈Cv val(e) · xv(e). Moreover, the left-hand side of (2.1) would correspond to the probability u ∈ U

is matched, so (xv(e))v∈V,e∈Cv would be a feasible solution to LP-config, and so we could upper bound
OPT(G) by LPOPT(G). Now, if we were working with the online adaptive benchmark, then it is clear that
we could assume (P1) and (P2) simultaneously5 w.l.o.g. On the other hand, if a probing algorithm does
not respect an adaptive vertex ordering on V , then the probes involving v ∈ V will in general depend on
(st(e))e∈∂(v). For instance, if e ∈ ∂(v) is probed and inactive, then perhaps the adaptive benchmark probes
e′ = (u, v′) ∈ ∂(v′) for some v′ 6= v. If e′ is active and thus added to the matching by (P1), then the adaptive
benchmark can never subsequently probe (u, v) without violating (P1), as u is now unavailable to be matched
to v. Thus, the natural interpretation of the decision variables of LP-config does not seem to easily lend
itself to a proof of Theorem 2.10.

Our solution is to consider a combinatorial relaxation of the offline stochastic matching problem,
which we define to be a new stochastic probing problem on G whose optimal value OPTrel(G) satisfies
OPT(G) ≤ OPTrel(G). We refer to this problem as the relaxed stochastic matching problem, a
solution to which is a relaxed probing algorithm. Roughly speaking, a relaxed probing algorithm operates
in the same framework as an offline probing algorithm, yet it returns a one-sided matching of the online
vertices which matches each offline node at most once in expectation. We provide a precise definition
in Section 3. Crucially, there exists an optimal relaxed probing algorithm which satisfies (P1) and (P2)
simultaneously, which by the above discussion allows us to conclude that OPTrel(G) ≤ LPOPT(G). Since
OPT(G) ≤ OPTrel(G) by construction, this implies Theorem 2.10. Proving the existence of an optimal
relaxed probing algorithm with these properties is the most technically challenging part of the paper, and is
the content of Lemma 3.1 of Section 3.

After proving that LP-config is a relaxation of the adaptive benchmark, we use it to design online probing
algorithms. Suppose that we are presented a feasible solution, say (xv(e))v∈V,e∈Cv , to LP-config for G. For
each e ∈ E, define

x̃e :=
∑

e′∈Cv :
e∈e′

g(e′<e) · xv(e′). (2.4)

In order to simplify our notation in the later sections, we refer to the values (x̃e)e∈E as the (induced) edge
variables of the solution (xv(e))v∈V,e∈Cv . If we now fix s ∈ V , then we can easily leverage constraint (2.2)
to design a simple fixed vertex probing algorithm which matches each edge of e ∈ ∂(s) with probability
exactly equal to pex̃e. Specifically, draw e′ ∈ Cs with probability xs(e

′). If e′ = λ, then return the
empty set. Otherwise, set e′ = (e′1, . . . , e

′
k) for k := |e′| ≥ 1, and probe the edges of e′ in order. Return

the first edge which is revealed to be active, if such an edge exists. Otherwise, return the empty set.
We refer to this algorithm as VertexProbe, and denote its output on the input (s, ∂(s), (xs(e))e∈Cs)
by VertexProbe(s, ∂(s), (xs(e))e∈Cs). Observe the following claim, which follows immediately from the
definition of the edge variables, (x̃e)e∈E :

Lemma 2.12. Let G = (U, V,E) be a stochastic graph with LP-config solution (xv(e))v∈V,∂(v), and whose
induced edge variables we denote by (x̃e)e∈E. If VertexProbe is passed (s, ∂(s), (xs(e))e∈Cs), then each
e ∈ ∂(s) is returned by the algorithm with probability pex̃e.

Definition 1. We say that VertexProbe commits to the edge e = (u, s) ∈ ∂(s), or equivalently the
vertex u ∈ N(s), provided the algorithm outputs e when executing on the fixed node s ∈ V . When it is clear
that VertexProbe is being executed on s, we say that s commits to e (equivalently the vertex u).

Consider now the simple online probing algorithm, where π is generated either u.a.r. or adversarially.

5It is clear that we may assume the adaptive benchmark satisfies (P1) w.l.o.g., but not (P2).
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Algorithm 1 Known Stochastic Graph

Input: a stochastic graph G = (U, V,E).
Output: a matching M of active edges of G.

1: M← ∅.
2: Compute an optimal solution of LP-config for G, say (xv(e))v∈V,e∈Cv
3: for s ∈ V in order based on π do
4: Set e← VertexProbe(s, ∂(s), (xs(e))e∈Cs).
5: if e = (u, s) for some u ∈ U , and u is unmatched then . this line ensures e 6= ∅
6: Add e to M.
7: return M.

Remark 2.13. Technically, line (6) should occur within the VertexProbe subroutine to adhere to the
probe-commit model, however we express our algorithms in this way for simplicity.

We observe the following claim, which is easily proven so we omit the argument:

Proposition 2.14. In the adversarial arrival model, Algorithm 1 does not attain a constant competitive
ratio. In the random order arrival model, Algorithm 1 attains a competitive ratio of 1/2 and the analysis is
asymptotically tight.

Since the analysis of Algorithm 1 cannot be improved in either arrival model, we must modify the
algorithm to prove Theorems 2.1 and 2.3, even in the known stochastic graph setting. Our modification
involves concurrently applying an appropriate rank one matroid contention resolution scheme to each
offline vertex of G, a concept formalized much more generally in the seminal paper by Chekuri, Vondrak, and
Zenklusen [38]. Fix u ∈ U , and observe that constraint (2.1) ensures that

∑
e∈∂(u) pex̃e ≤ 1. Moreover, if we

set ze := pex̃e, then observe that as VertexProbe executes on v, each edge e = (u, v) ∈ ∂(u) is committed
to u independently with probability ze. On the other hand, there may be many edges which commit to u
so we must resolve which one to take. In Algorithm 1, u is matched greedily to the first online vertex which
commits to it, regardless of how π is generated. We apply online and random order contention resolution
schemes to ensure that e is matched to u with probability 1/2 · ze when π is generated by an adversary,
and (1 − 1/e) · ze when π is generated u.a.r. This allows us to conclude the desired competitive ratios,
as
∑
e∈E wepex̃e upper bounds OPT(G) by Theorem 2.10. We review the relevant contention resolution

schemes in Section 4, and also extend the argument to the case when G is unknown and instead drawn from
the known i.d. input (Htyp, (Di)ni=1), thus proving Theorems 2.1 and 2.3.

3 Relaxing the Adaptive Benchmark via LP-config

Given a stochastic graph G = (U, V,E), we define the relaxed stochastic matching problem. A solution
to this problem is a relaxed probing algorithm A, which operates in the previously described framework of
an (offline) probing algorithm. That is, A is firstly given access to a stochastic graph G = (U, V,E). Initially,
the edge states (st(e))e∈E are unknown to A, and A must adaptivity probe these edges to reveal their states,
while respecting the downward-closed probing constraints (Cv)v∈V . As in the offline problem, A returns a
subset A(G) of its active probes, and its goal is to maximize E[w(A(G))], where w(A(G)) :=

∑
e∈A(G) we.

However, unlike before where the output of the probing algorithm was required to be a matching of G, we
relax the required properties of A(G):

1. Each v ∈ V appears in at most one edge of A(G).

2. If Nu counts the number of edges of ∂(u) which are included in A(G), then E[Nu] ≤ 1 for each u ∈ U .

We refer to A(G) as a one-sided matching of the online nodes. In constructing A(G), A must operate in
the previously described probe-commit model. We define the relaxed benchmark as an optimal relaxed
probing algorithm, and denote its evaluation on G by OPTrel(G). Observe that since any offline probing
algorithm is a relaxed probing algorithm, we have that

OPT(G) ≤ OPTrel(G). (3.1)
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We say that A is non-adaptive, provided the probes are a (randomized) function of G. Equivalently, A is
non-adaptive if the probes of A are statistically independent from (st(e))e∈E . Unlike for the offline stochastic
matching problem, there exists a relaxed probing algorithm which is both optimal and non-adaptive:

Lemma 3.1. For any stochastic graph G = (U, V,E) with downward-closed probing constraints (Cv)v∈V ,
there exists an optimum relaxed probing algorithm B which satisfies the following properties:

(Q1) If e = (u, v) is probed and st(e) = 1, then e is included in B(G), provided v is currently unmatched.

(Q2) B is non-adaptive on G.

Remark 3.2. Note that (Q2) implies the hypothetical property (P2), yet is much stronger.

Let us assume Lemma 3.1 holds for now. Observe that by considering B of Lemma 3.1, and defining
xv(e) as the probability that B probes the edges of e in order for v ∈ V and e ∈ Cv, properties (Q1) and
(Q2) ensure that (xv(e))v∈V,e∈Cv is a feasible solution to LP-config such that

E[w(B(G))] =
∑
v∈V

∑
e∈Cv

val(e) · xv(e).

Thus, the optimality of B implies that OPTrel(G) ≤ LPOPT(G), and so together with (3.1), Theorem 2.10
follows. In fact, LP-config is an exact LP formulation of the relaxed stochastic matching problem:

Theorem 3.3. OPTrel(G) = LPOPT(G).

Proof. Clearly, Theorem 2.10 accounts for one side of the inequality, so it suffices to show that LPOPT(G) ≤
OPTrel(G). Suppose we are presented a feasible solution (xv(e))v∈V,e∈Cv to LP-config. Consider then the
following algorithm:

1. M← ∅.

2. For each v ∈ V , set e← VertexProbe(v, ∂(v), (xv(e))e∈Cv ). If e 6= ∅, then add e to M.

3. Return M.

Using Lemma 2.12, it is clear that

E[w(M)] =
∑
v∈V

∑
e∈Cv

val(e) · xv(e).

Moreover, each vertex u ∈ U is matched by M at most once in expectation, as a consequence of constraint
(2.1) of LP-config, and so the algorithm satisfies the required properties of a relaxed probing algorithm. The
proof is therefore complete.

3.1 Proving Lemma 3.1

Let us suppose that G = (U, V,E) is a stochastic graph with downward-closed probing constraints (Cv)v∈V .
In order to prove Lemma 3.1, we must show that there exists an optimal relaxed probing algorithm which is
non-adaptive and satisfies (Q1). Our high level approach is to consider an optimal relaxed probing algorithm
A which satisfies (Q1), and then to construct a new non-adaptive algorithm B by stealing the strategy of
A, without any loss in performance. More specifically, we construct B by writing down for each v ∈ V and
e ∈ Cv the probability that A probes the edges of e in order. These probabilities necessarily satisfy certain
inequalities which we make use of in designing B. In order to do so, we need a technical randomized rounding
procedure whose precise relevance will become clear in the proof of Lemma 3.1.

Suppose that e ∈ E(∗), and recall that λ is the empty string/character. For each j ≥ 0, denote ej as the
jth character of ej , where ej := λ when j = 0 or j > |e|. Let us now assume that (yv(e))e∈Cv is a collection
of non-negative values which satisfy yv(λ) = 1, and∑

e∈∂(v):
(e′,e)∈Cv

yv(e
′, e) ≤ yv(e′), (3.2)

for each e′ ∈ Cv.
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Proposition 3.4. Given a collection of values (yv(e))e∈Cv which satisfy yv(λ) = 1 and (3.2), there exists a
distribution Dv supported on Cv, such that if Y ∼ Dv, then for each e ∈ Cv with k := |e| ≥ 1, it holds that

P[(Y1, . . . ,Yk) = (e1, . . . , ek)] = yv(e), (3.3)

where Y1, . . . ,Yk are the first k characters of Y .

Proof. First define C>v := {e′ ∈ Cv : yv(e
′) > 0}, which we observe is downward-closed since by assumption

Cv is downward-closed and (3.2) holds. We prove the proposition for C>v , which we then argue implies the
proposition holds for Cv. Observe now that for each e′ ∈ C>v , we have that∑

e∈∂(v):
(e′,e)∈C>v

yv(e
′, e)

yv(e′)
≤ 1 (3.4)

as a result of (3.2) (recall that yv(λ) := 1). We thus define for each e′ ∈ C>v ,

zv(e
′) := 1−

∑
e∈∂(v):

(e′,e)∈C>v

yv(e
′, e)

yv(e′)
, (3.5)

which we observe has the property that 0 ≤ zv(e
′) < 1. The strict inequality follows from the definition of

C>v . This leads to the following randomized rounding algorithm, which we claim outputs a random string Y
which satisfies the desired properties:

Algorithm 2 VertexRound

Input: a collection of values (yv(e))e∈C>v satisfying (3.2) and yv(λ) = 1.
Output: a random string Y = (Y1, . . . , Y|∂(v)|) supported on C>v .

1: Set e′ ← λ.
2: Initialize Yi = λ for each i = 1, . . . , |∂(v)|.
3: for i = 1, . . . , |∂(v)| do
4: Exit the “for loop” with probability zv(e

′). . pass with a certain probability – see (3.5)
5: Draw e ∈ ∂(v) satisfying (e′, e) ∈ C>v with probability yv(e

′, e)/(yv(e
′) (1− zv(e′))).

6: Set Yi = e.
7: e′ ← (e′, e).

8: return Y = (Y1, . . . , Y|∂(v)|). . concatenate the edges in order and return the resulting string

Clearly, the random string Y is supported on C>v , thanks to line 5 of Algorithm 2. We now show that
(3.3) holds. As such, let us first assume k = 1, and e ∈ ∂(v) satisfies (e) ∈ C>v . Observe that

P[Y1 = e] = (1− zv(λ))
yv(e)

1− zv(λ)
= yv(e),

as the algorithm does not exit the “for loop” with probability 1 − zv(λ), in which case it draws e with
probability yv(e)/(1− zv(λ)). In general, take k ≥ 2, and assume that for each e′ ∈ C>v with 1 ≤ |e′| < k, it
holds that

P[(Y1, . . . , Yk) = e′] = yv(e
′).

If we now fix e = (e1, . . . , ek) ∈ C>v with |e| = k, observe that e<k := (e1, . . . , ek−1) ∈ C>v , as C>v is
downward-closed. Moreover,

P[(Y1, . . . , Yk) = e] = P[Yk = ek | (Y1, . . . , Yk−1) = e<k] · P[(Y1, . . . , Yk−1) = e<k]

= P[Yk = ek | (Y1, . . . , Yk−1) = e<k)] · yv(e<k),

where the last line follows by the induction hypothesis since e<k ∈ C>v is of length k − 1. We know however
that

P[Yk = ek | (Y1, . . . , Yk−1) = e<k] = (1− zv(e<k))
yv(e<k, ek)

yv(e<k) (1− zv(e<k))
=
yv(e<k, ek)

yv(e<k)
.

9



This is because once we condition on the event (Y1, . . . , Yk−1) = e<k, we know that the algorithm does
not exit the “for loop” with probability 1 − zv(e<k), in which case it selects ek ∈ ∂(v) with probability
yv(e<k, ek)/(yv(e<k) (1− zv(e<k))), since (e<k, ek) ∈ C>v by assumption. As such, we have that

P[(Y1, . . . , Yk) = e] = yv(e),

and so the proposition holds for C>v . To complete the argument, observe that since Y is supported on C>v ,
the substrings of Y are also supported on C>v , as C>v is downward-closed. Thus, Y satisfies (3.3) for the
non-empty strings of Cv \ C>v , in addition to the non-empty strings of C>v .

We are now ready to prove Lemma 3.1.

Proof of Lemma 3.1. Suppose that A is an optimal relaxed probing algorithm which returns the one-sided
matchingM after executing on the stochastic graph G = (U, V,E). In a slight abuse of terminology, we say
that e is matched by A, provided e is included in M. We shall also make the simplifying assumption that
pe < 1 for each e ∈ E, as the proof can be clearly adapted to handle the case when certain edges have pe = 1
by restricting which strings of each Cv are considered.

Observe that since A is optimal, it is clear that we may assume the following properties hold w.l.o.g. for
each e ∈ E:

1. e is probed only if e can be added to the currently constructed one-sided matching.

2. If e is probed and st(e) = 1, then e is included in M.

Thus, in order to prove the lemma, we must find an alternative algorithm B which is non-adaptive, yet
continues to be optimal. To this end, we shall first express E[w(M(v))] in a convenient form for each v ∈ V ,
where w(M(v)) is the weight of the edge matched to v (which is 0 if no match occurs).

Given v ∈ V and 1 ≤ i ≤ |U |, we define Xv
i to be the ith edge adjacent to v that is probed by A. This is

set equal to λ by convention, provided no such edge exists. We may then define Xv := (Xv
1 , . . . , X

v
|U |), and

Xv
≤k := (Xv

1 , . . . , X
v
k ) for each 1 ≤ k ≤ |U |. Moreover, given e = (e1, . . . , ek) ∈ E(∗) with k ≥ 1, define S(e)

to be the event in which ek is the only active edge amongst e1, . . . , ek. Observe then that

E[w(M(v))] =
∑

e=(e1,...,ek)∈Cv:
k≥1

wekP[S(e) ∩ {Xv
≤k = e}],

as (1) and (2) ensure v is matched to the first probed edge which is revealed to be active. Moreover, if
e = (e1, . . . , ek) ∈ Cv for k ≥ 2, then

P[S(e) ∩ {Xv
≤k = e}] = P[{st(ek) = 1} ∩ {Xv

≤k = e}], (3.6)

as (1) and (2) ensure Xv
≤k = e only if e1, . . . , ek−1 are inactive. Thus,

E[w(M(v))] =
∑

e=(e1,...,ek)∈Cv:
k≥1

wekP[S(e) ∩ {Xv
≤k = e}]

=
∑

e=(e1,...,ek)∈Cv:
k≥1

wekP[{st(ek) = 1} ∩ {Xv
≤k = e}]

=
∑

e=(e1,...,ek)∈Cv:
k≥1

wekpekP[Xv
≤k = e],

where the final equality holds since A must decide on whether to probe ek prior to revealing st(ek). As a
result, after summing over v ∈ V ,

E[w(M)] =
∑
v∈V

∑
e=(e1,...,ek)∈Cv :

k≥1

wekpekP[Xv
≤k = e]. (3.7)
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Our goal is to find a non-adaptive relaxed probing algorithm which matches the value of (3.7). Thus, for
each v ∈ V and e = (e1, . . . , ek) ∈ Cv with k ≥ 1, define

xv(e) := P[Xv
≤k = e],

where xv(λ) := 1. Observe now that for each e′ = (e′1, . . . , e
′
k) ∈ Cv,∑

e∈∂(v):
(e′,e)∈Cv

P[Xv
≤k+1 = (e′, e) |Xv

≤k = e′] ≤ 1− pe′k . (3.8)

To see (3.8), observe that the the left-hand side corresponds to the probability A probes some edge e ∈ ∂(v),
given it already probed e′ in order. On the other hand, if a subsequent edge is probed, then (1) and (2)
imply that e′k must have been inactive, which occurs independently of the event Xv

≤k = e′. This explains
the right-hand side of (3.8). Using (3.8), the values (xv(e))e∈Cv satisfy∑

e∈∂(v):
(e′,e)∈Cv

xv(e
′, e) ≤ (1− pe′k) · xv(e′), (3.9)

for each e′ = (e′1, . . . , e
′
k) ∈ Cv with k ≥ 1. Moreover, clearly

∑
e∈∂(v) xv(e) ≤ 1.

Given e = (e1, . . . , ek) ∈ Cv for k ≥ 1, recall that e<k := (e1, . . . , ek−1) where e<1 := λ if k = 1.

Moreover, g(e<k) :=
∏k−1
i=1 (1− pei), where g(λ) := 1. Using this notation, define for each e ∈ Cv

yv(e) :=

{
xv(e)/g(e<|e|) if |e| ≥ 1,

1 otherwise.
(3.10)

Observe that (3.9) ensures that for each e′ ∈ Cv,∑
e∈∂(v):
(e′,e)∈Cv

yv(e
′, e) ≤ yv(e′), (3.11)

and yv(λ) := 1. As a result, Proposition 3.4 implies that for each v ∈ V , there exists a distribution Dv such
that if Y v ∼ Dv, then for each e ∈ Cv with |e| = k ≥ 1,

P[Y v
≤k = e] = yv(e). (3.12)

Moreover, Y v is drawn independently from the edge states, (st(e))e∈E . Consider now the following algorithm
B, which satisfies the desired properties (Q1) and (Q2) of Lemma 3.1:

Algorithm 3 Algorithm B
Input: a stochastic graph G = (U, V,E).
Output: a one-sided matching N of G of active edges.

1: Set N ← ∅.
2: Draw (Y v)v∈V according to the product distribution

∏
v∈V Dv.

3: for v ∈ V do
4: for i = 1, . . . , |Y v| do
5: Set e← Y v

i . . Y v
i is the ith edge of Y v

6: Probe the edge e, revealing st(e).
7: if st(e) = 1 and v is unmatched by N then
8: Add e to N .
9: return N .
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Using (3.12) and the non-adaptivity of B, it is clear that for each v ∈ V ,

E[w(N (v))] =
∑

e=(e1,...,ek)∈Cv:
k≥1

wekP[S(e)] · P[Y v
≤k = e]

=
∑

e=(e1,...,ek)∈Cv:
k≥1

wekpekg(e<k)yv(e)

=
∑

e=(e1,...,ek)∈Cv :
k≥1

wekpekxv(e)

= E[w(M(v))].

Thus, after summing over v ∈ V , it holds that E[w(N )] = E[w(M)] = OPTrel(G), and so in addition to
satisfying (Q1) and (Q2), B is optimal. Finally, it is easy to show that each u ∈ U is matched by N at most
once in expectation sinceM has this property. Thus, B is a relaxed probing algorithm which is optimal and
satisfies the required properties of Lemma 3.1.

4 Proving Theorems 2.1 and 2.3

In this section, we first review rank one contention resolution schemes. We then prove Theorems 2.1 and 2.3
for the case of a known stochastic graph. Finally, in Subsection 4.1, we generalize to the case of an arbitrary
known i.d. input.

Given k ≥ 1, consider the ground set [k] := {1, . . . , k}. Fix z ∈ [0, 1]k, and let R(z) ⊆ [k] denote
the random set where each i ∈ [k] is included in R(z) independently with probability zi. Let us denote

P := {z ∈ [0, 1]k :
∑k
i=1 zi ≤ 1}. Note that P is the convex relaxation of the constraint imposed by the rank

one matroid on [k] (i.e., at most one element of [k] may be selected).

Definition 2 (Contention Resolution Scheme – Rank One Matroid – [38]). A contention resolution
scheme (CRS) for the rank one matroid on [k] is a (randomized) algorithm ψ, which given z ∈ P and
S ⊆ [k] as inputs, returns a single element ψz(S) of S. Given c ∈ [0, 1], ψ is said to be c-selectable,
provided for all i ∈ [k] and z ∈ P,

P[i ∈ ψz(R(z)) | i ∈ R(z)] ≥ c, (4.1)

where the probability is over the generation of R(z), and the potential randomness used by ψ.

Feldman et al. [25] considered a more restricted class of contention resolution schemes, called online
contention resolution schemes (OCRS). These are schemes in which R(z) is not known to the scheme
ahead of time. Instead, the elements of [k] are presented to the scheme ψ in adversarial order, where in each
step, an arriving i ∈ [k] reveals if it is in R(z), at which point ψ must make an irrevocable decision as to
whether it wishes to return i as its output.

In the adversarial arrival model, we make use of the OCRS recently introduced by Ezra et al. [24],
restricted to the case of a rank one matroid. Note that this scheme is similar to the OCRS considered by Lee
and Singla [33], however it has the benefit of not requiring the adversary to present the arrival order of [k] to
the algorithm upfront. Given the ground set [k] = {1, . . . k}, suppose the elements of [k] arrive according to

some permutation σ : [k] → [k] (i.e., σ(1), . . . , σ(k)), and z ∈ [0, 1]k satisfies
∑k
i=1 zi ≤ 1. Upon the arrival

of element σ(t) ∈ [k], compute

qt :=
1

2−
∑t−1
i=1 zσ(i)

.

Observe that 1/2 ≤ qt ≤ 1, as 0 ≤
∑k
i=1 zi ≤ 1, and so the following OCRS is well-defined:
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Algorithm 4 OCRS – Ezra et al. [24]

Input: z ∈ P, where P ⊆ [0, 1]k. . P is the convex relaxation of the rank one matroid
Output: at most one element of [k].

1: for t = 1, . . . , k do
2: if σ(t) ∈ R(z) then . σ(t) is in R(z) with probability zσ(t)
3: Compute qt based on the arrivals σ(1), . . . , σ(t− 1).
4: return σ(t) independently with probability qt.

5: return ∅. . pass on returning an element of [k]

Theorem 4.1 (Ezra et al. [33]). Algorithm 4 is an OCRS for a rank one matroid which is 1/2-selectable.

Suppose now we are presented a known stochastic graph G = (U, V,E), whose online vertices v1, . . . , vn
are presented to the online probing algorithm according to an adversarially chosen permutation π : [n]→ [n]
(i.e., vπ(1), . . . , vπ(n)). Let (xv(e))v∈V,e∈Cv be an optimum solution to LP-config for G with induced edge
variables (x̃e)e∈E . For each t ∈ [n] and u ∈ U , define

qu,t :=
1

2−
∑t−1
i=1 zu,vπ(i)

, (4.2)

where ze := pex̃e for e ∈ E, and qu,1 := 1/2. Clearly,
∑
v∈V zu,v ≤ 1, by constraint (2.1) of LP-config, and

so 1/2 ≤ qu,t ≤ 1. We consider the following algorithm, is presented V in order π:

Algorithm 5 Known Stochastic Graph – AOM – Modified

Input: a stochastic graph G = (U, V,E).
Output: a matching M of G of active edges.

1: M← ∅.
2: Compute an optimum solution of LP-config for G, say (xv(e))v∈V,e∈Cv .
3: for t = 1, . . . , n do
4: Based on the previous arrivals vπ(1), . . . , vπ(t−1) before vπ(t), compute values (qu,t)u∈U .

5: Set e← VertexProbe
(
vπ(t), ∂(vπ(t)), (xvπ(t)

(e))e∈Cvπ(t)

)
.

6: if e = (u, vπ(t)) for some u ∈ U , and u is unmatched then
7: Add e to M independently with probability qu,t. . OCRS is used here

8: return M.

Proposition 4.2. Algorithm 5 attains a competitive ratio of 1/2.

Proof. Given u ∈ U , let M(u) denote the edge matched to u by M, where M(u) := ∅ if no such edge
exists. Observe now that if C(e) corresponds to the event in which VertexProbe commits to e ∈ ∂(u),
then P[C(e)] = pex̃e by Lemma 2.12. Moreover, the events (C(e))e∈∂(u) are independent, and satisfy∑

e∈∂(u)

P[C(e)] =
∑
e∈∂(u)

pex̃e ≤ 1, (4.3)

by constraint (2.1) of LP-config. As such, denote z := (ze)e∈∂(u) where ze = pex̃e, and observe that (4.3)
ensures that z ∈ P, where P is the convex relaxation of the rank one matroid on ∂(u). Let us denote R(z)
as those those e ∈ ∂(u) for which C(e) occurs.

If ψ is the OCRS defined in Algorithm 4, then we may pass z to ψ, and process the edges of ∂(u) in the
order induced by π. Denote the resulting output by ψz(R(z)). By coupling the random draws of lines (4)
and (7) of Algorithms 4 and 5, respectively, we get that

w(M(u)) =
∑
e∈∂(u)

we · 1[e∈R(z)] · 1[e∈ψz(R(z))]
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Thus, after taking expectations,

E[w(M(u))] =
∑
e∈∂(u)

we · P[e ∈ ψz(R(z)) | e ∈ R(z)] · P[e ∈ R(z)].

Now, Theorem 4.1 ensures that for each e ∈ ∂(u), P[e ∈ ψz(R(z)) | e ∈ R(z)] ≥ 1/2. It follows that
E[w(M(u))] ≥ 1

2

∑
e∈∂(u) wepex̃e, for each u ∈ U . Thus,

E[w(M)] =
∑
u∈U

E[w(M(u))]

≥ 1

2

∑
e∈E

wepex̃e =
LPOPT(G)

2
,

where the equality follows since (xv(e))v∈V,e∈Cv is an optimum solution to LP-config. On the other hand,
LPOPT(G) ≥ OPT(G) by Theorem 2.10, and so the proof is complete.

Both Lee and Singla [33], as well as Adamczyk and Wlodarczyk [3], defined a random order contention
resolution scheme (RCRS), which is an OCRS where the elements of [k] arrive in random order. In this
definition, the random order is incorporated into the probabilistic computation of selectibility (4.1). We
improve the competitive ratio of Algorithm 1 by applying a specific RCRS introduced by Lee and Singla
[33]. Given the ground set [k] = {1, . . . k}, draw Yi ∼ [0, 1] u.a.r. and independently for i = 1, . . . , k.

Algorithm 6 RCRS – Lee and Singla [33]

Input: z ∈ P, where P ⊆ [0, 1]k.
Output: at most one element of [k].

1: for i ∈ [k] in increasing order of Yi do
2: if i ∈ R(z) then
3: return i independently with probability exp(−Yi · zi)
4: return ∅. . pass on returning an element of [k].

Theorem 4.3 (Lee and Singla [33]). Algorithm 6 is a 1 − 1/e-selectable RCRS for the case of a rank one
matroid.

For each v ∈ V , draw Ỹv ∈ [0, 1] independently and uniformly at random. We assume the vertices of V

are presented to the below algorithm in non-decreasing order, based upon the values (Ỹv)v∈V .

Algorithm 7 Known Stochastic Graph – ROM– Modified

Input: a stochastic graph G = (U, V,E).
Output: a matching M of G of active edges.

1: M← ∅.
2: Compute an optimum solution of LP-config for G, say (xv(e))v∈V,e∈Cv .

3: for s ∈ V in increasing order of Ỹs do
4: Set e← VertexProbe(s, ∂(s), (xs(e))e∈Cs).
5: if e = (u, s) for some u ∈ U , and u is unmatched then

6: Add e to M independently with probability exp(−Ỹs · pu,s · x̃u,s).
7: return M.

Proposition 4.4. Algorithm 7 attains a competitive ratio of 1− 1/e.

The proof follows almost identically to the proof of Proposition 4.2, and so we defer it to Appendix B
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4.1 Extending to Known I.D. Arrivals

Suppose that (Htyp, (Di)ni=1) is a known i.d. input, where Htyp = (U,B, F ) has downward-closed online
probing constraints (Cb)b∈B . If G ∼ (Htyp, (Di)ni=1), where G = (U, V,E) has vertices V = {v1, . . . , vn}, then
define ri(b) := P[vi = b] for each i ∈ [n] and b ∈ B, where we hereby assume that ri(b) > 0. We generalize
LP-config to account for the distributions (Di)ni=1. For each i ∈ [n], b ∈ B and e ∈ Cb, we introduce a decision
variable xi(e || b) to encode the probability that vi has type b and e is the sequence of edges of ∂(vi) probed
by the relaxed benchmark.

maximize
∑

i∈[n],b∈B,e∈Cb

val(e) · xi(e || b) (LP-config-id)

subject to
∑

i∈[n],b∈B

∑
e∈Cb:
(u,b)∈e

pu,b · g(e<(u,b)) · xi(e || b) ≤ 1 ∀u ∈ U (4.4)

∑
e∈Cb

xi(e || b) = ri(b) ∀b ∈ B, i ∈ [n] (4.5)

xi(e || b) ≥ 0 ∀b ∈ B, e ∈ Cb, i ∈ [n] (4.6)

Let us denote LPOPT(Htyp, (Di)ni=1) as the value of an optimum solution to LP-config-id.

Theorem 4.5. OPT(Htyp, (Di)ni=1) ≤ LPOPT(Htyp, (Di)ni=1).

One way to prove Theorem 4.5 is to use the properties of the relaxed benchmark on G guaranteed by
Lemma 3.1, and the above interpretation of the decision variables to argue that

E[OPTrel(G)] ≤ LPOPT(Htyp, (Di)ni=1),

where OPTrel(G) is the value of the relaxed benchmark on G. Specifically, we can interpret (4.4) as saying
that the relaxed benchmark matches each offline vertex at most once in expectation. Moreover, (4.5) holds
by observing that if vi is of type b, then the relaxed benchmark selects some e ∈ Cb to probe (note e could
be the empty-string). We provide a morally equivalent proof of Theorem 4.5 in Appendix B. Specifically,
we consider an optimum solution of LP-config with respect to G, and apply a conditioning argument in
conjunction with Theorem 2.10.

Given a feasible solution to LP-config-id, say (xi(e || b))i∈[n],b∈B,e∈Cb , for each u ∈ U, i ∈ [n] and b ∈ B
define

x̃u,i(b) :=
∑
e∈Cb:
(u,b)∈e

g(e<(u,b)) · xi(e || b). (4.7)

We refer to x̃u,i(b) as an (induced) edge variable, thus extending the definition from the known stochastic
graph setting. Suppose now that we fix i ∈ [n] and b ∈ B, and consider the variables, (xi(e || b))e∈Cb . Observe
that (4.5) ensures that ∑

e∈Cb xi(e || b)
ri(b)

= 1.

Hence, regardless of which type node vi is drawn as,∑
e∈Cvi

xi(e || vi)
ri(vi)

= 1.

We can therefore generalize VertexProbe as follows. Given vertex vi, draw e′ ∈ Cvi with probability
xi(e

′ || vi)/ri(vi). If e′ = λ, then return the empty-set. Otherwise, set e′ = (e′1, . . . , e
′
k) for k := |e′| ≥

1, and probe the edges of e′ in order. Return the first edge which is revealed to be active, if such an
edge exists. Otherwise, return the empty-set. We denote the output of VertexProbe on the input
(vi, ∂(vi), (xi(e || vi)/ri(vi))e∈Cvi ) by VertexProbe(vi, ∂(vi), (xi(e || vi)/ri(vi))e∈Cvi ). Define C(u, vi) as
the event in which VertexProbe outputs the edge (u, vi), and observe the following extension of Lemma
2.12:
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Lemma 4.6. If VertexProbe is passed
(
vi, ∂(vi), (xi(e || vi)/ri(vi))e∈Cvi

)
, then for any b ∈ B and u ∈ U ,

P[C(u, vi) | vi = b] =
pu,b · x̃u,i(b)

ri(b)
.

Remark 4.7. As in Definition 1, if C(u, vi) occurs, then we say that u commits to (u, vi) or vi.

Consider now the generalization of Algorithm 1 where π is generated either u.a.r. or adversarially.

Algorithm 8 Known I.D

Input: a known i.d. input (Htyp, (Di)ni=1).
Output: a matching M of active edges of G ∼ (Htyp, (Di)ni=1).

1: M← ∅.
2: Compute an optimum solution of LP-config-id for (Htyp, (Di)ni=1), say (xi(e || b))i∈[n],b∈B,e∈Cb .
3: for t = 1, . . . , n do
4: Let a ∈ B be the type of the current arrival vπ(t). . to simplify notation

5: Set e← VertexProbe

(
vπ(t), ∂(vπ(t)),

(
xπ(t)(e || a) · r−1π(t)(a)

)
e∈Ca

)
.

6: if e = (u, vπ(t)) for some u ∈ U , and u is unmatched then
7: Add e to M.
8: return M.

Similarly, to Algorithm 1 of Proposition 2.14, one can show that Algorithm 8 attains a competitive ratio
of 1/2 for random order arrivals. Interestingly, if the distributions (Di)ni=1 are identical – that is, we work
with known i.i.d. arrivals – then it is relatively easy to show that this algorithm’s competitive ratio improves
to 1− 1/e.

Proposition 4.8. If Algorithm 8 is presented a known i.i.d. input, say the type graph Htyp together with
the distribution D, then E[w(M)] ≥ (1− 1/e) OPT(Htyp,D).

Remark 4.9. Proposition 4.8 is proven explicitly in an earlier arXiv version of this paper for the case of
patience values.

Returning to the case of non-identical distributions, observe that in the execution of Algorithm 8 the
probability that vi commits to the edge (u, vi) for u ∈ U is precisely

zu,i :=
∑
b∈B

pu,b · x̃u,i(b) =
∑
b∈B

∑
e∈Cb:
(u,b)∈e

pu,b · g(e<(u,b)) · xi(e || b). (4.8)

Moreover, the events (C(u, vi))
n
i=1 are independent, so this suggests applying the same contention resolutions

schemes as in the known stochastic graph setting. We first focus on the adversarial arrival model, where
we assume the vertices v1, . . . , vn are presented in some unknown order π : [n] → [n]. We make use of the
OCRS from before (Algorithm 4). For each t ∈ [n] and u ∈ U , define

qu,t :=
1

2−
∑t−1
i=1 zu,π(i)

, (4.9)

where qu,1 := 1/2. Note that 1/2 ≤ qu,t ≤ 1 as
∑
j∈[n] zu,j ≤ 1 by constraint (4.4) of LP-config-id. We define

Algorithm 9 by modifying Algorithm 8 using the OCRS to ensure that each i ∈ [n] is matched to u ∈ U with
probability zu,i/2. However, to achieve a competitive ratio of 1/2, we require the stronger claim that for
each type node a ∈ B, the probability (u, vi) is added to the matching and vi is of type a is lower bounded
by pu,ax̃u,i(a)/2. Crucially, if we condition on u ∈ U being unmatched when vi is processed, vi having type
a, and C(u, vi), then the probability the OCRS matches u to vi does not depend on a. As we show below in
the proof of Theorem 2.1, this implies the desired lower bound of pu,ax̃u,i(a)/2, and so Algorithm 9 attains
a competitive ratio of 1/2 by (4.7) and Theorem 4.5.
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Algorithm 9 Known I.D. – AOM – Modified

Input: a known i.d. input (Htyp, (Di)ni=1).
Output: a matching M of active edges of G ∼ (Htyp, (Dt)nt=1).

1: M← ∅.
2: Compute an optimum solution of LP-config-id for (Htyp, (Di)ni=1), say (xi(e || b))i∈[n],b∈B,e∈Cb .
3: for t = 1, . . . , n do
4: Let a ∈ B be the type of the current arrival vπ(t).
5: Based on the previous arrivals vπ(1), . . . , vπ(t−1) before vπ(t), compute values (qu,t)u∈U .

6: Set e← VertexProbe

(
vπ(t), ∂(vπ(t)),

(
xπ(t)(e || a) · r−1π(t)(a)

)
e∈Ca

)
.

7: if e = (u, vt) for some u ∈ U , and u is unmatched then
8: Add e to M independently with probability qu,t.

9: return M.

Proof of Theorem 2.1. For notational simplicity, let us assume that π(t) = t for each t ∈ [n], so that the
online vertices arrive in order v1, . . . , vn. Now, the edge variables (x̃u,t(b))u∈U,t∈[n],b∈B satisfy

LPOPT(Htyp, (Di)ni=1) =
∑

u∈U,t∈[n],b∈B

pu,bwu,bx̃u,t(b).

Thus, to complete the proof it suffices to show that

P[(u, vt) ∈M and vt = b] ≥ x̃u,t(b)

2
(4.10)

for each u ∈ U, t ∈ [n] and b ∈ B, where we hereby assume w.l.o.g. that x̃u,t(b) > 0. In order to prove this,
we first observe that by the same coupling argument used in the proof of Proposition 4.2,

P[(u, vt) ∈M] ≥ zu,t
2

=
1

2

∑
b∈B

pu,bx̃u,t(b) (4.11)

as a result of the 1/2-selectability of Algorithm 4. Let us now define Rt as the unmatched vertices of U when
vt arrives. Observe then that

P[(u, vt) ∈M| vt = b, C(u, vt) and u ∈ Rt] = qu,t. (4.12)

Now, P[vt = b, C(u, vt) and u ∈ Rt] = pu,b · x̃u,t(b) · P[u ∈ Rt], by Lemma 4.6 and the independence of the
events {vt = b} ∩ {C(u, vt)} and {u ∈ Rt}. Thus, by the law of total probability,∑

b∈B

pu,bx̃u,tqu,t · P[u ∈ Rt] = P[(u, vt) ∈M]

≥ zu,t
2

=
1

2

∑
b∈B

pu,bx̃u,t(b)

where the second inequality follows from (4.11). Thus, qu,t · P[u ∈ Rt] ≥ 1/2, and so combined with (4.12),
(4.10) follows, thus completing the proof.

Suppose now that each vertex vt has an arrival time, say Ỹt ∈ [0, 1], drawn u.a.r. and independently for

t ∈ [n]. The values (Ỹt)
n
t=1 indicate the increasing order in which the vertices v1, . . . , vn arrive.
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Algorithm 10 Known I.D. – ROM – Modified

Input: a known i.d. input (Htyp, (Dt)nt=1).
Output: a matching M of active edges of G ∼ (Htyp, (Dt)nt=1).

1: M← ∅.
2: Compute an optimum solution of LP-config-id for (Htyp, (Dt)nt=1), say (xt(e || b))t∈[n],b∈B,e∈Cb .
3: for t ∈ [n] in increasing order of Ỹt do
4: Set e← VertexProbe

(
vt, ∂(vt), (xt(e || vt)/rt(vt))e∈Cvt

)
.

5: if e = (u, vt) for some u ∈ U , and u is unmatched then

6: Add e to M independently with probability exp(−Ỹt · zu,t).
7: return M.

Proof of Theorem 2.3. Clearly, Algorithm 10 is non-adaptive. The competitive ratio of 1 − 1/e follows by
the same coupling argument as in Proposition 4.4, together with the same observations used in the proof of
Theorem 2.1, and so we omit the argument.

5 Efficiency of Our Algorithms

In this section, we prove Theorem 2.5, thus confirming the efficiency of the online probing algorithms of
Theorems 2.1 and 2.3. We show how LP-config can be solved efficiently, as the extension to LP-config-id
follows identically.

Theorem 5.1. Suppose that G = (U, V,E) is a stochastic graph with downward-closed probing constraints
(Cv)v∈V . Given access to a membership oracle, LP-config is efficiently solvable in the size of G (excluding
the constraints (Cv)v∈V ).

We prove Theorem 5.1 by first considering the dual of LP-config. Note, that in the below LP formulation,
if e = (e1, . . . , ek) ∈ Cv, then we set ei = (ui, v) for i = 1, . . . , k for convenience.

minimize
∑
u∈U

αu +
∑
v∈V

βv (LP-new-dual)

subject to βv +

|e|∑
j=1

pej · g(e<j) · αuj ≥
|e|∑
j=1

pej · wej · g(e<j) ∀v ∈ V, e ∈ Cv (5.1)

αu ≥ 0 ∀u ∈ U (5.2)

βv ∈ R ∀v ∈ V (5.3)

Observe that to prove Theorem 5.1, it suffices to show that LP-new-dual has a deterministic polynomial
time separation oracle, as a consequence of how the ellipsoid algorithm [36, 28] executes (see [39, 38, 1, 33]
for more detail).

Suppose that we are presented a particular selection of dual variables, say (αu)u∈U and (βv)v∈V , which
may or may not be a feasible solution to LP-new-dual. Our separation oracle must determine efficiently
whether these variables satisfy all the constraints of LP-new-dual. In the case in which the solution is
infeasible, the oracle must additionally return a constraint which is violated. It is clear that we can accomplish
this for the non-negativity constraints, so let us fix a particular v ∈ V in what follows. We wish to determine
whether there exists some e = (e1, . . . , ek) ∈ Cv, such that if ei = (ui, v) for i = 1, . . . , k, then

|e|∑
j=1

(wej − αuj ) · pej · g(e<j) > βv, (5.4)

where the left-hand side of (5.4) is 0 if e = λ. In order to make this determination, it suffices to solve the
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following maximization problem. Given any selection of real values, (αu)u∈U ,

maximize

|e|∑
i=1

(wei − αui) · pei ·
i−1∏
j=1

(1− pej ) (5.5)

subject to e ∈ Cv (5.6)

Before we show how (5.5) can be solved, we provide a buyer/seller interpretation of the optimization problem.
Assuming first that the edges exist with certainty (i.e. pe ∈ {0, 1} for all e ∈ ∂(v)), let us suppose a seller
is trying to allocate the items of U to a number of buyers. We view the vertex v as a buyer who wishes
to purchase a subset of items S ⊆ U , based on their valuation function f(S). Assume that v has unit
demand, that is f(S) := maxs∈S ps,vws,v. The values (αs)s∈U are viewed as prices the buyer must pay6,
and the demand oracle returns a solution to maxS⊆U (f(S) −

∑
s∈S αs), thereby maximizing the utility of

v. Clearly, for the simple case of a unit-demand buyer, an optimum assignment is the item u ∈ U for which
pu,vwu,v − αu is maximized.

Returning the setting of arbitrary edge probabilities, even the case of a unit-demand buyer is a non-trivial
optimization problem in the stochastic probing framework. Observe that we may view the edge probabilities
(pe)e∈∂(v) as modelling the setting when there is uncertainty in whether or not the purchase proposals will
succeed; that is, st(u, v) = 1, provided the seller agrees to sell item u to buyer v. In this interpretation,
(5.5) is the expected utility of the unit-demand buyer v which purchases the first item u ∈ U such that
st(u, v) = 1, at which point v gains utility wu,v − αu. In [9, 10] 7, we show how a buyer can solve (5.5) and
use it to design a greedy online probing algorithm. We include the proof here for completeness.

Proposition 5.2 ([9, 10]). If Cv is downward-closed, then for any selection of values (αu)u∈U , (5.5) can be
solved efficiently, assuming access to a membership query oracle for Cv.

Proof. Compute w̃e := we−αu for each e = (u, v) ∈ ∂(v), and define P := {e ∈ ∂(v) : w̃e ≥ 0}. First observe
that if P = ∅, then (5.5) is maximized by the empty-string λ. Thus, for now on assume that P 6= ∅. Since
Cv is downward-closed, it suffices to consider those e ∈ Cv whose edges all lie in P . As such, for notational
convenience, let us hereby assume that ∂(v) = P .

For any e ∈ Cv, let er be the rearrangement of e, based on the non-increasing order of the weights
(we)e∈e. Since Cv is downward-closed, we know that er is also in Cv. Moreover, val(er) ≥ val(e) (following
observations in [35, 14]). Hence, let us order the edges of ∂(v) as e1, . . . , em, such that we1 ≥ . . . ≥ wem ,
where m := |∂(s)|. Observe then that it suffices to maximize (5.5) over those strings within Cv which respect
this ordering on ∂(s). Stated differently, let us denote Iv as the family of subsets of ∂(v) induced by Cv,
and define the set function f : 2∂(v) → [0,∞), where f(B) := val(b) for B = {b1, . . . , b|B|} ⊆ ∂(v), such
that b = (b1, . . . , b|B|) and wb1 ≥ . . . ≥ wb|B| . Our goal is then to efficiently maximize f over the set-system
(∂(v), Iv). Observe that Iv is downward-closed and that we can simulate oracle access to Iv, based on our
oracle access to Cv.

For each i = 0, . . . ,m−1, denote ∂(v)>i := {ei+1, . . . , em}, and ∂(v)>m := ∅. Moreover, define the family
of subsets I>iv := {B ⊆ ∂(v)>i : B ∪ {ei} ∈ Iv} for each 1 ≤ i ≤ m, and I>0

v := Iv. Observe then that
(∂(v)>i, I>iv ) is a downward-closed set system, as Iv is downward-closed. Moreover, we may simulate oracle
access to I>iv based on our oracle access to Iv.

Denote OPT(I>iv ) as the maximum value of f over constraints I>iv . Observe then that for each 0 ≤ i ≤
m− 1, the following recursion holds:

OPT(I>iv ) := max
j∈{i+1,...,m}

(pej · wej + (1− pej ) ·OPT(I>jv )) (5.7)

Hence, given access to the values OPT(I>i+1
v ), . . . ,OPT(I>mv ), we can compute OPT(I>iv ) efficiently. More-

over, OPT(I>mv ) = 0 by definition. Thus, it is clear that we can use (5.7) to recover an optimal solution to
f , and so the proof is complete.

We conclude the section by noting that if we are instead given a known i.d. input (Htyp, (Di)ni=1), then
LP-config-id can be solved in time poly(|Htyp|, (|Di|)ni=1) using the same strategy, as the same maximization

6See Eden et al. [22] for a buyer/seller interpretation of the classical Ranking algorithm [31] for bipartite matching.
7The title of the conference version [10] differs from that of the arXiv version [9].
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problem (5.5) is needed to separate the dual of LP-config-id. The efficiency of Algorithms 9 and 10 thereby
follows, as claimed in Theorem 2.5.

6 A Tight Adaptivity Gap

Similar to the definition of the adaptive benchmark, we define the non-adaptive benchmark as the opti-
mum performance of a non-adaptive probing algorithm on G. That is, OPTn-adap(G) := supB E[w(B(G))],
where the supremum is over all offline non-adaptive probing algorithms. The upper bound (negative result)
of Theorem 2.9 can thus be viewed a statement regarding the power of adaptivity. More precisely, we define
the adaptivity gap of the stochastic matching problem with one-sided probing constraints, as the
ratio

inf
G

OPTn-adap(G)

OPT(G)
, (6.1)

where the infimum is over all (bipartite) stochastic graphs G = (U, V,E) with substring-closed probing
constraints (Cv)v∈V . Here Cv is closed under substrings if any substring of e ∈ Cv is also in Cv. This is a less
restrictive definition than imposing Cv must be downward-closed, and is the minimal assumption one needs
to ensure stochastic matching with commitment is well-defined.

We can therefore restate Theorem 2.9 in the following terminology:

Theorem 6.1. The adaptivity gap of the stochastic matching problem with one-sided probing constraints is
no smaller than 1− 1/e.

Theorem 6.1 follows by considering a sequence of stochastic graphs. In particular, given n ≥ 1, consider
functions p = p(n) and s = s(n) which satisfy the following:

1. p� 1/
√
n and s→∞ as n→∞.

2. s ≤ pn and s = (1− o(1))pn.

Consider now an unweighted stochastic graph Gn = (U, V,E) with unit patience values, and which satisfies
|U | = s and |V | = n. Moreover, assume that pu,v = p for all u ∈ U and v ∈ V . Observe that Gn corresponds
to the bipartite Erdős–Rényi random graph G(s, n, p).

Lemma 6.2. The adaptive benchmark returns a matching of size asymptotically equal to s when executing
on Gn; that is, OPT(Gn) = (1 + o(1))s.

We omit the proof of Lemma 6.2, as it is routine analysis of the Erdős–Rényi random graph G(s, n, p).
Instead, we focus on proving the following lemma, which together with Lemma 6.2 implies the upper bound
of Theorem 6.1:

Lemma 6.3. The non-adaptive benchmark returns in expectation a matching of size at most (1+o(1))
(
1− 1

e

)
s

when executing on Gn. That is,

OPTn-adp(G) ≤ (1 + o(1))

(
1− 1

e

)
s.

Proof. Let A be a non-adaptive probing algorithm, which we may assume is deterministic without loss of
generality. As the probes of A are determined independently of the random variables (st(e))e∈E , we can
define xe ∈ {0, 1} for each e ∈ E to indicate whether or not A probes the edge e.

Now, if A(G) is the matching returned by A, then using the independence of the edge states (st(e))e∈E ,
we get that

P[u matched by A(G)] = P
[
∪ v∈V :
xu,v=1

st(u, v) = 1

]
(6.2)

≥ 1−
∏
v∈V

(1− pxu,v) (6.3)
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and so,

E[|A(G))|] ≤ s−
∑
u∈U

∏
v∈V

(1− pxu,v).

As such, if we can show that ∑
u∈U

∏
v∈V

(1− pxu,v) ≥ (1− o(1))
s

e
,

then this will imply that

E[|A(G)|] ≤ (1 + o(1))

(
1− 1

e

)
s.

To see this, first observe that since p(n)→ 0 as n→∞, we know that

1− pxu,v = (1 + o(1)) exp(−pxu,v)

for each v ∈ V . In fact, since pxu,v ≤ p for all v ∈ V , the asymptotics are uniform across V . More precisely,
there exists C > 0, such that for n sufficiently large,

1− pxu,v ≥ (1− Cp2) exp(−pxu,v)

for all v ∈ V . As a result,

∏
v∈V

(1− pxu,v) ≥ (1− Cp2)n exp

(
−
∑
v∈V

pxu,v

)

= (1 + o(1)) exp

(
−
∑
v∈V

pxu,v

)
,

where the second line follows since p� 1/
√
n by assumption. On the other hand, Jensen’s inequality ensures

that ∑
u∈U

exp
(
−
∑
v∈V pxu,v

)
s

≥ exp

(
−
∑
u∈U,v∈V pxu,v

n

)
.

However,
∑
u∈U xu,v ≤ 1 for each v ∈ V . Thus,

∑
u∈U,v∈V pxu,v ≤ pn, and so

exp

(
−
∑
u∈U,v∈V pxu,v

s

)
≥ exp

(
−pn
s

)
≥ 1

e
,

where the last line follows since pn ≤ s. It follows that∑
u∈U

∏
v∈V

(1− pxu,v) ≥ (1 + o(1))
s

e
,

and so

E[|A(G)|] ≤ (1 + o(1))

(
1− 1

e

)
s.

As the asymptotics hold uniformly across each deterministic non-adaptive algorithm A, this completes the
proof.

Note that the competitive ratio of Corollary 2.7 in fact holds whenever the stochastic graph has substring-
closed probing constraints. The stronger downward closed condition is only needed to ensure the efficiency of
Algorithm 7. Thus, Corollary 2.7 and Theorem 6.1 exactly characterize the adaptivity gap of the stochastic
matching problem with one-sided probing constraints:

Corollary 6.4. The adaptivity gap of the stochastic matching problem with one-sided probing constraints is
1− 1/e.
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7 Conclusion and open problems

We have considered the stochastic bipartite matching problem (with probing constraints) in a few settings.
As discussed, our results generalize the prophet inequality and prophet secretary matching problems. Our
algorithms are polynomial time assuming a mild assumption on the probing constraints which, in particular,
generalizes the standard patience constraints.

There are some basic questions that are unresolved. Perhaps the most basic question which is also
unresolved in the classical setting is to bridge the gap between the positive 1 − 1/e competitive ratio and
inapproximations in the context of known i.d. random order arrivals. In terms of the single item prophet
secretary problem (without probing), Correa et al. [20] obtain a 0.669 competitive ratio following Azar et al.
[5] who were the first to surpass the 1−1/e “barrier”. Correa et al. [20] also establish a .732 inapproximation
for the i.d. setting. Our adaptivity gap proves the optimality of the 1−1/e competitive ratio for non-adaptive
algorithms. Can we surpass 1− 1/e in the probing setting for i.d. input arrivals or for the the special case
of i.i.d. input arrivals? Is there a provable difference between stochastic bipartite matching (with probing
constraints) and the classical online settings? Can we obtain the same competitive results against an optimal
offline non-committal benchmark which respects the probing constraints but not the commitment constraint.

One interesting extension of the probing model is to allow non-Bernoulli edge random variables to describe
edge uncertainty. Even for a single online vertex with full patience, this problem is interesting and has
been studied significantly less (see, ProblemMax in Segev and Singla [37]). A general understanding of
edge uncertainty suggests a possible relation between stochastic probing and online algorithms with ML
(untrusted) advice (see, for example, Lavastida et al. [32]).
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A LP Relations

Suppose that we are given an arbitrary stochastic graph G = (U, V,E). In this section, we state LP-std, the
standard LP in the stochastic matching literature, as introduced by Bansal et al. [6], as well as LP-QC, the
LP introduced by Gamlath et al. [26]. We then show that LP-QC and LP-config have the same optimum
value when G has unbounded patience.

Consider LP-std, which is defined only when G has patience values (`v)v∈V . Here each e ∈ E has a
variable xe corresponding to the probability that the adaptive benchmark probes e.

maximize
∑
e∈E

we · pe · xe (LP-std)

subject to
∑
e∂(u)

pe · xe ≤ 1 ∀u ∈ U (A.1)

∑
e∈∂(v)

pe · xe ≤ 1 ∀v ∈ V (A.2)

∑
e∈∂(v)

xe ≤ `v ∀v ∈ V (A.3)

0 ≤ xe ≤ 1 ∀e ∈ E. (A.4)

Gamlath et al. modified LP-std for the special case of unbounded patience by adding in exponentially many
extra constraints. Specifically, for each v ∈ V and S ⊆ ∂(v), they ensure that∑

e∈S
pe · xe ≤ 1−

∏
e∈S

(1− pe), (A.5)

In the same variable interpretation as LP-std, the left-hand side of (A.5) corresponds to the probability the
adaptive benchmark matches an edge of S ⊆ ∂(v), and the right-hand side corresponds to the probability
an edge of S is active8.

maximize
∑
e∈E

we · pe · xe (LP-QC)

subject to
∑
e∈S

pe · xe ≤ 1−
∏
e∈S

(1− pe) ∀v ∈ V, S ⊆ ∂(v) (A.6)∑
e∈∂(u)

pe · xe ≤ 1 ∀u ∈ U (A.7)

xe ≥ 0 ∀e ∈ E. (A.8)

Let us denote LPOPTQC(G) as the optimum value of LP-QC.

Proposition A.1. If G has unbounded patience, then LPOPTQC(G) = LPOPT(G).

In order to prove Proposition A.1, we make use of a result of Gamlath et al. We mention that an almost
identical result is also proven by Costello et al. [21] using different techniques.

Theorem A.2 ([26]). Suppose that G = (U, V,E) is a stochastic graph with unbounded patience, and
(xe)e∈E is a solution to LP-QC. For each v ∈ V , there exists an online probing algorithm Bv whose in-
put is (v, ∂(v), (xe)e∈∂(v)), and which satisfies P[Bv matches v to e] = pexe for each e ∈ ∂(v).

Proof of Proposition A.1. Observe that by Theorem 3.3, in order to prove the claim it suffices to show
that LPOPTQC(G) = OPTrel(G). Clearly, OPTrel(G) ≤ LPOPTQC(G), as can be seen by defining xe
as the probability that the relaxed benchmark probes the edge e ∈ E. Thus, we focus on showing that
LPOPTQC(G) ≤ OPTrel(G).

Suppose that (xe)e∈E is an optimum solution to LPOPTQC(G). We design the following algorithm,
which we denote by B:

8The LP considered by Gamlath et al. in [26] also places the analogous constraints of (A.5) on the vertices of U . That being
said, these additional constraints are not used anywhere in the work of Gamlath et al., so we omit them.
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1. M← ∅.

2. For each v ∈ V , execute Bv on (v, ∂(v), (xe)e∈∂(v)), where Bv is the online probing algorithm of Theorem
A.2. If Bv matches v, then let e′ be this edge, and add e′ to M

3. Return M.

Using Theorem A.2, it is clear that

E[w(M)] =
∑
e∈E

wepexe.

Moreover, each vertex u ∈ U is matched by M at most once in expectation, as a consequence of constraint
(A.8). As a result, B is a relaxed probing algorithm. Thus, LPOPTQC(G) =

∑
e∈E wepexe ≤ OPTrel(G),

and so the proof is complete.

B Section 4 Additions

Proof of Proposition 4.4. Given u ∈ U , let M(u) denote the edge matched to u by M, where M(u) := ∅ if
no such edge exists. Observe now that if C(e) corresponds to the event in which VertexProbe commits
to e ∈ ∂(u), then P[C(e)] = pex̃e by Lemma 2.12. Moreover, the events (C(e))e∈∂(u) are independent, and
satisfy ∑

e∈∂(u)

P[C(e)] =
∑
e∈∂(u)

pex̃e ≤ 1, (B.1)

by constraint (2.1) of LP-config. As such, denote z := (ze)e∈∂(u) where ze := pex̃e, and observe that (B.1)
ensures that z ∈ P, where P is the convex relaxation of the rank 1 matroid on ∂(u). Let us denote R(z) as
those those e ∈ ∂(u) for which C(e) occurs.

For each e = (u, v) ∈ ∂(u), define Yu,v := Ỹv. Observe then that the random variables (Ye)e∈∂(u) are
independent and drawn u.a.r. from [0, 1]. Thus, if ψ is the RCRS defined in Algorithm 6, then we may pass
z to ψ, and process the edges of ∂(u) in non-increasing order based on (Ye)e∈∂(u). Denote the resulting
output by ψz(R(z)). By coupling the random draws of lines (3) and (6) of Algorithms 6 and 7, respectively,
we get that

w(M(u)) =
∑
e∈∂(u)

we · 1[e∈R(z)] · 1[e∈ψz(R(z))]

Thus, after taking expectations,

E[w(M(u))] =
∑
e∈∂(u)

we · P[e ∈ ψz(R(z)) | e ∈ R(z)] · P[e ∈ R(z)].

Now, Theorem 4.3 ensures that for each e ∈ ∂(u), P[e ∈ ψz(R(z)) | e ∈ R(z)] ≥
(
1− 1

e

)
. It follows that

E[w(M(u))] ≥
(
1− 1

e

)∑
e∈∂(u) wepex̃e, for each u ∈ U . Thus,

E[w(M)] =
∑
u∈U

E[w(M(u))]

≥
(

1− 1

e

)∑
e∈E

wepex̃e =

(
1− 1

e

)
LPOPT(G),

where the equality follows since (xv(e))v∈V,e∈Cv is an optimum solution to LP-config. On the other hand,
LPOPT(G) ≥ OPT(G) by Theorem 2.10, and so the proof is complete.

Proof of Theorem 4.5. Suppose that (Htyp, (Dt)nt=1) is a known i.d. instance, where Htyp = (U,B, F ). Recall
that Cb corresponds to the online probing constraint of each type node b ∈ B. For convenience, we denote
I := tb∈BCb. We can then define the following collection of random variables, denoted (Xt(e))t∈[n],e∈I ,
based on the following randomized procedure:
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• Draw the instantiated graph G ∼ (Htyp, (Dt)nt=1), whose vertex arrivals we denote by v1, . . . , vn.

• Compute an optimum solution of LP-config for G, which we denote by (xvt(e))t∈[n],e∈Cvt .

• For each t = 1, . . . , n and e ∈ I, set Xt(e) = xvt(e) if e ∈ Cvt , otherwise set Xt(e) = 0.

Observe then that since by definition (Xvt(e))t∈[n],e∈Cvt is a feasible solution to LP-config for G, it holds
that for each t = 1, . . . , n ∑

e∈I
Xt(e) = 1, (B.2)

and ∑
t∈[n],b∈B

∑
e∈I:

(u,b)∈e

pu,b · g(e<(u,b)) ·Xt(e) ≤ 1, (B.3)

for each u ∈ U . Moreover, (Xt(e))t∈[n],e∈Cvt is a optimum solution to LP-config for G, so Theorem 2.10
implies that

OPT(G) ≤ LPOPT(G) =

n∑
t=1

∑
e∈I

val(e) ·Xt(e). (B.4)

In order to make use of these inequalities in the context of the type graph Htyp, let us first fix a type node
b ∈ B and a string e ∈ Cb. For each t ∈ [n], we can then define

xt(e || b) := E[Xt(e) · 1[vt=b]], (B.5)

where the randomness is over the generation of G. Observe that by definition of the (Xt(e))t∈[n],e∈I values,

xt(e || b) = 0,

provided e /∈ Cb. We claim that (xt(e || b))b∈B,t∈[n],e∈Cb is a feasible solution to LP-config-id. To see this,
first observe that if we multiply (B.2) by the indicator random variable 1[bt=v], then we get that∑

e∈I
Xt(e) · 1[vt=b] = 1[vt=b].

As a result, if we take expectations over this equality,∑
e∈I

xt(e || b) =
∑
e∈I

E
[
Xt(e) · 1[vt=b]

]
= P[vt = b]

=: rt(b),

for each b ∈ B and t ∈ [n]. Let us now fix u ∈ U . Observe that since Xt(e) · 1[vt=b] = Xt(e) for each e ∈ Cb,
(B.3) ensures that∑

t∈[n],b∈B

∑
e∈Cb:
(u,b)∈e

pu,b · g(e<(u,b)) ·Xt(e) · 1[vt=b] =
∑

t∈[n],b∈B

∑
e∈Cb:
(u,b)∈e

pu,b · g(e<(u,b)) ·Xt(e) ≤ 1 (B.6)

Thus, after taking expectations over (B.6),∑
t∈[n],b∈B

∑
e∈Cb:
(u,b)∈e

pu,b · g(e<(u,b)) · xt(e || b) ≤ 1,

for each u ∈ U . Since (xt(e || b))t∈[n],b∈B,e∈Cb satisfies these inequalities, and the variables are clearly all
non-negative, it follows that (xt(e || b))t∈[n],b∈B,e∈Cb is a feasible solution to LP-config-id. Let us now express
the right-hand side of (B.4) as in (B.6) and take expectations. We then get that

E[OPT(G)] ≤
∑

b∈B,t∈[n]

∑
e∈I

val(e) · xt(e || b).
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Now, OPT(Htyp, (Di)ni=1 = E[OPT(G)] by definition, so since (xt(e || b))b∈B,t∈[n],e∈Cb is feasible, it holds
that

OPT(Htyp, (Di)ni=1) ≤ LPOPTnew−id(Htyp, (Di)ni=1),

thus completing the proof.
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