
Interval Selection with Binary Predictions
Christodoulos Karavasilis

University of Toronto

Toronto, Canada

ckar@cs.toronto.edu

ABSTRACT
Following a line of work that takes advantage of vast machine-

learned data to enhance online algorithms with (possibly erroneous)

information about future inputs, we consider predictions in the

context of deterministic algorithms for the problem of selecting

a maximum weight independent set of intervals arriving on the

real line. We look at two weight functions, unit (constant) weights,

and weights proportional to the interval’s length. In the classical

online model of irrevocable decisions, no algorithm can achieve

constant competitiveness (Bachmann et al. [9] for unit, Lipton and

Tomkins [26] for proportional). In this setting, we show that a

simple algorithm that is faithful to the predictions is optimal, and

achieves an objective value of at least𝑂𝑃𝑇 −𝜂, with 𝜂 being the total
error in the predictions, both for unit, and proportional weights.

When revocable acceptances (a form of preemption) are allowed,
the optimal deterministic algorithm for unit weights is 2𝑘-competitive

[12], where 𝑘 is the number of different interval lengths. We give an

algorithm with performance 𝑂𝑃𝑇 − 𝜂 (and therefore 1-consistent),

that is also (2𝑘 + 1)-robust. For proportional weights, Garay et al.

[19] give an optimal (2𝜙 + 1)-competitive algorithm, where 𝜙 is the

golden ratio. We present an algorithm with parameter 𝜆 > 1 that is

3𝜆
𝜆−1 -consistent, and

4𝜆2+2𝜆
𝜆−1 -robust. Although these bounds are not

tight, we show that for 𝜆 > 3.42 we achieve consistency better than

the optimal online guarantee in [19], while maintaining bounded

robustness.

We conclude with some experimental results on real-world data

that complement our theoretical findings, and show the benefit

of prediction algorithms for online interval selection, even in the

presence of high error.

KEYWORDS
online algorithms, predictions, interval selection, scheduling

1 INTRODUCTION
We consider the problem of online interval selection, or interval
scheduling on a single machine, where real-length intervals arrive

online, and we must output a set of non-conflicting intervals. Each

interval is associated with a weight, and the goal is to maximize

the sum of weights of the intervals in the solution. This problem is

equivalent to finding a maximum weight independent set in inter-

val graphs. We focus on two weight functions, unit (or constant)
weights, and proportional weights, where the weight of an interval

is equal to its length. While interval scheduling is often studied

under the real-time assumption where intervals arrive in order of

non-decreasing starting times, we consider the generalized version

of any-order arrivals [12]. In the traditional online model of irrev-

ocable decisions, no algorithm (even randomized) can achieve a

constant competitive ratio (Bachmann et al. [9] for unit weights,

Lipton and Tomkins [26] for proportional). Because of this, and be-

cause some applications permit it, a relaxation of the problem that

allows for revocable acceptances has been considered. In this model,

every new interval can be accepted by displacing any conflicting

intervals in the solution, but every rejection is final. In the area

of scheduling, this is sometimes also called preemption, although
no “restarts” are allowed in our problem. In the offline setting, an

optimal solution can be easily found in polynomial time, both for

unit, and for proportional weights [23]. The applications of inter-

val scheduling include routing [29], computer wiring [21], project

selections during space missions [22], and satellite photography

[18]. A more detailed discussion on the applications of interval

scheduling can be found in the surveys by Kolen et al. [24] and

Kovalyov et al. [25].

Motivated by advancements in machine learning and access to a

plethora of data, there has been an effort to equip online algorithms

with possibly erroneous predictions about the input instance. Such

algorithms are able to achieve much better performance when these

predictions are accurate, overcoming some pessimistic bounds of

competitive analysis, and helping to bridge the gap between theory

and practice. Various classical online problems such as ski rental

and non-clairvoyant job scheduling [30], caching [27], facility lo-

cation [2], metrical task systems [7], and matching [8] have been

considered in this model. See Mitzenmacher and Vassilvitskii [28]

for a more detailed survey on the topic, and [1] for an online repos-

itory of relevant papers. Predictions are also a form of untrusted
advice (Angelopoulos et al. [3]), a natural extension of the model of

online algorithms with advice (Boyar et al. [14]) when the advice

is imperfect. Advice research tends to be more information theo-

retic, focusing on tradeoffs between the number of advice bits and

the quality of the solution. Although predictions are often avail-

able as offline information, given to the algorithm in advance, we

consider a model where a prediction is associated with each input

item, and is also given online. This is quite natural and has been

considered before for problems such as paging, graph coloring, and

packing ([5, 6, 20, 27, 31]). This setting also allows for an oracle

to adapt as more of the input is revealed, enabling research where

there are different bounds on the quality of later predictions, and

allowing one to tailor the predictor algorithm directly [15]. Further-

more, we use binary predictions, which has our model falling in line

with work considering limited size, or succinct predictions [4, 5, 10].

Related work. Table 1 shows the most relevant existing work

in the conventional online setting. In the case of irrevocable de-

cisions, no algorithm (even randomized) can achieve a constant

competitive ratio. For the relaxed model of revocable acceptances,

we use an asterisk to indicate that the competitive ratio is optimal.

In the context of randomized algorithms and revocable acceptances,

Emek at al. [16] give a 6-competitive algorithm for unit weights,

while we know of no work improving upon the (2𝜙+1)-competitive

algorithm.

Table 1: Online results without predictions: 𝑛 is the size of
the input, 𝑘 is the number of different lengths, Δ is the ratio
of the longest to shortest interval.

Unit Proportional
Irrevocable

(randomized)

Ω(𝑛) [9] Ω(logΔ) [26]

Revocable

(deterministic)

2𝑘∗ [12] (2𝜙 + 1)∗ [19, 32]

Boyar et al. [13] is the most closely related work to our problem

with predictions, and motivated our study. They consider the case

of unit weighted intervals on a line graph, and give an optimal

deterministic algorithm in the setting of irrevocable decisions with

performance 𝑂𝑃𝑇 − 𝜂 for a different set of predictions and error

measure. We extend their work using (possibly adaptive) predic-

tions of limited size, considering an additional weight function of

interest, and initiating the study of these problems with revocable

decisions.

Structure of the paper. In section 2 we formally define the model,

including our predictions and error measure. Section 3 is about

the model of irrevocable decisions, whereas in section 4 we allow

for revocable acceptances. We conclude with some experiments

on real-world data (section 5) that showcase the usefulness of our

predictions, and complement our theoretical results.

2 PROBLEM SETTING, DEFINITIONS AND
DISCUSSION

In the problem of interval selection, an instance consists of a set of

intervals arriving on the real line. Each interval is specified by a

starting point 𝑠𝑖 and an end point 𝑓𝑖 , with 𝑠𝑖 < 𝑓𝑖 , and it occupies

space [𝑠𝑖 , 𝑓𝑖). The conventional notions of intersection, disjointness,
and containment apply. Two intervals can conflict because of a

partial conflict, or because of proper inclusion (figure 1). In the

latter case, we say that the smaller (larger) interval is subsumed

(subsumes) by the other. Each interval 𝐼 is also associated with

a weight 𝑤 (𝐼). The goal is to output a set of disjoint intervals of

maximum weight. We focus on two types of weight functions, unit
weights where𝑤 (𝐼) = 1 for all 𝐼 , and proportional weights where
𝑤 (𝐼) = 𝑓𝑖 − 𝑠𝑖 . With unit weights, we want to accept as many

intervals as possible, whereas with proportional weights, we want

to cover as much of the line as possible.

(𝑎) Partial Conflict.

(𝑏) Proper inclusion conflict.

Figure 1: Types of conflicts.

The sequence of the intervals arriving online is chosen by an

adversary with full knowledge of the algorithm. In the conventional

model of irrevocable decisions, each accepted interval is final and

will be part of the final solution. A well studied relaxation of the

model is allowing for revocable acceptances, where any new inter-

val may be accepted by displacing any conflicting intervals in the

solution, but every rejection is final. This is sometimes also referred

to as preemption.

We measure the performance of an online algorithm using worst
case competitive analysis [11]. Let 𝐴𝐿𝐺 denote the total weight of

the algorithm’s solution, and𝑂𝑃𝑇 be the total weight of an optimal

solution. An algorithm is strictly 𝑐-competitive, if for all instances

and input permutations, we have that
𝑂𝑃𝑇
𝐴𝐿𝐺

≥ 𝑐 . We also refer to

𝐴𝐿𝐺 as the performance of the algorithm. Lastly, we will use 𝐴𝐿𝐺

(respectively 𝑂𝑃𝑇) to denote the set of intervals in the algorithm’s

(optimal) solution. The meaning should always be clear from con-

text.

Predictions. Every interval is associated with a binary prediction

that becomes known at the time of the interval’s arrival, denoting

whether or not that interval is part of some fixed optimal solu-

tion. More precisely, 𝑃𝑟𝑑 (𝐼) = 1 means interval 𝐼 is predicted to

be optimal, and 𝑃𝑟𝑑 (𝐼) = 0 means that it is predicted to not be

optimal. Let I denote the set of all intervals in the instance. We

define
−→p = (𝑃𝑟𝑑 (𝐼1), 𝑃𝑟𝑑 (𝐼2), ..., 𝑃𝑟𝑑 (𝐼 | I |)) to be the binary vector

of all the online predictions. Let also
−→p+ be the predictions vector

when all predictions are accurate, and
−→p− = −→p+.

Error. Every inaccurate prediction introduces an amount of error.

Let 𝜂 (𝐼) be the amount of error introduced by interval 𝐼 . If the

prediction of 𝐼 was accurate, we define 𝜂 (𝐼) = 0. If 𝐼 was wrongly

predicted to be non-optimal, let 𝜂 (𝐼) = 𝑤 (𝐼), and if 𝐼 was wrongly

predicted to be optimal, and C is the set of optimal intervals 𝐼 con-

flicts with, let 𝜂 (𝐼) = ∑
𝐽 ∈C 𝑤 (𝐽) − 𝑤 (𝐼). Let the total error be

𝜂 =
∑
𝐼 ∈I 𝜂 (𝐼). One may fix any optimal solution to measure the

error against. We use 𝜂𝑚𝑎𝑥 to denote the maximum possible error,

i.e. 𝜂𝑚𝑎𝑥 = 𝜂 when
−→p = −→p− .

A common approach to evaluate algorithms that use predictions

is to focus on an algorithm’s consistency and robustness. We say

that an algorithm is 𝛾-consistent if it is 𝛾-competitive, whenever

the predictions are accurate, i.e.
−→p = −→p+. We say that an algorithm

is 𝜁 -robust, if it is 𝜁 -competitive regardless of the accuracy of the

predictions. There is usually a trade-off between consistency and

robustness, and the goal is to design algorithms with consistency

close to 1, and robustness that is not far worse than the competi-

tiveness of the best predictionless, online algorithm.

Most of our proofs work by using a charging argument, where
we map the weight of optimal intervals to the weight of intervals

taken by the algorithm, and sometimes error. This charging is usu-

ally defined in an online manner, and throughout the execution of

the algorithm, we use Φ(𝐼) to refer to the total amount of charge

to interval 𝐼 . In the model of revocable acceptances, we will distin-

guish between direct, and transfer charging. Transfer charging (𝑇𝐶)
occurs at the moment a new interval is accepted by replacing exist-

ing intervals, and refers to the amount of charge it inherits because

of this. Direct charge (𝐷𝐶) takes place afterwards, whenever an

interval causes optimal intervals to be rejected. We use 𝑇𝐶 (𝐼) (re-
spectively 𝐷𝐶 (𝐼)) to denote the amount of transfer (direct) charge

of an interval, with Φ(𝐼) = 𝑇𝐶 (𝐼) + 𝐷𝐶 (𝐼).
We also use the notion of a predecessor trace, which is analogous to

Woeginger’s [33] predecessor chain in th real-time model. If 𝐼 is an

interval in the algorithm’s solution, the predecessor trace P of 𝐼

is the maximal list of intervals (𝑃1, 𝑃2, .., 𝑃𝑘 = 𝐼), such that 𝑃𝑖 was

at some point accepted by the algorithm, but was later replaced by

𝑃𝑖+1.

3 IRREVOCABLE ACCEPTANCES
In utilizing access to predictions, a natural algorithm to first con-

sider is one that simply follows the predictions. We therefore present

algorithm 1, which is the main subject of this section.

Algorithm 1 Naive

On the arrival of 𝐼 :

𝐼𝑠 ← Set of intervals currently in the solution conflicting with 𝐼

if 𝑃𝑟𝑑 (𝐼) = 1 and 𝐼𝑠 = ∅ then
Take 𝐼

Unit weights. We first consider the case of unit weights, and

prove the following (positive) result on the performance of algo-

rithm Naive.

Theorem 3.1. Algorithm Naive achieves 𝐴𝐿𝐺 ≥ 𝑂𝑃𝑇 − 𝜂 for
interval selection with unit weights.

Proof. The proof works by mapping optimal intervals to error,

and to intervals taken by the algorithm, given that every missed

optimal interval can be associated with at least one unit of error.

Let 𝑂𝑃𝑇 be an optimal solution, and let 𝐴𝐿𝐺 be the algorithm’s

solution. For each unit of error, we define an error element ℎ. Let

𝐻 = {ℎ1, ..., ℎ𝜂 } be the set of error elements. Let 𝐻𝐼 ⊆ 𝐻 , be the

set of error elements corresponding to the error 𝜂 (𝐼). It holds that
𝐻𝐼 ∩ 𝐻 𝐽 = ∅ for any two distinct intervals 𝐼 , 𝐽 , and

⋃
𝐼

𝐻𝐼 = 𝐻 .

We define an injective mapping 𝐹 : 𝑂𝑃𝑇 → 𝐴𝐿𝐺 ∪ 𝐻 as follows:

Let 𝐼𝑜𝑝𝑡 be an optimal interval. If 𝐼𝑜𝑝𝑡 is taken by the algorithm, it

is mapped onto itself. If 𝐼𝑜𝑝𝑡 is not taken by the algorithm, there are

two possibilities. The first possibility is that 𝑃𝑟𝑑 (𝐼𝑜𝑝𝑡) = 1, but 𝐼𝑜𝑝𝑡
conflicted with another interval 𝐼𝑐 taken by the algorithm. For 𝐼𝑐

to have been taken, it means that 𝑃𝑟𝑑 (𝐼𝑐) = 1, and |𝐻𝐼𝑐 ∪ {𝐼𝑐 }| > 0

because 𝐼𝑐 conflicts with 𝐼𝑜𝑝𝑡 . In this case we map 𝐼𝑜𝑝𝑡 to an error

element ℎ𝑐 ∈ 𝐻𝐼𝑐 , or 𝐼𝑐 itself. Even if more optimal intervals were

not taken because they conflicted with 𝐼𝑐 , there will be enough

distinct elements in 𝐻𝐼𝑐 ∪ {𝐼𝑐 } to map them to.

The second possibility is that 𝐼𝑜𝑝𝑡 was not taken, because 𝑃𝑟𝑑 (𝐼𝑜𝑝𝑡) =
0. In this case, we have that |𝐻𝐼𝑜𝑝𝑡 | = 1, and we can map 𝐼𝑜𝑝𝑡 to the

error element of its own prediction. In conclusion, we have that

𝐴𝐿𝐺 + |𝐻 | ≥ 𝑂𝑃𝑇 , and we get the desired bound. □

Corollary 3.2. Algorithm Naive is 1-consistent.

Theorem 3.3. For every deterministic algorithm, there exist a unit
weights instance and predictions, such that 𝐴𝐿𝐺 = 𝑂𝑃𝑇 − 𝜂.

Proof. Let an interval 𝐼𝑏𝑖𝑔 arrive first, with 𝑃𝑟𝑑 (𝐼𝑏𝑖𝑔) = 0. If

the algorithm rejects it, no more intervals arrive, and we have

𝐴𝐿𝐺 = 0, 𝑂𝑃𝑇 = 1, 𝜂 = 1. If the algorithm takes 𝐼𝑏𝑖𝑔 , two non-

conflicting intervals arrive next, 𝐼1 and 𝐼2, both subsumed by 𝐼𝑏𝑖𝑔 ,

with 𝑃𝑟𝑑 (𝐼1) = 0 and 𝑃𝑟𝑑 (𝐼2) = 1. In this case, we have 𝐴𝐿𝐺 = 1,

𝑂𝑃𝑇 = 2, 𝜂 = 𝜂 (𝐼1) = 1. In both cases, the equality holds. One can

repeat this construction for an asymptotic result. □

𝑃𝑟𝑑 (𝐼𝑏𝑖𝑔) = 0

𝑃𝑟𝑑 (𝐼1) = 0 𝑃𝑟𝑑 (𝐼2) = 1

Figure 2: Instance of theorem 3.3.

Corollary 3.4. Algorithm Naive is optimal for unit weights in
the model of irrevocable acceptances.

Boyar et al. [13] were the first to consider the problem of interval

selection with unit weights and irrevocable decisions, and they get

the same (syntactically) performance, using a different algorithm,

and a different set of predictions and error measure. In comparing

our result to theirs, we note that our predictions are information

theoretically strictly weaker than theirs
1
, and can in fact easily

be extracted from theirs, allowing our algorithms to operate in

their model. Furthermore, their predictions-following algorithm

is enhanced with a greedy aspect in order to achieve this optimal

performance. As we will see in section 5, experimental results on

real-world data suggest that for some error ranges, pure greediness
is arguably a more important attribute than the use of predictions

for getting a good solution, and the combination of both in the

context of revocable acceptances works best.

We will now show that with proportional weights, algorithm
Naive achieves the same performance bounds as in the case of unit

weights.

Theorem 3.5. Algorithm Naive achieves 𝐴𝐿𝐺 ≥ 𝑂𝑃𝑇 − 𝜂 for
interval selection with proportional weights.

1
Their predictions consist of the entire input instance given in advance.

Proof. Without loss of generality, we assume integral lengths

of intervals, and later explain how to generalize to real lengths. We

discretize the weight of intervals into weight units, and define a

weight element𝑤 for each unit of weight. Let𝑊𝐼 = {𝑤1, ...,𝑤𝑤 (𝐼) }
be the set of weight elements corresponding to the weight of in-

terval 𝐼 , with𝑊𝐼 ∩𝑊𝐽 = ∅ for any two distinct intervals 𝐼 , 𝐽 . Let

𝑊𝑜𝑝𝑡 =
⋃

𝐼 ∈𝑂𝑃𝑇 𝑊𝐼 , and𝑊𝑎𝑙𝑔 =
⋃

𝐼 ∈𝐴𝐿𝐺𝑊𝐼 . The sets 𝐻 and 𝐻𝐼

are defined as for the unweighted algorithms. Lastly, let 𝐶𝑜𝑝𝑡 (𝐼) be
the set of optimal intervals in 𝑂𝑃𝑇 that conflict with interval 𝐼 .

We argue for the existence of an injective mapping 𝐹 : 𝑊𝑜𝑝𝑡 →
𝑊𝑎𝑙𝑔 ∪𝐻 as follows: Let 𝐼𝑜𝑝𝑡 be an optimal interval. If 𝐼𝑜𝑝𝑡 is taken

by the algorithm, we map the elements of𝑊𝐼𝑜𝑝𝑡 to their correspond-

ing elements in𝑊𝑎𝑙𝑔 . If 𝐼𝑜𝑝𝑡 is not taken by the algorithm, there

are two cases. The first case is that 𝐼𝑜𝑝𝑡 did not conflict with any

interval in the solution, but 𝑃𝑟𝑑 (𝐼𝑜𝑝𝑡) = 0. In this case, we know

that 𝜂 (𝐼𝑜𝑝𝑡) = |𝐻𝐼𝑜𝑝𝑡 | = 𝑤 (𝐼𝑜𝑝𝑡), and we can map the weight ele-

ments of 𝐼𝑜𝑝𝑡 to error elements in 𝐻𝐼𝑜𝑝𝑡 .

The other case is that 𝐼𝑜𝑝𝑡 conflicted with at least one interval

in the solution. Let that conflicting interval be 𝐼𝑐 . It could also

be that 𝑃𝑟𝑑 (𝐼𝑜𝑝𝑡) = 0, and 𝐻𝐼𝑜𝑝𝑡 would have error elements we

can use, but we will assume the worst case of 𝑃𝑟𝑑 (𝐼𝑜𝑝𝑡) = 1.

In this case, it could be |𝑊𝐼𝑜𝑝𝑡 | > |𝐻𝐼𝑐 |, and we cannot map the

weight elements to error elements exclusively. We can, however,

map the optimal weight elements, to elements in 𝐻𝐼𝑐 ∪𝑊𝐼𝑐 . To

see that there will always be sufficiently many unmapped ele-

ments, notice that |𝐻𝐼𝑐 ∪𝑊𝐼𝑐 | ≥ |
⋃

𝐼 ∈𝐶𝑜𝑝𝑡 (𝐼𝑐)𝑊𝐼 |. This is because
|𝐻𝐼𝑐 | = |

⋃
𝐼 ∈𝐶𝑜𝑝𝑡 (𝐼𝑐)𝑊𝐼 | − |𝑊𝐼 |, and𝑊𝐼𝑐 ∩ 𝐻𝐼𝑐 = ∅ always holds.

We conclude that |𝑊𝑎𝑙𝑔 | + |𝐻 | ≥ |𝑊𝑜𝑝𝑡 |, and we get the desired

bound.

To adapt the proof to real lengths, instead of considering sets of

error and weight elements, we can define a transport plan using two

transport matrices 𝐻 and𝑊 of size 𝑂𝑃𝑇 ×𝐴𝐿𝐺 . 𝐻𝑖 𝑗 (respectively

𝑊𝑖 𝑗) corresponds to the (real) amount of weight, or mass, mapped

from 𝐼𝑖 ∈ 𝑂𝑃𝑇 to the amount of error (resp. weight) introduced by

𝐼 𝑗 ∈ 𝐴𝐿𝐺 . We can define these matrices such that for 1 ≤ 𝑖 ≤ 𝑂𝑃𝑇 ,∑
1≤ 𝑗≤𝐴𝐿𝐺 𝐻𝑖 𝑗 +𝑊𝑖 𝑗 = 𝑤 (𝐼𝑖), for 1 ≤ 𝑗 ≤ 𝐴𝐿𝐺 , we have that∑
1≤𝑖≤𝑂𝑃𝑇 𝐻𝑖 𝑗 ≤ 𝜂 (𝐼 𝑗) and

∑
1≤𝑖≤𝑂𝑃𝑇 𝑊𝑖 𝑗 ≤ 𝑤 (𝐼 𝑗). □

Theorem 3.6. For every deterministic algorithm, there exist a pro-
portional weights instance and predictions, such that𝐴𝐿𝐺 = 𝑂𝑃𝑇 −𝜂.

Proof. Let 𝐼1 arrive first with 𝑃𝑟𝑑 (𝐼1) = 0. If the algorithm

doesn’t accept 𝐼1, no more intervals arrive, and we have that𝐴𝐿𝐺 =

0, 𝑂𝑃𝑇 = 𝑤 (𝐼1), and 𝜂 = 𝑤 (𝐼1). If the algorithm accepts 𝐼1, let two

intervals 𝐼2 and 𝐼3 arrive next, with 𝑤 (𝐼2) = 𝑤 (𝐼1), 𝑃𝑟𝑑 (𝐼2) = 1,

𝑤 (𝐼3) = 2𝑤 (𝐼1) and 𝑃𝑟𝑑 (𝐼3) = 0. In this case we have𝐴𝐿𝐺 = 𝑤 (𝐼1),
𝑂𝑃𝑇 = 3𝑤 (𝐼1), and 𝜂 = 𝜂 (𝐼3) = 2𝑤 (𝐼1). In both cases the equality

holds. One can repeat this construction for an asymptotic result. □

Corollary 3.7. AlgorithmNaive is optimal for proportional weights
in the model of irrevocable acceptances.

𝑃𝑟𝑑 (𝐼1) = 0

𝑃𝑟𝑑 (𝐼2) = 1 𝑃𝑟𝑑 (𝐼3) = 0

Figure 3: Instance of Theorem 3.6, with𝑤 (𝐼2) = 𝑤 (𝐼1),𝑤 (𝐼3) =
2𝑤 (𝐼1).

4 REVOCABLE ACCEPTANCES
Given the difficulty of the problem(s) in the conventional online

model, we now consider the case where acceptances are revocable,

but rejections are final, a relaxation of the model that is commonly

studied for the problem of interval selection. A new interval can

now always be accepted by displacing any intervals in the solution

conflicting with it. For unit weights, Borodin and Karavasilis [12]

give an optimal algorithm that is 2𝑘-competitive, where 𝑘 is the

number of distinct interval lengths. We will refer to this algorithm

of [12] as the BK2K algorithm. BK2K is a greedy algorithm, always

accepting a new interval when there is no conflict, and whenever

a conflict exists, the new interval is accepted only if it is properly

included in an interval currently in the solution. We use that as the

base logic for our predictions algorithm, and add one more replace-

ment rule, which accepts a new interval 𝐼 that is only involved in

partial conflicts, if 𝑃𝑟𝑑 (𝐼) = 1. Furthermore, an interval accepted

by that rule gets marked, to make sure it cannot be replaced by

that rule again. We call this algorithm Revoke-Unit 2. Interestingly,
this rule of locally following the predictions once, suffices to give us

1-consistency.

Algorithm 2 Revoke-Unit

𝑀 ← ∅ ⊲ Set of marked intervals

𝑆 ← ∅ ⊲ Solution set

On the arrival of 𝐼 :

𝐼𝑠 ← Set of intervals currently in the solution conflicting with 𝐼

if 𝐼𝑠 = ∅ or (𝐼𝑠 = {𝐼 ′} and 𝐼 ⊂ 𝐼 ′) then
if 𝐼 ′ ∈ 𝑀 then

𝑀 ← 𝑀 ∪ {𝐼 }
𝑆 ← 𝑆 ∪ {𝐼 } \ {𝐼 ′} ⊲ Take 𝐼 and discard 𝐼 ′ if necessary

else if 𝐼 is only involved in partial conflicts and 𝑃𝑟𝑑 (𝐼) = 1 and
𝐼𝑠 ∩𝑀 = ∅ then

𝑆 ← 𝑆 ∪ {𝐼 } \ 𝐼𝑠 ⊲ Take 𝐼 and discard conflicting intervals

𝑀 ← 𝑀 ∪ {𝐼 }

Theorem 4.1. Algorithm 2 achieves 𝐴𝐿𝐺 ≥ 𝑂𝑃𝑇 − 𝜂.

Proof. We follow the same approach as in the proof of The-

orem 3.1, mapping optimal intervals to intervals taken by the al-

gorithm, and to error. The main difference is that because of re-

voking, this mapping might be redefined throughout the execution

of the algorithm. As before, we let 𝐻 be the set of error elements,

and 𝐻𝐼 ⊆ 𝐻 be the set of error elements introduced by 𝜂 (𝐼). Let
𝐼𝑜𝑝𝑡 be an optimal interval. We will define an injective mapping

𝐹 : 𝑂𝑃𝑇 → 𝐴𝐿𝐺 ∪ 𝐻 as follows: If 𝐼𝑜𝑝𝑡 is taken by the algorithm,

it is initially mapped onto itself. If 𝐼𝑜𝑝𝑡 is later replaced, it must be

because of a partial conflict (w.l.o.g. no interval is subsumed by an

optimal interval) with a new interval 𝐼 ′ with 𝑃𝑟𝑑 (𝐼 ′) = 1. In this

case, 𝐼𝑜𝑝𝑡 will be mapped to an error element in𝐻𝐼 ′ , or if no further

optimal intervals that conflict with 𝐼 are yet to arrive, it will be

mapped to 𝐼 . In both, subcases it will never be remapped.

Consider now the case of 𝐼𝑜𝑝𝑡 being rejected upon arrival. This

can only happen if it is involved in (at most two) partial conflicts.

There are two possible cases. The first case is that 𝑃𝑟𝑑 (𝐼𝑜𝑝𝑡) = 0,

and therefore |𝐻𝐼𝑜𝑝𝑡 | = 1, in which case we map 𝐼𝑜𝑝𝑡 to the error

element of its own prediction. The second case is that 𝑃𝑟𝑑 (𝐼𝑜𝑝𝑡) = 1,

but at least one of the conflicting intervals was marked. Let 𝐼𝑐 be

one of the marked, partially conflicting intervals. If 𝐼𝑐 was marked

by being taken through a partial-conflict replacement, it means that

𝑃𝑟𝑑 (𝐼𝑐) = 1, and |𝐻𝐼𝑐 ∪ {𝐼𝑐 }| > 0, in which case we can map 𝐼𝑜𝑝𝑡
to an element ℎ𝑐 ∈ 𝐻𝐼𝑐 ∪ {𝐼𝑐 }.
If 𝐼𝑐 was instead marked by a proper-inclusion-replacement, we

trace the original interval that got marked through a partial-conflict-

replacement. Call that interval 𝐼
′
𝑐 . It holds that 𝐼

′
𝑐 conflicts with 𝐼𝑐 ,

and therefore also conflicts with 𝐼𝑜𝑝𝑡 . Moreover, for 𝐼
′
𝑐 to have been

accepted, it must be that 𝑃𝑟𝑑 (𝐼 ′𝑐) = 1 and |𝐻
𝐼
′
𝑐
∪ {𝐼 ′𝑐 }| > 0. In this

case, we map 𝐼𝑜𝑝𝑡 to an element ℎ𝑐′ ∈ 𝐻𝐼
′
𝑐
∪ {𝐼 ′𝑐 }. In conclusion, we

have that 𝐴𝐿𝐺 + |𝐻 | ≥ 𝑂𝑃𝑇 , and we get the desired bound. □

We note that the performance of algorithm 2 on the instance of

theorem 3.3 is exactly equal to 𝑂𝑃𝑇 − 𝜂, and we get the following

lemma.

Lemma 4.2. The performance of algorithm 2 cannot be better than
𝑂𝑃𝑇 − 𝜂.

We next show that the robustness of algorithm Revoke-Unit
nearly matches the optimal online guarantee.

Theorem 4.3. With at most 𝑘 distinct interval lengths, algorithm
2 is (2𝑘 + 1)-robust.

Proof. We use a charging argument and show that an interval

taken by the algorithm can be charged by at most 2𝑘 + 1 optimal

intervals. As soon as an optimal interval arrives, we map it to an

interval already taken by the algorithm or itself. When an interval is

replaced during the execution, all optimal intervals charged to it up

to that point, will now be charged to the new interval that was ac-

cepted. We build upon the proof of Theorem 3.2 in [12]. In the case

of the BK2K algorithm ([12]), it is true that for every predecessor

trace P, and consecutive intervals (𝐼𝑖 , 𝐼𝑖+1) ∈ P, Φ(𝐼𝑖+1) ≤ Φ(𝐼𝑖)+2,
and the length of every predecessor trace is at most 𝑘 . While the

former is still true for algorithm Revoke-Unit, the latter is not, and
that is because we have an additional replacement rule. However,

we argue that for every 𝐼𝑖 ∈ P, if 𝐼 𝑗 , 𝑗 > 𝑖 is the next interval in

the trace that was accepted through proper-inclusion, it is true that

𝑇𝐶 (𝐼 𝑗) ≤ 𝑇𝐶 (𝐼𝑖) + 3.

Figure 4 shows how to maximize charge on the event of a partial-

conflict replacement. Before being replaced by a partially-conflicting

interval, 𝐼1 can be directly charged by at most two optimal inter-

vals (𝐼1𝑜𝑝𝑡 , 𝐼
2

𝑜𝑝𝑡), one on each side. After 𝐼2 replaces 𝐼1, it can also be

directly charged by two optimal intervals, but only if 𝐼2𝑜𝑝𝑡 was not

charged to 𝐼1 earlier. In other words, if 𝐼2 is directly charged by two

new intervals, it means that 𝐼1 was directly charged by at most one,

concluding that Φ(𝐼2) ≤ 𝑇𝐶 (𝐼1) + 3.

𝐼2

𝐼2𝑜𝑝𝑡𝐼3𝑜𝑝𝑡

𝐼1

𝐼1𝑜𝑝𝑡

Figure 4: Maximum charge through partial-conflict replace-
ment.

Finally, notice that because the mark of an interval carries over

when it is replaced, the event of a partial-conflict replacement can

occur at most once in each predecessor trace, and excluding at most

one subsequence (𝐼𝑖 , 𝐼𝑟 , 𝐼 𝑗) ∈ P where𝑇𝐶 (𝐼 𝑗) ≤ 𝑇𝐶 (𝐼𝑖) +3, it holds
that for (𝐼𝑏 , 𝐼𝑏+1) ∈ P, Φ(𝐼𝑏+1) ≤ Φ(𝐼𝑏) + 2, giving us a worst case

competitive ratio of 2𝑘 + 1. □

Corollary 4.4. With at most 𝑘 distinct interval lengths, and
predictions with total error 𝜂, Algorithm Revoke-Unit achieves𝐴𝐿𝐺 ≥
max{𝑂𝑃𝑇 − 𝜂, 𝑂𝑃𝑇

2𝑘+1 }.

Notice how we can choose not to carry over the mark when

proper-inclusion replacement occurs, and get a 3𝑘-robust algo-

rithm. Such an algorithm is prone to follow the prediction more

often, and it can outperform Revoke-Unit for some small values

of error caused by adversarial predictions.

We now look at the case of proportional weights. In the conventional

online setting, Garay et al. [19] give a 2𝜙 + 1 ≈ 4.236−competitive

algorithm, while Tomkins [32] gives a matching lower bound. They

call their optimal algorithm LR (for length of route), and we include

it here for completeness. Unlike the case of unit weights, we now

want to accept intervals that occupy as much of the line as possible.

Algorithm LR works greedily by always accepting a new interval

with no conflicts, and when there are conflicts, it accepts the new

interval if its length is at least 𝜙 times greater than the largest con-

flicting interval. More generally, using parameter 𝛽 ≥ 𝜙 , we have

the following lemma:

Lemma 4.5 (Garay et al. [19]). Algorithm LR with parameter
𝛽 ≥ 𝜙 is (2𝛽 + 1)-competitive for the problem of interval selection
with proportional weights.

Algorithm 3 LR [19]

Parameter 𝛽 = 𝜙 ⊲ optimal value for parameter 𝛽

On the arrival of 𝐼 :

𝐼𝑠 ← Set of intervals currently in the solution conflicting with 𝐼

if 𝑤 (𝐼) > 𝛽 ·max{𝑤 (𝐽) : 𝐽 ∈ 𝐼𝑠 } then
Accept 𝐼 and displace conflicts

Return

Instead of using algorithm LR as the base of our predictions al-
gorithm, we consider a slightly modified version, which we refer to

as LR′, and which compares the weight of the new interval to the

sum of the weights of the conflicting intervals, instead of looking

only at the longest interval. Although we do not know the exact

performance of algorithm LR′ in the online model, we conjecture it

is also (2𝜙 + 1)-competitive.

In trying to utilize predictions in the case of proportional weights,

we first make the following observations:

Observation 4.6. 1-consistency is unattainable while maintain-
ing bounded robustness.

Proof. To be 1-consistent, the algorithm must be able to replace

an interval with an arbitrarily smaller one that is part of the opti-

mal solution. The adversary could then stop the instance, forcing

arbitrarily bad robustness. □

Observation 4.7. In order to have bounded robustness, it must be
that a new interval that is sufficiently large (small2) must always be
accepted (rejected).

Definition 4.8 (𝛼−increasing). An 𝛼-increasing algorithm never

accepts a new conflicting interval that is less than 𝛼 times the

longest interval it conflicts with.

Lemma 4.9. An 𝛼-increasing algorithm (greedy or non-greedy),
cannot be better than (2𝛼 + 1)-consistent.

Proof. Let an interval 𝐼1 arrive first. Let 𝐼2 and 𝐼3 be intervals

that partially conflict with 𝐼1 on either side, and 𝑤 (𝐼2) = 𝑤 (𝐼3) =
𝛼 · 𝑤 (𝐼1) − 𝜖 . Let 𝐼4 with 𝑤 (𝐼4) = 𝑤 (𝐼1) − 2𝜖 be an interval that

is fully subsumed by 𝐼4. This instance is depicted in figure 5. The

algorithm will never replace 𝐼1, while the optimal solution is made

of {𝐼2, 𝐼3, 𝐼4}. □

𝐼1

𝐼2 𝐼3

𝐼4

Figure 5: Consistency bound for 𝛼-increasing algorithms.

Algorithm LR is a 𝜙-increasing algorithm, while the algorithm

by Woeginger [33] for the real-time model is 2-increasing. Our

predictions algorithm 4 Revoke-Proportional is 1-increasing. The
algorithm works like LR′, with one additional replacement rule that

accepts a new interval that is predicted to be optimal, even if it is

not sufficiently larger than what it conflicts with. More precisely,

if a new interval is predicted to be optimal and is at least as big

as the sum of the weights of the intervals it conflicts with, and

none of the conflicting intervals were predicted to be optimal, it

will be accepted through the predictions rule. The algorithm takes

a parameter 𝜆 > 1, which can be thought of as an indicator of how

much the predictions are trusted. As 𝜆 increases, the consistency

bound improves.

Theorem 4.10. Algorithm Revoke-Proportional is 3𝜆
𝜆−1 -consistent.

2
More accurately, an interval reducing ALG sufficiently much.

Algorithm 4 Revoke-Proportional Parameter: 𝜆 > 1

On the arrival of 𝐼 :

𝐼𝑠 ← Set of intervals currently in the solution conflicting with 𝐼

Let𝑤𝑐 =
∑

𝐽 ∈𝐼𝑠 𝑤 (𝐽) ⊲ Total weight of conflicting intervals

if 𝑤 (𝐼) ≥ 𝜆 ·𝑤𝑐 then ⊲ Main replacement rule

Accept 𝐼 and displace conflicts

Return

else if 𝑃𝑟𝑑 (𝐼) = 1 then ⊲ Predictions rule

if (𝑤 (𝐼) ≥ 𝑤𝑐 and |{𝐽 : 𝐽 ∈ 𝐼𝑠 and 𝑃𝑟𝑑 (𝐽) = 1}| = ∅) then
Accept 𝐼 and displace conflicts

Return

Proof. We consider the optimal solution 𝑂𝑃𝑇 consistent with

the fully accurate predictions. We will show that throughout the ex-

ecution of the algorithm, we have that Φ(𝐼) ≤ 𝜇 ·𝑤 (𝐼), for every 𝐼 in
the current solution. In the end, we have that

∑
𝐼 ∈𝐴𝐿𝐺 Φ(𝐼) = 𝑂𝑃𝑇 ,

giving us the 𝜇-consistency of the algorithm.

As in the proof of theorem 4.3, we consider the notions of trans-
fer charge (𝑇𝐶), and direct charge (𝐷𝐶). We can express Φ(𝐼) =
𝑇𝐶 (𝐼) + 𝐷𝐶 (𝐼). A transfer charge occurs whenever accepting a

new interval 𝐼 replaces intervals currently in the solution. In that

case, the total charge of those conflicting intervals is passed on as

transfer charge to 𝐼 . Any additional charge to 𝐼 after its acceptance

is through direct charge, namely rejection of subsequent optimal

intervals conflicting with 𝐼 . We will write 𝐷𝐶 𝐽 (𝐼) to denote the

amount of direct charge from interval 𝐽 to interval 𝐼 . Whenever an

optimal interval is accepted, we consider its weight being directly

charged to itself, and it cannot be directly charged again.

Whenever an optimal interval is rejected upon arrival, we charge

its weight to the intervals it conflicts with, with its weight being

distributed to all its conflicting intervals, in proportion to their

weight. Specifically, let 𝐼𝑜 be the newly arrived optimal interval

that is rejected, and 𝐼𝑠 denote the set of conflicting intervals. Each

interval 𝐽 ∈ 𝐼𝑠 is directly charged 𝐷𝐶𝐼𝑜 (𝐽) = 𝑤 (𝐼𝑜) 𝑤 (𝐽)𝑤𝑐
≤ 𝑤 (𝐼𝑜).

Furthermore, for an optimal interval to have been rejected, it must

be that even the predictions rule failed, and because the predic-

tions are accurate, it must have failed because𝑤 (𝐼𝑜) < 𝑤𝑐 . Because

of this, we get that 𝑤 (𝐼𝑜) 𝑤 (𝐽)𝑤𝑐
≤ 𝑤 (𝐽), and therefore 𝐷𝐶𝐼𝑜 (𝐽) ≤

min{𝑤 (𝐼𝑜),𝑤 (𝐽)}. An interval 𝐼 ∈ 𝐴𝐿𝐺 can be directly charged

by at most three different types of optimal intervals: 1) smaller

intervals that are subsumed by it, 2) an optimal interval partially

conflicting on the left, and 3) an optimal interval partially conflict-

ing on the right. In the case of smaller optimal intervals subsumed

by 𝐼 , the total amount of direct charge from those intervals can be at

most𝑤 (𝐼). Given that each of the two possible partially conflicting

intervals can directly charge 𝐼 at most𝑤 (𝐼), we conclude that for
every 𝐼 ∈ 𝐴𝐿𝐺 :

𝐷𝐶 (𝐼) ≤ 3𝑤 (𝐼) (1)

We omitted the case where the rejected optimal interval subsumes

𝐼 , because in that case 𝐷𝐶 (𝐼) = 𝑤 (𝐼) and 1 holds trivially. We now

focus on the total amount of charge on any interval 𝐼 ∈ 𝐴𝐿𝐺 . Let:

𝜇 =
3𝜆

𝜆 − 1

We want to make sure that throughout the execution of the algo-

rithm, Φ(𝐼) ≤ 𝜇 · 𝑤 (𝐼). Before any interval is accepted through

replacement, intervals in the solution could have only been directly

charged through rejected optimal intervals, and because of 1, and

the fact that 𝜆 > 1, our desired bound holds. We now consider all

the cases of an interval being accepted through replacement.

Case 1: 𝐼 is an optimal interval and it is accepted through the pre-

dictions rule. In this case we have that 𝐷𝐶 (𝐼) = 𝑤 (𝐼), and we need

to look at𝑇𝐶 (𝐼). Let 𝐿𝑐 and 𝑅𝑐 denote the intervals (if any) that 𝐼 is
partially conflicting with on the left and on the right respectively,

and let 𝑀𝑐 denote the set of intervals that 𝐼 subsumes. We know

that all of these conflicting intervals are not optimal, and they were

accepted through the algorithm’s main rule. First, notice that for

all 𝐽 ∈ 𝑀𝑐 , 𝐷𝐶 (𝐽) = 0, and Φ(𝐽) = 𝑇𝐶 (𝐽) ≤ 𝜇

𝜆
·𝑤 (𝐽). Moreover, 𝐿𝑐

and 𝑅𝑐 had not yet been directly charged by a partially conflicting

optimal interval on one side, and therefore we have that Φ(𝐿𝑐) ≤
𝜇

𝜆
·𝑤 (𝐿𝑐) + 2𝑤 (𝐿𝑐), and similarly Φ(𝑅𝑐) ≤ 𝜇

𝜆
·𝑤 (𝑅𝑐) + 2𝑤 (𝑅𝑐).

Putting everything together:

𝑇𝐶 (𝐼) =
∑︁
𝐽 ∈𝑀𝑐

Φ(𝐽) + Φ(𝐿𝑐) + Φ(𝑅𝑐)

≤ 𝜇

𝜆
·𝑤𝑐 + 2(𝑤 (𝐿𝑐) +𝑤 (𝑅𝑐))

≤
(𝜇
𝜆
+ 2

)
𝑤𝑐

≤
(𝜇
𝜆
+ 2

)
𝑤 (𝐼)

The last inequality being true from the fact that themain predictions

rule is satisfied. Given also that 𝐷𝐶 (𝐼) = 𝑤 (𝐼), we get that Φ(𝐼) ≤
(𝜇
𝜆
+ 2)𝑤 (𝐼) +𝑤 (𝐼) = (𝜇

𝜆
+ 3)𝑤 (𝐼). With our choice of 𝜇, we have:

Φ(𝐼) ≤
(

3𝜆
𝜆−1
𝜆
+ 3

)
𝑤 (𝐼)

=

(
3𝜆

𝜆 − 1

)
𝑤 (𝐼)

Case 2: 𝐼 is an optimal interval and it is accepted through the algo-

rithm’s main rule. This is similar to case 1, with 𝐷𝐶 (𝐼) = 𝑤 (𝐼) and
𝑤 (𝐼) ≥ 𝜆 ·𝑤𝑐 . The same analysis gives us 𝑇𝐶 (𝐼) ≤

(
𝜇

𝜆
+ 2

)
𝑤 (𝐼)
𝜆

,

and because 𝜆 > 1, the same bound holds.

Case 3: 𝐼 is not an optimal interval and it is accepted through the

algorithm’s main rule. In this case we have that 𝐷𝐶 (𝐼) ≤ 3𝑤 (𝐼),
and we get that

Φ(𝐼) ≤
∑︁
𝐽 ∈𝐼𝑠

Φ(𝐽) + 3𝑤 (𝐼)

≤ 𝜇

𝜆
·𝑤 (𝐼) + 3𝑤 (𝐼)

=

(
3𝜆

𝜆 − 1

)
𝑤 (𝐼)

In conclusion, we have that throughout the execution of the al-

gorithm, for 𝐼 ∈ 𝐴𝐿𝐺 , Φ(𝐼) ≤ 3𝜆
𝜆−1𝑤 (𝐼), and therefore

𝑂𝑃𝑇
𝐴𝐿𝐺

≤
3𝜆
𝜆−1 . □

We see that as 𝜆 →∞, the algorithm’s consistency goes to 3. We

now look at the robustness of algorithm Revoke-Proportional.

Theorem 4.11. Algorithm Revoke-Proportional is 4𝜆2+2𝜆
𝜆−1 -robust.

Proof. The argument is similar to the proof of theorem 4.10.

Both direct, and transfer charging work the same way as before.

Let 𝜇 = 2𝜆2+3𝜆+1
𝜆−1 , and 𝛿 = 2𝜆 + 1. We will show that that for every

𝐼 ∈ 𝐴𝐿𝐺 , Φ(𝐼) ≤ (𝜇 + 𝛿) ·𝑤 (𝐼) = 4𝜆2+2𝜆
𝜆−1 𝑤 (𝐼).

Notice first that the upper bound on direct charging is not as

good as before. More precisely, with 𝐼𝑜 being a newly arrived op-

timal interval that will be rejected and 𝐼𝑠 being its conflicting in-

tervals currently in the solution, we have that for every 𝐽 ∈ 𝐼𝑠 ,

𝐷𝐶𝐼𝑜 (𝐽) = 𝑤 (𝐼𝑜) 𝑤 (𝐽)𝑤𝑐
≤ 𝜆 · 𝑤 (𝐽). More generally, 𝐷𝐶𝐼𝑜 (𝐽) ≤

min{𝑤 (𝐼𝑜), 𝜆 ·𝑤 (𝐽)}. As before, given the three different possible

types of conflicts, we have that:

𝐷𝐶 (𝐼) ≤ (2𝜆 + 1)𝑤 (𝐼) (2)

We can now bound the total amount of charge on every interval

in the algorithm’s solution, throughout its execution. Before any

replacement happens, the boundΦ(𝐼) ≤ (𝜇+𝛿) ·𝑤 (𝐼) holds trivially.

Case 1: Interval 𝐼 is accepted through the algorithm’s main rule.

We get that:

Φ(𝐼) ≤ (𝜇 + 𝛿) ·𝑤𝑐 + (2𝜆 + 1) ·𝑤 (𝐼)

≤ (𝜇 + 𝛿) · 𝑤 (𝐼)
𝜆
+ (2𝜆 + 1) ·𝑤 (𝐼)

=

(
𝜇 + 𝛿
𝜆
+ 2𝜆 + 1

)
𝑤 (𝐼)

=
©«
4𝜆2+2𝜆
𝜆−1 + 2𝜆

2 + 𝜆
𝜆

ª®¬𝑤 (𝐼)
= 𝜇 ·𝑤 (𝐼)

Case 2: Interval 𝐼 is accepted through the algorithm’s predictions

rule. Notice that in this case, all conflicting intervals must have

been accepted through the main rule, and not the predictions rule.

Because of this, as we showed in case 1, for every 𝐽 ∈ 𝐼𝑠 , it holds
that Φ(𝐽) ≤ 𝜇 ·𝑤 (𝐽). This helps us bound the amount of transfer

charge to interval 𝐼 .

Φ(𝐼) ≤ 𝜇 ·𝑤𝑐 + (2𝜆 + 1) ·𝑤 (𝐼)
≤ 𝜇 ·𝑤 (𝐼) + (2𝜆 + 1) ·𝑤 (𝐼)
= (𝜇 + 𝛿) ·𝑤 (𝐼)

To summarize, we have shown that in the worst case, Φ(𝐼) ≤ (𝜇 +
𝛿) ·𝑤 (𝐼) for every 𝐼 ∈ 𝐴𝐿𝐺 . This concludes the proof. □

We note that for 𝜆 >
2+
√
5√

5−1 ≈ 3.42, the consistency of our al-

gorithm is already better than 2𝜙 + 1, and 22.15-robust. We have

shown we can get consistency better than the online bound of LR,
while maintaining bounded robustness. We believe further improve-

ment on the bounds of Revoke-Proportional is possible, with an

analysis that looks more closely at the dependence between direct

and transfer charging.

One may also be able to further improve the algorithm by accepting

Figure 6: NASA-iPSC dataset.
(a) Unit & Irrevocable, (b) Unit & Revoking, (c) Proportional & Irrevocable, (d) Proportional & Revoking

Figure 7: CTC-SP2 dataset.

an interval that is not as big as the sum of its conflicts, making the

algorithm 𝑎-increasing with 𝑎 < 1. This would relax the predictions

rule further, and make the algorithm more prone to bad choices

caused by misleading predictions. In our experiments, we briefly

discuss one such algorithm, which we call Revoke-Prop-Half, and
which can accept a supposedly optimal interval even if it is half as

big as its conflicts.

5 EXPERIMENTAL RESULTS
We use real-world data from scheduling jobs on parallel machines

3

to test our algorithms. More information on the handling of these

datasets can be found in a study by Feitelson et al. [17]. We focus

on two datasets, NASA-iPSC (18,239 jobs) and CTC-SP2 (77,222 jobs).
As is usually the case, the performance of algorithms is much better

than their worst-case bounds. For every algorithm we average its

performance over random permutations of the input instance, for

multiple error values. The 𝑦 axis values for proportional weights

are expressed in scientific notation. We note that algorithm GrNR
refers to a greedy algorithm without revoking, a very natural algo-

rithm to compare our Naive algorithm against. All other algorithms

have been mentioned earlier in the paper. Our experimental results

are in line with our intuition, with the predictions algorithms out-

performing predictionless algorithms for some values of the error,

even when they are not 1-consistent. Especially in the setting of

revocable acceptances, even with half of the max possible error, our

predictions algorithms perform just as well as their purely online

3
https://www.cs.huji.ac.il/labs/parallel/workload/

counterparts. In the CTC dataset (figure 7) this is always the case,

with the Naive algorithm outperforming GrNR for nearly all values

of error. In the case of proportional weights with revoking in figure

6, it is noteworthy that the variant of Revoke-Proportional with

𝜆 = 4, outperforms the 𝜆 = 𝜙 variant for some small values of

error, but its performance degrades faster. This further validates

the notion that the bigger the 𝜆, the more the algorithm follows the

predictions.

We also have to address the seemingly abnormal behavior of algo-

rithm Revoke-Proportional in figure 7(d). As the error increases,

so does the performance of Revoke-Proportional, which is coun-

terintuitive and dissimilar to the corresponding plot of figure 6. This

is because of the underlying structure of the CTC-SP2 dataset, on
which greedy algorithms perform exceptionally well. We showcase

this by having included algorithm LR′ with 𝛽 = 1, the algorithm

that accepts a new interval if it is at least as big as everything it

conflicts with. As the error increases, a larger number of intervals

can be accepted through this clearly beneficial, relaxed predictions

rule, which helps explain the improved performance. We also con-

trast this with algorithm Rev-Prop-Half, which uses a modified

predictions rule, that can accept supposedly optimal intervals that

are half the weight of their conflicts. This makes the algorithm

more sensitive to the predictions, and its performance falls in line

with what we would expect.

In conclusion, algorithms for interval selection can greatly benefit

from utilizing imperfect predictions, and remain robust even in the

presence of high error.

ACKNOWLEDGMENTS
The author would like to thank Allan Borodin, Joan Boyar, and Kim

Larsen for many helpful discussions, and for pointing out errors in

earlier versions of this work.

REFERENCES
[1] Accessed: 2024-09. https://algorithms-with-predictions.github.io/.

[2] Matteo Almanza, Flavio Chierichetti, Silvio Lattanzi, Alessandro Panconesi, and

Giuseppe Re. 2021. Online facility location with multiple advice. Advances in
neural information processing systems 34 (2021), 4661–4673.

[3] Spyros Angelopoulos, Christoph Dürr, Shendan Jin, Shahin Kamali, and Marc

Renault. 2024. Online computation with untrusted advice. J. Comput. System Sci.
144 (2024), 103545.

[4] Spyros Angelopoulos and Shahin Kamali. 2023. Contract scheduling with pre-

dictions. Journal of Artificial Intelligence Research 77 (2023), 395–426.

[5] Antonios Antoniadis, Joan Boyar, Marek Eliás, Lene Monrad Favrholdt, Ruben

Hoeksma, Kim S Larsen, Adam Polak, and Bertrand Simon. 2023. Paging with

succinct predictions. In International Conference on Machine Learning. PMLR,

952–968.

[6] Antonios Antoniadis, Hajo Broersma, and Yang Meng. 2024. Online Graph Color-

ing with Predictions. In International Symposium on Combinatorial Optimization.
Springer, 289–302.

[7] Antonios Antoniadis, Christian Coester, Marek Eliáš, Adam Polak, and Bertrand

Simon. 2023. Online metric algorithms with untrusted predictions. ACM trans-
actions on algorithms 19, 2 (2023), 1–34.

[8] Antonios Antoniadis, Themis Gouleakis, Pieter Kleer, and Pavel Kolev. 2020.

Secretary and online matching problems with machine learned advice. Advances
in Neural Information Processing Systems 33 (2020), 7933–7944.

[9] Unnar Th Bachmann, Magnús M Halldórsson, and Hadas Shachnai. 2013. Online

selection of intervals and t-intervals. Information and Computation 233 (2013),

1–11.

[10] Magnus Berg, Joan Boyar, Lene M Favrholdt, and Kim S Larsen. 2024. Complex-

ity Classes for Online Problems with and without Predictions. arXiv preprint
arXiv:2406.18265 (2024).

[11] A. Borodin and R. El-Yaniv. Cambridge: Cambridge University Press, 1998. Online

Computation and Competitive Analysis.

[12] Allan Borodin and Christodoulos Karavasilis. 2023. Any-order online interval

selection. In International Workshop on Approximation and Online Algorithms.
Springer, 175–189.

[13] Joan Boyar, Lene M Favrholdt, Shahin Kamali, and Kim S Larsen. 2023. Online in-

terval scheduling with predictions. In Algorithms and Data Structures Symposium.

Springer, 193–207.

[14] Joan Boyar, Lene M Favrholdt, Christian Kudahl, Kim S Larsen, and Jesper W

Mikkelsen. 2017. Online algorithms with advice: A survey. ACM Computing
Surveys (CSUR) 50, 2 (2017), 1–34.

[15] Marek Elias, Haim Kaplan, Yishay Mansour, and Shay Moran. 2024. Learning-

Augmented Algorithms with Explicit Predictors. arXiv preprint arXiv:2403.07413
(2024).

[16] Yuval Emek, Magnús M Halldórsson, and Adi Rosén. 2016. Space-constrained

interval selection. ACM Transactions on Algorithms (TALG) 12, 4 (2016), 1–32.
[17] Dror G Feitelson, Dan Tsafrir, and David Krakov. 2014. Experience with using

the parallel workloads archive. J. Parallel and Distrib. Comput. 74, 10 (2014),

2967–2982.

[18] Virginie Gabrel. 1995. Scheduling jobs within time windows on identical parallel

machines: New model and algorithms. European Journal of Operational Research
83, 2 (1995), 320–329.

[19] Juan A Garay, Inder S Gopal, Shay Kutten, Yishay Mansour, and Moti Yung.

1997. Efficient on-line call control algorithms. Journal of Algorithms 23, 1 (1997),
180–194.

[20] Elena Grigorescu, Young-San Lin, and Maoyuan Song. 2024. A Simple Learning-

Augmented Algorithm for Online Packing with Concave Objectives. arXiv
preprint arXiv:2406.03574 (2024).

[21] Gupta, Lee, and Leung. 1979. An optimal solution for the channel-assignment

problem. IEEE Trans. Comput. 100, 11 (1979), 807–810.
[22] Nicholas G Hall and Michael J Magazine. 1994. Maximizing the value of a space

mission. European journal of operational research 78, 2 (1994), 224–241.

[23] Jon Kleinberg and Eva Tardos. 2006. Algorithm design. Pearson Education India.

[24] Antoon WJ Kolen, Jan Karel Lenstra, Christos H Papadimitriou, and Frits CR

Spieksma. 2007. Interval scheduling: A survey. Naval Research Logistics (NRL)
54, 5 (2007), 530–543.

[25] Mikhail Y Kovalyov, Chi To Ng, and TC Edwin Cheng. 2007. Fixed interval

scheduling: Models, applications, computational complexity and algorithms.

European journal of operational research 178, 2 (2007), 331–342.

[26] Richard J Lipton and Andrew Tomkins. 1994. Online Interval Scheduling.. In

SODA, Vol. 94. 302–311.
[27] Thodoris Lykouris and Sergei Vassilvitskii. 2021. Competitive caching with

machine learned advice. Journal of the ACM (JACM) 68, 4 (2021), 1–25.
[28] Michael Mitzenmacher and Sergei Vassilvitskii. 2020. Algorithms with Predic-

tions. In Beyond the Worst-Case Analysis of Algorithms, Tim Roughgarden (Ed.).

Cambridge University Press, 646–662. https://doi.org/10.1017/9781108637435.037

[29] Serge Plotkin. 1995. Competitive routing of virtual circuits in ATM networks.

IEEE Journal on Selected Areas in Communications 13, 6 (1995), 1128–1136.

https://algorithms-with-predictions.github.io/
https://doi.org/10.1017/9781108637435.037

[30] Manish Purohit, Zoya Svitkina, and Ravi Kumar. 2018. Improving online algo-

rithms via ML predictions. Advances in Neural Information Processing Systems 31
(2018).

[31] Dhruv Rohatgi. 2020. Near-optimal bounds for online caching with machine

learned advice. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium

on Discrete Algorithms. SIAM, 1834–1845.

[32] Andrew Tomkins. 1995. Lower bounds for two call control problems. Information
processing letters 56, 3 (1995), 173–178.

[33] Gerhard J Woeginger. 1994. On-line scheduling of jobs with fixed start and end

times. Theoretical Computer Science 130, 1 (1994), 5–16.

	Abstract
	1 Introduction
	2 Problem Setting, Definitions and Discussion
	3 Irrevocable Acceptances
	4 Revocable Acceptances
	5 Experimental Results
	Acknowledgments
	References

