
Random-Order Interval Selection

Allan Borodin
bor@cs.toronto.edu

Christodoulos Karavasilis
ckar@cs.toronto.edu

Abstract

In the problem of online unweighted interval selection, the objective is to maximize the num-
ber of non-conflicting intervals accepted by the algorithm. In the conventional online model of
irrevocable decisions, there is an Ω(n) lower bound on the competitive ratio, even for random-
ized algorithms [1]. In a line of work that allows for revocable acceptances, Faigle and Nawijn
[8] gave a greedy 1-competitive (i.e. optimal) algorithm in the real-time model, where intervals
arrive in order of non-decreasing starting times. The natural extension of their algorithm in the
adversarial (any-order) model is 2k-competitive [2], when there are at most k different interval
lengths, and that is optimal for all deterministic, and memoryless randomized algorithms. We
study this problem in the random-order model, where the adversary chooses the instance, but
the online sequence is a uniformly random permutation of the items. We consider the same
algorithm that is optimal in the cases of the real-time and any-order models, and give an upper
bound of 2.5 on the competitive ratio under random-order arrivals.

We also show how to utilize random-order arrivals to extract a random bit with a worst case
bias of 2

3 , when there are at least two distinct item types. We use this bit to derandomize the
barely random algorithm of Fung et al. [10] and get a deterministic 3-competitive algorithm for
single-length interval selection with arbitrary weights.

1 Introduction

In the problem of interval scheduling on a single machine, there is a set of intervals on the real
line, each with a fixed starting time and end time, and we must choose a subset of non-conflicting
intervals. In the unweighted setting, the goal is to maximize the cardinality of the subset. In terms
of the objective function, this is equivalent to finding a maximum independent set of an interval
graph. In weighted variations, each interval is associated with a weight, and we aim to maximize
the total weight of the solution. In the online version of the problem, intervals arrive one at a time,
and the algorithm must either accept an interval, or forever discard it. Following existing work
on interval scheduling, we consider a model where any new interval can be accepted, displacing
any conflicting intervals currently in the solution. Displaced intervals, similar to intervals that
are rejected upon arrival, can never be taken again. While competitive analysis is traditionally
concerned with irrevocable decisions, that assumption is sometimes relaxed in order to tackle cases
where results are overly pessimistic, or if the application permits it. For example, for the problem
of unweighted interval selection, in the real-time model where intervals arrive in order of increasing
starting times, there is an Ω(n) lower bound, even for randomized algorithms [1]. Different types
of revocable decisions are problem-specific, and appear under various names, such as preemption,
replacement, free disposal, and recourse. Other examples of problems that have been studied under
such relaxed models are the knapsack problem [18], submodular maximization [4], weighted match-
ing [9], maximum coverage [24], and other graph problems [3]. It is worth noting that algorithms in
these models are also relevant when online algorithms are used to construct offline solutions, where
revoking decisions does not violate the model and may come at no additional cost.

1

In the adversarial model of online algorithms, the optimal deterministic algorithm for unweighted
interval selection with revoking is 2k-competitive [2], where k is the number of different interval
lengths. We study this problem under random-order arrivals, a model used for beyond worst-case
analysis that also captures stochastic i.i.d. settings (see Gupta & Singla [14]). While there are
many instances where random arrivals help, there are problems where the competitive ratio is not
significantly improved (e.g. Steiner trees where a greedy algorithm is O(log n)-competitive in the
worst-case, and there are Ω(log n) bounds for both adversarial and random-order arrivals [14]). We
show that the simple greedy algorithm that is optimal 2k-competitive in the adversarial case, is
2.5-competitive in the random-order model, removing the dependence on k. In this model, the ad-
versary chooses the input items, but the online sequence is a uniformly random permutation of the
items. Finally, we use the application of interval scheduling as motivation to begin to understand a
very general issue in online algorithms, namely to understand the power of randomized algorithms
with adversarial arrival order compared to deterministic algorithms with random arrivals. In this
regard, we are interested to what extent can we extract random bits from the randomness in the
arrival order. Specifically, we show how to take advantage of the randomness in the arrival order
to extract a random bit with bounded bias.

Some examples of applications related to interval scheduling are routing [23], computer wiring
[15], project selections during space missions [16], and satellite photography [11]. We refer the
reader to the surveys by Kolen et al. [19] and Kovalyov et al. [20] for a more detailed discussion
on the applications of interval scheduling.

Related Work. Lipton and Tomkins [21] introduced the problem of online interval schedul-
ing. They consider the real-time setting, proportional weights, and do not allow for displacement
of intervals in the solution. They give a randomized algorithm that is O((log ∆)1+ε)-competitive,
where ∆ is the ratio of the longest to shortest interval. In the real-time unweighted setting, Faigle
and Nawijn [8] consider a simple greedy 1-competitive deterministic algorithm with revoking. With-
out revoking, there is an Ω(n) lower bound both for deterministic and randomized [1] algorithms.
Woeginger [27] considers a real-time, weighted variation of the problem with revoking, and shows
that no deterministic algorithm can be constant competitive for general weights. Canetti and Irani
[5] extend this impossibility to randomized algorithms with revoking. When an interval’s weight
is a function of its length, Woeginger gives an optimal 4-competitive deterministic algorithm for
special classes of weight functions. Randomized algorithms were considered for these special classes
of functions [26, 7], with Fung et al. [10] currently having the best known upper bound of 2.

In the adversarial model, or any-order arrivals, Bachmann et al. [1] show a lower bound of Ω(n)
for randomized algorithms in the offline unweighted setting without revoking. Borodin and Kar-
avasilis [2] consider the unweighted problem with revoking, and give an optimal 2k-competitive
deterministic algorithm, where k is the number of different interval lengths. This algorithm is a
natural extension of the algorithm by Faigle and Nawijn [8] for any-order arrivals. Emek et al. [6]
give a randomized algorithm that is 6-competitive for unweighted interval selection. For the case of
proportional weights with revoking, Garay et al. [12] give an optimal (2 +

√
5) ≈ 4.23-competitive

deterministic algorithm for the problem of call control on the line, which also applies to any-order
interval selection. The 2-competitive randomized algorithm by Fung et al. [10] for the case of
real-time, single-length, arbitrary weights, also applies to the any-order case.

In the random-order setting, Im and Wang [17] consider the interval scheduling secretary prob-

2

lem, where weighted jobs have to be processed within some interval, not necessarily continuously.
They give a O(logD)-competitive randomized algorithm, where D is the maximum interval length
of any job. More relevant to our setting, Borodin and Karavasilis [2] consider single-length un-
weighted interval selection with random arrivals, and show that the only deterministic memoryless
algorithm that may be better than 2-competitive, is a one-way algorithm that replaces intervals
in the same direction. Garg et al. [13] consider interval scheduling and maximum independent set
of hyperrectangles under random arrivals. They do not allow for revoking of accepted intervals,
and give a non-greedy algorithm that is strongly (a form of high probability) O(log n · log logn)-
competitive for interval selection. We note that their algorithm requires knowledge of n, the size
of the input instance. Furthermore, they show that no algorithm that is not provided n can be
strongly O(n1−ε)-competitive, for all ε > 0.

Our Results. We consider the optimal, simple greedy algorithm of [2] that is 2k-competitive
in the adversarial any-order setting, and extends the 1-competitive algorithm of [8] from the real-
time setting. We analyze that algorithm under uniformly random arrivals, and we give an upper
bound of 2.5 on the competitive ratio. We use a charging argument motivated by [2] and bound
the competitive ratio by the expected amount of maximum charge on any interval. We also give
a lower bound of 12

11 on the competitive ratio of all deterministic algorithms with revoking under
random arrivals (appendix B). This bound separates the random-order model with the real-time
model, where 1-competitiveness is attainable.

Furthermore, we utilize the random arrival of online items to extract a random bit with worst
case bias of 2

3 , when there are at least two distinct item types. We use this bit to derandomize the
barely random algorithm by Fung et al. [10] in the case of single-length arbitrary weights. This
technique may be applied to other classify and randomly select algorithms that choose between two
classes of items, when revoking is allowed. We also consider a setting where there exists a global
ordering amongst all input items. For example, this could apply to interval scheduling under the
assumption that all intervals have distinct starting times. This setting allows for unbiased bits to
be extracted throughout the execution of the algorithm, and may be useful for choosing amongst
multiple classes of input items. Under this assumption, we give a 6-competitive algorithm in the
case of two different interval lengths and arbitrary weights.

Organization of the paper. Section 2 includes definitions and a description of how the mapping
from optimal intervals to intervals accepted by the algorithm is defined. We also show how the
competitive ratio is bounded. Section 3 contains the main analysis of the algorithm in the random-
order model. In Section 3.1 we deal with the case of two interval lengths (k = 2). We explore the
dynamics of redefining the mapping because of the displacement of intervals (revoking), and this
analysis is later used to show the general case for any k > 2 in Section 3.2. Section 4 presents two
different processes to extract random bits using random-order arrivals, which we use to derandom-
ize a 1-random-bit algorithm for the case of single-length arbitrary weights intervals. We end with
some conclusions and open problems.

2 Preliminaries

The model consists of intervals arriving on the real line. An interval Ii is specified by a starting
point si, and an end point fi, with si < fi. It occupies space [si, fi) on the line, and the conventional
notions of intersection, disjointness, and containment apply. There are two main ways intervals

3

can conflict, and they are shown in figure 1. One type of conflict is a partial conflict, and the other
type is inclusion, or containment. In the case of containment, we say that the smaller intervals
are subsumed by the larger one. We use k to denote the number of different interval lengths of an
instance. An instance with k different lengths, can have a nesting depth of at most k − 1.

(a) Partial Conflict.

(b) Containment with nesting depth 1.

Figure 1: Types of conflicts.

Let OPT denote the size of an optimal solution, and ALG the size of the algorithm’s solution. We
will also use OPT and ALG to refer respectively to an optimal solution, and the solution returned by
the algorithm. The meaning should always be clear from context. We use the notion of competitive
ratio to measure the performance of an online algorithm. Given an algorithm A (creating a solution
ALG), we consider the strict competitive ratio of A : CR(A) = max

I
OPT

E[ALG] , where the expecta-

tion is over all the permutations of the input instance, and the maximum is over all input instances.

In our proofs, we make use of a charging argument. We will now describe how the charging is
done. Given an instance (set of intervals) I and an interval arrival sequence σ, we choose an op-
timal solution OPT Iσ , and define a mapping FIσ : OPT Iσ → ALGIσ that shows how the intervals
from an optimal solution are charged to intervals taken by the algorithm. The mapping FIσ can be
viewed as being formed and redefined throughout the execution of the algorithm as follows: On the
arrival of interval I ∈ OPT Iσ , if I is taken by the algorithm, it is mapped onto itself. If I is rejected
because it conflicts with some intervals taken by the algorithm, it is arbitrarily mapped to one of
those conflicting intervals. Whenever an interval I ′ is taken by replacing an existing interval I ′′, all
optimal intervals mapped to I ′′ up to that point, will then be mapped to I ′. These two first cases
where optimal intervals are charged upon arrival, are instances of direct charging. Whenever an
interval is replaced by another, an instance of transfer charging occurs to the new interval. Notice
that in the end, every interval I ∈ OPT Iσ is mapped to exactly one interval taken by the algorithm.
We note that being able to choose a different OPT for a given sequence σ, provides flexibility
and facilitates our proofs. This may be important in tackling other problems in the random-order
model, especially when revoking is allowed.

Given the mapping FIσ , let Φ : ALG → Z≥0 denote the charging function, which shows, at any
time during the execution, the total amount of charge to any interval currently in the online algo-
rithm’s solution. That is, Φ(I) = |{I ′ ∈ OPT : F(I ′) = I}|. We can also express the amount of
charge as Φ(I) = TC(I) + DC(I), where TC(I) denotes the total amount of transfer charge to I
at the time it was taken by the algorithm, and DC(I) denotes the total amount of direct charge to I.

4

Notice how at the end of the execution,
∑

I∈ALG Φ(I) = OPT . We can now bound the com-
petitive ratio of an algorithm for any instance as follows:

OPT

E [ALG]
=

E

[∑
1≤i≤ALG

Φ(Ii)

]
E [ALG]

≤
E [ALG] max

I
{E [Φ(I) | I ∈ ALG]}

E [ALG]

= max
I
{E [Φ(I) | I ∈ ALG]}

The first equality is because the sum Φ(I1) + ... + Φ(IALG) is always equal to OPT, which is a
constant determined by the instance I, and does not depend on the random arrival sequence. The
inequality holds by applying Wald’s inequality (as given in Young [28], lemma 4.1). It follows that
it suffices to bound the expected charge on every interval in ALG.

Definition 2.1 (Predecessor trace). Let I be an interval in the algorithm’s final solution. The
predecessor trace of I is the maximal list of intervals (P1, P2, ..., Pk = I) such that Pi was at some
point accepted by the algorithm, but was later replaced by Pi+1.

A predecessor trace is analogous to Woeginger’s [27] predecessor chain in the real-time model.

3 Main Analysis for the Random-Order Model

In this section we analyze the performance of Algorithm 1. This algorithm is greedy, in the sense that
when an arriving interval does not conflict with anything, it is always accepted by the algorithm. If
there are conflicts, a new interval is only accepted if it is entirely subsumed by an interval currently
in the solution, which in turn gets replaced. Notice that an interval taken (maybe temporarily)
by this algorithm can be directly charged by at most two optimal intervals. This is because any
interval can partially conflict with at most two intervals from an optimal solution. This fact is also
relevant for single-length instances (k = 1), where no interval is replaced by this algorithm. In that
case we have TC(I) = 0 and DC(I) ≤ 2 for every interval I, giving us an upper bound of 2 on the
competitive ratio. A lower bound of 2n

n+2 is given in figure 2 (ALG = 1 w.p. n−2
n , OPT = 2).

I1

...

I2 I3

Figure 2: Instance where Algorithm 1 is 2n
n+2 -competitive.

5

Algorithm 1

On the arrival of I:
Is ← Set of intervals currently in the solution conflicting with I
if Is = ∅ then

Take I
return

for I ′ ∈ Is do
if I ⊂ I ′ then

Take I and discard I ′

return
Discard I

We will now study the case of only two interval lengths. The results of this section will later be
used to show the result for k > 2.

3.1 Case of k = 2

We first focus on a base instance that showcases the dynamics of transfer charging. Note that in
this case, any predecessor trace is of length at most two. Consider an instance with two different
lengths as shown in figure 3. Let L,R,M, S denote the sets of corresponding intervals. The set S
of small intervals is entirely contained in the large intervals of M , and we make no assumptions
about the structure of S. In fact, intervals in S are also allowed to partially1 conflict with intervals
in L ∪R. An optimal solution consists of intervals IL ∈ L, IR ∈ R, and some intervals Is ⊆ S. For
the purposes of charging, we will be choosing the optimal solution that contains the latest arriving
IL ∈ L and IR ∈ R. The intervals in L and R are depicted as small intervals, but in reality they
could be either small or large. We also note that intervals that are depicted as copies do not have
to perfectly coincide.

S

M
...

.

L

...

R

...

Figure 3: Base instance for transfer charging with k = 2.

Lemma 3.1. For any instance with a structure as depicted in figure 3, we have that
E[Φ(I) | I ∈ ALG] ≤ 2.5.

Proof. We will be writing E[Φ(I)] for readability. We have that Φ(I) = TC(I) + DC(I). As
mentioned before, ∀I,DC(I) ≤ 2. We will now bound E[TC(I)]. Let TC1 denote the event that
a transfer charge of 1 occurs, and TC2 denote the event that a transfer charge of 2 occurs. We

1W.l.o.g. no interval in Is ∈ S is entirely contained in an interval in L ∪ R. If that was the case, Is would be
considered optimal and at least one of L,R would be empty.

6

focus on the first arrival of an interval from S, as that interval will receive the transfer charge. Let
N = |L|+ |R|+ |M |+ |S|.

We want to compute: argmax(E[TC(I)])
|L|,|R|,|M |,|S|

, where E[TC(I)] = Pr(TC1) + 2Pr(TC2).

Case of TC2: For a transfer charge of 2 to occur, it must be that an interval from M arrives first,
and that all the intervals in L ∪R arrive before the first interval from S. This is an experiment of
drawing without replacement, and the probability that we get all intervals in L∪R before the first
interval from S is the following:

|L|+ |R|
|L|+ |R|+ |S|

· |L|+ |R| − 1

|L|+ |R|+ |S| − 1
. . .

1

|S|+ 1
=

(|L|+ |R|)! · |S|!
(|L|+ |R|+ |S|)!

and therefore,

Pr(TC2) =
|M |
N
· (|L|+ |R|)! · |S|!

(|L|+ |R|+ |S|)!

Case of TC1: For a transfer charge of 1 to occur, it must be that an interval from M arrives first,
and then one of two cases: all intervals from L (respectively R) arrive, followed by the first interval
of S, and the last interval of R (respectively L) arrives after. These two cases are symmetrical and
we’ll focus on the first one, which can be visualized as follows:

first M → last L→ first S → last R

Consider the following two events:
Event AL: The first interval from S arrives after the last interval from L.
Event BR: The last interval from R arrives after the first interval from S.

We want to compute Pr(AL∩BR). Notice that in the previous case of TC2 we computed Pr(AL∩
BR). We get that:

Pr(BR|AL) =
Pr(AL ∩BR)

Pr(AL)
=

(|L|+ |R|)! · (|L|+ |S|)!
(|L|+ |R|+ |S|)! · |L|!

Pr(AL ∩BR) = Pr(BR|AL) · Pr(AL) = (1− Pr(BR|AL)) · Pr(AL)

=

(
1− (|L|+ |R|)! · (|L|+ |S|)!

(|L|+ |R|+ |S|)! · |L|!

)
· |L|! · |S|!

(|L|+ |S|)!

=
|L|! · |S|!

(|L|+ |S|)!
− (|L|+ |R|)! · |S|!

(|L|+ |R|+ |S|)!

7

Similarly, for the symmetrical case we get that:

Pr(AR ∩BL) =
|R|! · |S|!

(|R|+ |S|)!
− (|L|+ |R|)! · |S|!

(|L|+ |R|+ |S|)!

Combining the two cases we get that:

Pr(TC1) =
M

N
[Pr(AL ∩BR) + Pr(AR ∩BL)]

=
M

N

[
|L|! · |S|!

(|L|+ |S|)!
+
|R|! · |S|!

(|R|+ |S|)!
− 2

(|L|+ |R|)! · |S|!
(|L|+ |R|+ |S|)!

]

Finally, we have that:

E[TC(I)] = Pr(TC1) + 2Pr(TC2) =
M

N

[
|L|! · |S|!

(|L|+ |S|)!
+
|R|! · |S|!

(|R|+ |S|)!

]
We have that (|L|, |R|, |S|, |M |) ∈ {N∗}4. We will also assume that |S| ≥ 3. We deal with the cases
of |S| = 1 and |S| = 2 in appendix A. To maximize E[TC(I)] we set |L| = |R| = 1, and |S| = 3,
and we get:

E[TC(I)]) ≤ |M |
|M |+ 5

· 2 · 3!

4!
=

1

2

|M |
|M |+ 5

|M |→+∞−−−−−−→ 1

2

Therefore, E[Φ(I)] = E[TC(I) +DC(I)] ≤ 1
2 + 2.

Corollary 3.2. Algorithm 1 is 2.5−competitive on instances of the form as in figure 3.

We are now ready to prove the following Theorem for the general case of k = 2.

Theorem 3.3. Algorithm 1 achieves a competitive ratio of 2.5 for the problem of interval selection
on instances with at most two different lengths.

Proof. Let Ci = (Li, Ri,Mi, Si) denote a basic construction (or sub-instance) that follows the
structure described earlier, with Li ∪ Ri 6= ∅. Given an optimal solution OPT , any instance can
be partitioned into a set of such constructions, each being uniquely identified by its middle non-
optimal intervals. Let C = {C1, C2, ..., Cn} denote the set of all these constructions. Although it
could be that |Mi| � 1, we will abuse the notation and refer to the interval Mi. Figure 4 shows
an instance that is partitioned into three basic constructions: C1 = (∅, {I1}, {M1}, {J1, J2, J3}),
C2 = ({I1}, {I3}, {M2}, {I2, J4}), and C3 = ({I2}, {I4}, {M3}, {J4, I3}).

8

J1 J2
J3

I1
M1 M2 I3

M3I2

I4

J4

Figure 4: Example instance with three basic constructions.

We focus on these constructions, because a transfer charge can only occur to the intervals in
(S1 ∪ S2 ∪ ... ∪ Sn). It is helpful to associate the event of a transfer charge with the related con-
struction, and note that no transfer charge will be associated with that construction again. For
example, after interval J4 is taken (fig. 4), no transfer charge can be associated with C2 and C3.
This is because whenever an interval from Si is accepted, it can never be replaced again, and Mi

cannot be accepted again. Consider the middle intervals {M1, ...,Mn}. A subset of those intervals
will be taken by the algorithm during the execution. Whenever Mi is taken, a transfer charge
may occur. Intervals outside Ci can affect it by blocking intervals in Li ∪ Ri (before or after Mi

is taken), or Si (before Mi is taken). In every case, the expected total amount of charge on any
Si is no more compared to having Ci separately, which, in addition to the fact that any interval is
transfer charged at most once, gives us the desired result.

3.2 Case of k > 2

In the case of k > 2, the nesting depth can be greater than 1, which allows for a predecessor trace
of length greater than 2. As before, we fix an optimal solution and consider the set of all basic
constructions C derived from the instance. We note that a basic construction can now be contained
in another. More specifically, if Ci is contained in Cj , it means that (Li ∪Ri ∪Mi ∪ Si) ⊆ Sj . For
every interval J ∈ ALG, we consider the predecessor trace PJ = (M1, ...,Md, J) that was formed
during the execution. When an interval (Mi) is replaced by another (Mi+1), it also transfers all of
its charge, and we have that Φ(Mi) ≤ Φ(Mi+1) ≤ Φ(Mi) + 2. W.l.o.g. we assume that M1, ...,Md

are all middle intervals of some basic constructions. The only way this isn’t true is if for some i, Mi

does not partially conflict with any optimal intervals, in which case it cannot increase the amount
of charge transferred to Mi+1. Interval J may or may not correspond to a middle interval, but we
know that J ∈ Sd. The total amount of charge on any one interval is a random quantity, and we
want to upper bound E[Φ(J) | J ∈ ALG] for every predecessor trace PJ .

Lemma 3.4. E[Φ(J) | J ∈ ALG] ≤ 2.5 for every J ∈ ALG and predecessor trace PJ .

Proof. As before, we have that DC(J) ≤ 2 and we focus on E[TC(J)]. Notice that for every PJ ,
the expected amount of charge added to J because of interval Mi depends on the subset of intervals
of (Li ∪ Ri ∪ Si) that are yet to arrive after Mi was accepted. We are able to derive a bound on
E[TC(J)] by assuming the last interval of Li and the last interval of Ri are yet to arrive, and lower
bounding the remaining of Si by the fact that intervals Mi+1, ..., J are yet to arrive.

Let (S′i, L
′
i, R
′
i) ⊆ (Si, Li, Ri) be the set of intervals pending to arrive after Mi was accepted,

and for i > 1, let M ′i ⊆ Mi be the set of intervals pending to arrive after Mi−1 was accepted.
Similarly, let M ′1 ⊆ M1 be the set of intervals pending after M1 was able to be accepted by the

9

algorithm. For readability, we omit | · | and refer to |M ′i |, |S′i|, |L′i|, and |R′i| as M ′i , S
′
i, L
′
i, R
′
i. Let

N ′i = M ′i + L′i +R′i + S′i. For 1 ≤ i ≤ d we have that:

S′i ≥ S′d +

d∑
j=i+1

(M ′j + L′j +R′j) (1)

We first consider the case of S′d ≥ 3. From the analysis of Lemma 3.1 we get that:

E[TC(J)] =
M ′1
N ′1
·
[
L′1! · S′1!

(L′1 + S′1)!
+

R′1! · S′1!
(R′1 + S′1)!

]
+ · · ·+

M ′d
N ′d
·
[′Ld! · S′d!

(L′d + S′d)!
+

R′d! · S′d!
(R′d + S′d)!

]

≤ M ′1
M ′1 + 2 + S′1

·
[
2

S′1!

(S′1 + 1)!

]
+ · · ·+

M ′d
M ′d + 2 + S′d

[
2

S′d!

(S′d + 1)!

]

= 2

[
M ′1

(M ′1 + 2 + S′1) · (S′1 + 1)
+ · · ·+

M ′d
(M ′d + 2 + S′d) · (S′d + 1)

]

≤ 2

[
M ′1

5 + 2(d− 1) +
∑d

j=1M
′
j

· 1

4 + 2(d− 1) +
∑d

j=2M
′
j

+ · · ·+
M ′d

M ′d + 5
· 1

4

]

= 2

d∑
i=1

M ′i

(5 + 2(d− i) +
∑d

j=iM
′
j) · (4 + 2(d− i) +

∑d
j=i+1M

′
j)

The first inequality is because we set L′i = R′i = 1. The second inequality is because of (1).

Let F d(x1, .., xd) =
d∑
i=1

xi
(5+2(d−i)+

∑d
j=i xj)·(4+2(d−i)+

∑d
j=i+1 xj)

, with xi ≥ 1 for every i. For read-

ability, we will write F d(x1, ..., xd) =
d∑
i=1

xi
(xi+2+si)·(si+1) , with si = xi+1 + 2 + si+1, and sd = 3. We

will show that for any d and x1, ..., xd:

F d(x1, ..., xd) ≤
1

4

We show this by induction on d:

Base case d = 1: F 1(x1) = x1
4(x1+5) ≤

1
4 holds.

Induction step: For d = D, we assume that FD(x1, .., xD) ≤ 1
4 .

10

For d = D + 1, we focus on the first two terms of the sum:

2∑
i=1

xi
(xi + 2 + si) · (si + 1)

=
x1

(x1 + 2 + s1) · (s1 + 1)
+

x2
(x2 + 2 + s2) · (s2 + 1)

=
x1

(x1 + x2 + 4 + s2) · (x2 + 3 + s2)
+

x2
(x2 + 2 + s2) · (s2 + 1)

We will show that:

2∑
i=1

xi
(xi + 2 + si) · (si + 1)

≤ x1 + x2
(x1 + x2 + 2 + s2) · (s2 + 1)

(2)

We have that:

x1 + x2
(x1 + x2 + 2 + s2) · (s2 + 1)

− x1
(x1 + x2 + 4 + s2) · (x2 + 3 + s2)

− x2
(x2 + 2 + s2) · (s2 + 1)

≥

x1
(x1 + x2 + 2 + s2) · (s2 + 1)

− x1
(x1 + x2 + 4 + s2) · (x2 + 3 + s2)

≥ 0

Therefore (2) holds, and we have that FD+1(x1, x2, .., xD+1) ≤ FD(x1 + x2, x3, .., xD+1), which we
know is at most 1

4 by the induction hypothesis.

Putting everything together, we have that E[TC(J)] ≤ 1
2 , and because DC(J) ≤ 2, we get that

E[Φ(J)] ≤ 2.5. The cases of sd = 1 and sd = 2 are dealt with in appendix A.

Corollary 3.5. Algorithm 1 is 2.5-competitive for the problem of interval selection for all k.

4 Randomness Extraction

Our analysis of the competitiveness for unweighted interval selection is another example of the
power of random-order arrivals (vs adversarial order) for deterministic algorithms. A basic question
in online algorithms is the power of random-order deterministic algorithms relative to adversarial
order randomized algorithms. We know that there are problems where deterministic random-
order algorithms provide provably better competitive ratios than randomized algorithms (e.g. the
secretary problem [22]). But are there problems where adversarial order randomized algorithms
are provably (or even seemingly) better than random-order deterministic algorithms? It is natural
then to see if we can use the randomness in the arrival of input items to extract random bits. Such
bits may be used to derandomize certain algorithms in the random-order model. Barely random
algorithms [25] use a (small) constant number of random bits, and are well suited to be considered
for this purpose. These algorithms are often used in the classify and randomly select paradigm,
where inputs are partitioned into a small number of classes, and the algorithm randomly selects
a class of items to work with. We consider the simple 1-bit randomness extraction process as
described in Process 2. We assume there exist at least two different classes, or item types, that all
input items belong to. Furthermore, we maintain a counter that represents the number of items
that have arrived so far. Our process returns 1, if the first item of the second type to arrive online
is on an even counter. The adversary can choose the number of items of each type to affect the
probability of getting either output, but we show that the worst case bias of this bit is at most 2

3 .

11

Process 2 Biased bit extraction
On the arrival of Ii:
if i = 1 then

type← type(I1)
else

if type 6= type(Ii) then
return(1− (i mod 2)) and terminate the process

Theorem 4.1. The bit extracted by process 2 has a worst case bias of at most 2
3 .

Proof. Let there be A items of typeA and B items of typeB, with N = A + B. Let Ev be the
event where the second item type arrives on an even counter. Let also Ae (respectively Be) be the
event that the first appearance of typeA (typeB) is on an even counter, and FA (resp. FB) be the
event that the very first item that arrives is of typeA. We assume that N is very large, and we are
sampling from an infinite population. We have that:

Pr(Ev) = Pr(Be|FA) · Pr(FA) + Pr(Ae|FB) · Pr(FB)

We start by computing Pr(Be|FA):

Pr(Be|FA) =
B

N
+

(
A

N

)2

· B
N

+

(
A

N

)4

· B
N

+

(
A

N

)6

· B
N

+ · · · = B

N

+∞∑
i=0

(
A

N

)2i

and therefore:

Pr(Be|FA) · Pr(FA) =
AB

N2

+∞∑
i=0

(
A

N

)2i

Similarly, we get that:

Pr(Ae|FB) · Pr(FB) =
AB

N2

+∞∑
i=0

(
B

N

)2i

Putting everything together:

Pr(Ev) =
AB

N2

+∞∑
i=0

(
A2i +B2i

N2i

)
Let A = αN with α ∈ (0, 1). We can rewrite Pr(Ev) as follows:

Pr(Ev) =
α(1− α)N2

N2

+∞∑
i=0

(αN)2i + (1− α)2iN2i

N2

= α(1− α)
+∞∑
i=0

α2i + (1− α)2i

= α(1− α)
−2α2 + 2α+ 1

(α− 2)α(α2 − 1)

=
2α2 − 2α− 1

(α+ 1)(α− 2)

12

Let f(α) = 2α2−2α−1
(α+1)(α−2) . We have that f [(0, 1)] ∈ (12 ,

2
3) (figure 5). In conclusion, the worst case bias

of the bit extracted through Process 2 is 2
3 .

Figure 5: Plot of f(a)

Fung et al. [10] give barely random algorithms for some weighted variations of interval selec-
tion in the real-time model. Their 2-competitive algorithm for the case of single-length intervals
with arbitrary weights is also directly applicable to the any-order model, and consequently to the
random-order model, while maintaining the same competitiveness. The real line is divided into
slots, and each interval can be viewed as belonging to an even or odd slot. Their algorithm uses
one random bit to pick one slot type, and gets an optimal solution amongst those intervals. We
refer to [10] for a complete description of the algorithm. We can derandomize this algorithm using
a random bit extracted by Process 2 as follows: Our algorithm starts working on the first type of
intervals that arrive as if it was the chosen one. When a new (slot-)type arrives, our bit is extracted,
and we decide whether we will switch to the second type intervals or not. With a slight change in
their proof (Theorem 3.1 in [10]) we see that our algorithm is 3-competitive.

We note that revoking is essential in the above algorithm. Although the 2-competitive algorithm
by Fung et al. already requires that revoking is allowed in the model, we also need to be able to
discard the entire solution constructed by the time the random bit is extracted. Process 2 may
be used more generally to derandomize algorithms that fall under the classify and randomly select
paradigm, when two classes are used. Consider a deterministic algorithm A, and let ALG1 (resp.
ALG2) denote the performance of the algorithm on input items that belong to class 1 (resp. 2).
Assuming ALG1 +ALG2 ≥ OPT

c , with c ≥ 1, we get a 3c-competitive algorithm.

Under the assumption that there exists a global ordering amongst all online items, we are able
to extract an unbiased bit simply by comparing the two first items to arrive (Process 3).

Theorem 4.2. Under the assumption that there exista a global ordering amongst all items in the
input instance, process 3 (Distinct-Unbiased) produces an unbiased bit.

13

Process 3 Distinct-Unbiased
On the arrival of I1, I2:
if I1 < I2 then

return(1)
else

return(0)

Proof. Let I1, I2, ..., IN be all the items in the instance, such that I1 < I2 < ... < IN . Let Ia, Ib be
the first two items that arrive. Let E1 denote the event that Ia < Ib. Let Fi denote the event that
item Ii arrives first, and Si denote the event that Ib > Ii. We have that:

Pr(E1) = Pr(S1|F1) · Pr(F1) + · · ·+ Pr(SN |FN) · Pr(FN)

=
1

N

N − 1

N − 1
+ · · ·+ 1

N

N −N
N − 1

=
1

N

N∑
i=1

N − i
N − 1

=
1

2

We can repeat this process for the next pair of online items. Generally, given 2N online items we
can extract N unbiased bits. For example, this process could be applicable to interval scheduling
under the assumption that all intervals have distinct starting times. In this setting, we can use
Process 3 to derandomize the algorithm by Fung et al. for single-length arbitrary weights, and
maintain its competitiveness. We can even combine these two processes, and get a 6-competitive
deterministic algorithm for the case of arbitrary weights and two different lengths. The algorithm
would use the unbiased bit from the first two intervals to decide on the length. While working on
any length, we would use Process 2 to decide on the slot type.

5 Conclusions

We have shown an upper bound of 2.5 on Algorithm 1 under random arrivals. We have also given
a lower bound of 2 (as n → +∞) for that algorithm. We believe a matching upper bound can
be shown with a more careful analysis of direct charging. It is also plausible that a deterministic
algorithm can be better than 2-competitive. A better algorithm might have additional replacement
rules, in particular for partial conflicts. We also want to improve the 12

11 lower bound for random
arrivals assuming that this is not the optimal bound. Our study has this far only considered de-
terministic algorithms and an obvious question is to consider randomized algorithms for interval
selection with revoking in the random order model.

We studied two processes for extracting random bits from uniformly random arrivals. This may be
applied to other problems where global distinctions among items can be made. We think it would
be interesting to consider models with a large number of items arriving in between random choices.
This may allow sufficiently many bits to be extracted in order to simulate the next random choice,
and derandomize classify and randomly select algorithms with many classes of items.

14

References

[1] Unnar Th Bachmann, Magnús M Halldórsson, and Hadas Shachnai. “Online selection of
intervals and t-intervals”. In: Information and Computation 233 (2013), pp. 1–11.

[2] Allan Borodin and Christodoulos Karavasilis. “Any-order online interval selection”. In: In-
ternational Workshop on Approximation and Online Algorithms. Springer. 2023, pp. 175–
189.

[3] Joan Boyar, Lene M Favrholdt, Michal Kotrbč́ık, and Kim S Larsen. “Relaxing the irrevo-
cability requirement for online graph algorithms”. In: Algorithmica 84.7 (2022), pp. 1916–
1951.

[4] Niv Buchbinder, Moran Feldman, and Roy Schwartz. “Online submodular maximization with
preemption”. In: ACM Transactions on Algorithms (TALG) 15.3 (2019), pp. 1–31.

[5] Ran Canetti and Sandy Irani. “Bounding the power of preemption in randomized scheduling”.
In: Proceedings of the twenty-seventh annual ACM symposium on Theory of computing. 1995,
pp. 606–615.

[6] Yuval Emek, Magnús M Halldórsson, and Adi Rosén. “Space-constrained interval selection”.
In: ACM Transactions on Algorithms (TALG) 12.4 (2016), pp. 1–32.

[7] Leah Epstein and Asaf Levin. “Improved randomized results for that interval selection prob-
lem”. In: European Symposium on Algorithms. Springer. 2008, pp. 381–392.

[8] Ulrich Faigle and Willem M Nawijn. “Note on scheduling intervals on-line”. In: Discrete
Applied Mathematics 58.1 (1995), pp. 13–17.

[9] Jon Feldman, Nitish Korula, Vahab Mirrokni, Shanmugavelayutham Muthukrishnan, and
Martin Pál. “Online ad assignment with free disposal”. In: International workshop on internet
and network economics. Springer. 2009, pp. 374–385.

[10] Stanley PY Fung, Chung Keung Poon, and Feifeng Zheng. “Improved randomized online
scheduling of intervals and jobs”. In: Theory of Computing Systems 55.1 (2014), pp. 202–228.

[11] Virginie Gabrel. “Scheduling jobs within time windows on identical parallel machines: New
model and algorithms”. In: European Journal of Operational Research 83.2 (1995), pp. 320–
329.

[12] Juan A Garay, Inder S Gopal, Shay Kutten, Yishay Mansour, and Moti Yung. “Efficient
on-line call control algorithms”. In: Journal of Algorithms 23.1 (1997), pp. 180–194.

[13] Mohit Garg, Debajyoti Kar, and Arindam Khan. “Random-Order Online Interval Scheduling
and Geometric Generalizations”. In: arXiv preprint arXiv:2402.14201 (2024).

[14] Anupam Gupta and Sahil Singla. “Random-Order Models”. In: Beyond the Worst-Case Anal-
ysis of Algorithms. Ed. by Tim Roughgarden. Cambridge University Press, 2020, pp. 234–258.
doi: 10.1017/9781108637435.015. url: https://doi.org/10.1017/9781108637435.015.

[15] Gupta, Lee, and Leung. “An optimal solution for the channel-assignment problem”. In: IEEE
Transactions on Computers 100.11 (1979), pp. 807–810.

[16] Nicholas G Hall and Michael J Magazine. “Maximizing the value of a space mission”. In:
European journal of operational research 78.2 (1994), pp. 224–241.

[17] Sungjin Im and Yajun Wang. “Secretary problems: Laminar matroid and interval scheduling”.
In: Proceedings of the twenty-second annual ACM-SIAM symposium on Discrete Algorithms.
SIAM. 2011, pp. 1265–1274.

15

https://doi.org/10.1017/9781108637435.015
https://doi.org/10.1017/9781108637435.015

[18] Kazuo Iwama and Shiro Taketomi. “Removable online knapsack problems”. In: Automata,
Languages and Programming: 29th International Colloquium, ICALP 2002 Málaga, Spain,
July 8–13, 2002 Proceedings 29. Springer. 2002, pp. 293–305.

[19] Antoon WJ Kolen, Jan Karel Lenstra, Christos H Papadimitriou, and Frits CR Spieksma.
“Interval scheduling: A survey”. In: Naval Research Logistics (NRL) 54.5 (2007), pp. 530–543.

[20] Mikhail Y Kovalyov, Chi To Ng, and TC Edwin Cheng. “Fixed interval scheduling: Models,
applications, computational complexity and algorithms”. In: European journal of operational
research 178.2 (2007), pp. 331–342.

[21] Richard J Lipton and Andrew Tomkins. “Online Interval Scheduling.” In: SODA. Vol. 94.
1994, pp. 302–311.

[22] Aranyak Mehta. “Online Matching and Ad Allocation”. In: Foundations and Trends® in
Theoretical Computer Science 8.4 (2013), pp. 265–368.

[23] Serge Plotkin. “Competitive routing of virtual circuits in ATM networks”. In: IEEE Journal
on Selected Areas in Communications 13.6 (1995), pp. 1128–1136.

[24] Dror Rawitz and Adi Rosén. “Online budgeted maximum coverage”. In: Algorithmica 83
(2021), pp. 2989–3014.

[25] Nick Reingold, Jeffery Westbrook, and Daniel D Sleator. “Randomized competitive algorithms
for the list update problem”. In: Algorithmica 11.1 (1994), pp. 15–32.

[26] Steven S Seiden. “Randomized online interval scheduling”. In: Operations Research Letters
22.4-5 (1998), pp. 171–177.

[27] Gerhard J Woeginger. “On-line scheduling of jobs with fixed start and end times”. In: Theo-
retical Computer Science 130.1 (1994), pp. 5–16.

[28] Neal E Young. “K-medians, facility location, and the Chernoff-Wald bound”. In: Proceedings
of the eleventh annual ACM-SIAM symposium on Discrete algorithms. 2000, pp. 86–95.

A Dealing with the cases of |S| < 3

A.1 In Lemma 3.1.

Consider the case of |S| = 1, with S = {S1}. As per the analysis of Lemma 3.1, we get that
E[TC(S1)] ≤ 1. If S1 is an optimal interval, it means that it is only directly charged when it is
accepted, and we have that DC(S1) = 1. Therefore, E[Φ(S1)] ≤ 2. If S1 is not an optimal interval
(because it conflicts with the left and/or right optimal interval), we have that Φ(S1) ≤ 2 just from
the fact that there exist two optimal intervals in total.

We now consider the case of |S| = 2, with S = {S1, S2}. We have that for I ∈ {S1, S2},
E[TC(I)] ≤ 2

3 . If both S1, S2 are optimal intervals, we have that DC(S1) = DC(S2) = 1, and
therefore for I ∈ {S1, S2}, E[Φ(I)] ≤ 2

3 + 1 < 2.5. If S1, S2 are both non-optimal intervals, we have
that Φ(Si) ≤ 2 for all i, because there exist at most two optimal intervals in total. Consider now
the case of S1 being an optimal interval, and S2 being a non-optimal interval. We consider two
subsequent cases:

Case 1: S1 and S2 don’t overlap. In this case we have that DC(S1) = 1, and DC(S2) ≤ 1,
since S2 must be in conflict with either the left or the right optimal interval. Therefore we get
E[Φ(I)] < 2.5 for I ∈ {S1, S2}.

16

Case 2: S1 and S2 overlap. In this case, we have that DC(S1) = 1, and 1 ≤ DC(S2) ≤ 2.
Let I ∈ {S1, S2} be the interval that makes it into the final solution. We have that E[DC(I)] ≤
1
2 · 1 + 1

2 · 2 = 1.5, and E[Φ(I)] ≤ 2
3 + 1.5 < 2.5.

In conclusion, Lemma 3.1 holds even in the case of |S| < 3.

A.2 In Lemma 3.4.

The induction argument in Lemma 3.4 goes through with |S′d| = 1 and |S′d| = 2, giving us a bound
on the expected amount of transfer charge of 1 and 2

3 respectively. As in A.1, in the case of |S′d| = 1
with S1 being an optimal interval, we have that DC(S1) = 1. If S1 is not an optimal interval and
conflicts with one optimal interval, we have that DC(S1) ≤ 1. If S1 conflicts with two optimal in-
tervals, we have that DC(S1) = 2 with probability at most 1

3 . Therefore E[DC(S1)] ≤ 2
3 +2 · 13 = 4

3 .
In all cases, we have that E[TC(S1)] + E[DC(S1)] ≤ 2.5.

In the case of S′d = {S1, S2} with both intervals being optimal, as in A.1, we get that DC(S1) =
DC(S2) = 1. If neither interval is optimal, similar to the argument in the case of |S′d| = 1, we have
that DC(Si) = 2 with probability at most 1

2 , and E[DC(Si)] ≤ 1
2 + 2 · 12 . Therefore, E[Φ(Si)] ≤ 2.5.

Finally, the case of one of the two intervals being optimal is handled like in A.1.

B A lower bound under random arrivals.

We will show a lower bound of 12
11 for all deterministic algorithms with revoking in the random-

order model. This is in contrast to the real-time model with revoking, where 1-competitiveness is
attainable. Let LB1 be a three interval instance as shown in figure 6.

I2

I1

I3

Figure 6: Instance LB1.

First, notice that because the algorithm has no knowledge of the size of the input, it must act
greedily on the first interval to arrive. If that weren’t the case, we could introduce a one-interval
instance where the competitiveness of the algorithm would be unbounded. Consider now the be-
haviour of the algorithm if I1 was to arrive first.

Case 1: The algorithm will not replace I1 with either interval that might arrive second. In this
case, we know that with probability at least 1

3 , the algorithm will have one interval in its solution.

Case 2: There is at least one interval in {I2, I3} such that if it is the second interval to arrive, it
will replace I1. Let I3 be such an interval. We can then use instance LB2 (fig. 7), with intervals
I1 and I3 being the same as in LB1. In this case we know that with probability at least 1

6 , the
algorithm will have one interval in its solution.

17

I1

I3

I4

Figure 7: Instance LB2.

In conclusion, there is always an instance with OPT = 2, and E[ALG] ≤ 1
6 + 2 · 56 = 11

6 , and
therefore the competitive ratio is at least 12

11 . Even under the assumption that the algorithm knows
the size of the input, the same bound holds. If I1 was not taken upon arrival, using instance LB2

we know that the algorithm will only have one interval in its solution with probability at least 1
3 .

18

	Introduction
	Preliminaries
	Main Analysis for the Random-Order Model
	Case of k=2
	Case of k>2

	Randomness Extraction
	Conclusions
	Dealing with the cases of |S|<3
	In Lemma 3.1.
	In Lemma 3.4.

	A lower bound under random arrivals.

