
Online Fair Division under Stochastic Inputs

Christodoulos Karavasilis

April 2021

1 Introduction

We consider an online fair division problem, with T indivisible items arriving one by one and
having to be allocated to n (offline) agents. In each time step t ∈ [T ], a new item arrives, and it
must be irrevocably assigned to an agent. Each agent i has a valuation function vi that assigns a
value to every item. We consider additive valuation functions where an agent’s valuation of the
bundle of items assigned to them is the sum of the utility assigned to each item. The online setting
for this classical fair division problem is motivated by applications such as food banks [Ale+15],
or a company’s allocation of computing resources amongst its employees. More information on
the different variations of online fair division can be found in a survey by Aleksandrov and Walsh
[AW20]. The quality of a solution to this problem is measured in terms of efficiency and fairness.
Some algorithms sacrifice one for the other, while ideally we would satisfy both. The trade-off
between the two has been investigated both for the offline version of the problem where the
entire utility profile is known in advance [Car+19], and more recently in the online setting as
well [ZP20]. As is often the case with theoretical work, worst-case performance against powerful
adversaries is what is usually considered. Still, the performance of algorithms on more realistic
inputs is worth investigating. This is sometimes achieved by relaxing the power of the adversary
or assuming some structure on the input. This is an experimental study comparing various
well-known algorithms using various fairness and efficiency metrics, on inputs generated from
artificial distributions and real data. We also try and motivate the use of algorithms that take
advantage of a known input structure.

2 Model

The classical online setting has the algorithm work against an adversary that chooses both the
input items and their order of arrival (usually picked in advance, without knowing the algorithm’s
random coin flips). In this problem, the adversary can be thought of as having to pick the utility
profile of each item. Motivated by the literature on online bipartite matching [Meh13; Fel+09],
we consider a model where input items are drawn independently from the same distribution. The
most relevant work is by Zeng and Psomas [ZP20], who consider this model exactly (and some
additional ones). Another way to think of this input model (instead of thinking about utility
profiles being drawn at each step) is the following: Consider all the m different item types, a
type being specified by a unique utility profile, that can arrive online. The algorithm has access
to all the different types, and their arrival rates, namely the amount of times we expect to see a
type arrive online after T steps. We will consider integral arrival rates, and w.l.o.g.1 we assume

1We can multiply a type as many times as its arrival rate, while giving it a new name.

1



each type has arrival rate 1. In each step, a new item is drawn i.i.d. from this known distri-
bution. This terminology is often used in the matching literature and it was also used by Zeng
and Psomas [ZP20]. Bogomolnaia et al [BMS21] considers a similar setting and extend [ZP20].
They point out the similarity with the stochastic models considered in the matching literature,
and explicitly define a competitive ratio for their setting. Another somewhat related paper that
aims to provide more practical results is by Sinclaire et al [Sin+20].

To the best of our knowledge, [ZP20] were the first to consider an algorithm for this model
(of course algorithms from the purely adversarial setting transfer here, and so do their guaran-
tees). There’s a striking resemblance between their algorithm and algorithms considered in the
matching literature [HMZ11], and it lies in line with the idea of solving an offline problem on
the ”expected” instance, and using that solution to guide the online allocation.

3 Metrics

The performance of different algorithms is evaluated with respect to the following efficiency and
fairness metrics:

Social Welfare: This is a purely efficiency metric, adding the total utility of all agents.

Envy: This a fairness metric, computing the maximum pair-wise envy amongst all pairs of
agents. We say that an agent i with bundle of items Ai envies agent j with bundle of items Aj ,
if ui(Aj) > ui(Ai).

Nash Social Welfare: A metric offering a balance between fairness and efficiency, is given
by the geometric mean of the utility valuations of the agents under an allocation (

∏
i∈[n](ui(Ai))

1
n

).

Maxmin: This is another fairness metric, denoting the minimum utility of an agent.

Using these metrics we see how each algorithm fares in terms of efficiency and fairness, and
we can compare them. It is not always possible to compare these empirical results with theo-
retical bounds, because an algorithm might have only been studied for a different variation of
the problem (divisible items, normalized valuations, etc) and a direct comparison might not be
very informative. Another reason such comparisons are hard, is because computing an optimal
solution to the offline instance is (sometimes) computationally hard, and we’re unable to get an
empirical competitive ratio to measure against theoretical bounds.

4 Algorithms

The algorithms used are some of the more commonly cited and studied. As in most online prob-
lems, these online algorithms run in polynomial time. Most of the following algorithms have the
additional feature that they are conceptually simple, and very attractive from an implementation
point of view.

Uniform Random. This algorithm allocates all items amongst the agents uniformly at random,
without taking any utilities under consideration. This algorithm was shown to have the vanishing
envy property (Envy/T goes to zero as T goes to infinity) [Ben+18] in the classical online setting.

2



Utility Greedy. This greedy algorithm tries to maximize the social welfare by allocating each
item to the agent with the highest utility. It’s easy to see this maximizies the social welfare, but
may starve some agents, especially if utilites aren’t normalized.

Proportional Random. This algorithm was inspired by the proportional algorithm for di-
visible goods in the classical adversarial setting, that allocates each agent a fraction of the item,
proportional to their utility (for agent i and item t, a fraction vit/

∑
j∈[n] vjt). We consider

a randomized variant that assigns the item to an agent with probability proportional to their
utility. Gorokh et al [Gor+20] showed that for the divisible case, proportional allocation pareto
dominates uniform allocation, and it achieves a competitive ratio of

√
n/2 with respect to the

NSW of an optimal allocation.

NSW Greedy. This greedy algorithms maximizes the Nash Social Welfare at each step. For
the divisible case, [Gor+20] also showed that this algorithm achieves a competitive ratio Ω(n).

The above algorithms are all blind with respect to the distributional information given to the
algorithm. The algorithm by Zeng and Psomas [ZP20] works by computing an allocation max-
imizing the NSW for the fractional version of the problem on the expected (distributional)
instance, and then using that fractional allocation as a guide to assign items online. When a new
item t arrives, assign it to an agent i with probability proportional to the fractional allocation
xit. The solution to the fractional (divisible) version of the problem is computed though convex
programming, specifically by computing a Fisher market equilibrium using the Eisenberg-Gale
convex program. In the offline setting, for the special case of binary utilities and indivisible
goods, Barman et al [BKV18], give a simple combinatorial algorithm for computing an alloca-
tion that maximizes NSW. Their algorithm takes as input any sub-optimal allocation, and then
through a series of greedy (chain)swaps of items between agents, incrementally improves the so-
lution. One could test an algorithm that finds a solution maximizing NSW on the distributional
(binary) instance, and use that as an online guide to (deterministically) assign each incoming
item to the agent its type was allocated to in the distributional instance. We leave this as future
work. Lastly, motivated by the idea of promised utilities [Gor+20], another algorithm worth
considering is using the aformentioned optimal offline allocation maximizing NSW, and having
each agent’s utility in that allocation used to showcase potentional, with agents having higher
remaining potential getting priority.

5 Experimental Results

Setup: We consider instances of n = 50 agents with T = 200 item types, and T items arriving
online. Each instance was created by drawing T items uniformly at random from a distribution.
We consider three different distributions, or utility profiles: Uniform distribution, where the
utility of an agent for each item is a uniform number in the range of [1, 20], Gaussian distribu-
tion, where the corresponding utilities follow the normal distribution with µ = 10, σ = 2, and
a distribution modeled by the real dataset Jester [Gol+01]. This real dataset contains users’
ratings of jokes on a scale [−10, 10]. This dataset was used in another experimental study on
online fair division [GKP21]. That paper also made the case for sampling from uniform dis-
tributions. The metrics reported were averaged over 1000 trials. Tables 1, 2, and 3, present
the experimental results for the uniform, Gaussian, and the real-data distributions respectively.
Each column highlights the best (worst) performing algorithm in green (red).

3



Algorithm SW Envy NSW Maxmin
Uniform Random 2100.68 117.32 33.22 1.66

Utility Greedy 3987.19 224.99 28.47 0.0
Proportional Random 2728.65 112.97 44.51 3.34

NSW Greedy 3820.88 14.58 76.16 58.36

Table 1: Results for uniform weight distribution. Columns correspond to the following efficiency
and fairness metrics: Social Welfare (SW), maximum pairwise envy (Envy), Nash Social Welfare
(NSW), minimum utility of any agent (Maxmin).

Algorithm SW Envy NSW Maxmin
Uniform Random 1890.04 87.77 31.54 2.82

Utility Greedy 2772.81 137.79 29.13 0.0
Proportional Random 1975.71 88.14 32.95 3.19

NSW Greedy 2583.07 12.24 51.44 39.74

Table 2: Results for Gaussian weight distribution.

Algorithm SW Envy NSW Maxmin
Uniform Random 1758.94 104.27 26.51 0.52

Utility Greedy 3116.04 339.65 8.9 0.0
Proportional Random 1947.44 101.97 28.92 0.49

NSW Greedy 2564.91 18.77 49.91 33.13

Table 3: Results on the real dataset Jester.

All tables paint a similar picture. Utility Greedy always achieves the highest utility, as ex-
pected, while doing very poorly in terms of fairness and performing the worst across all fairness
metrics. Uniform Random achieves the lowest social welfare, not surprising given how utility-
unaware it is. Uniform Random and Proportional Random perform very similar in all fairness
metrics. Lastly, NSW Greedy (NSWG), outperforms every other algorithm in terms of fairness,
while achieving near-optimal social welfare. Looking at the Maxmin metric, it is noteworthy
that all algorithms except NSWG allow for agents that get next to nothing, a fact that might
not be acceptable in certain applications. Looking at the Envy metric for NSWG, we see that
the average maximum fairness amongst agents is roughly the same as the expected utility of an
item. This seems to suggest that NSWG approximately satisfies the EF1 fairness requirement.
Overall, for non-adversarial instances, it looks like a simple greedy algorithm maximizing NSW
can offer great performance, maintaining fairness while achieving near-optimal efficiency.

6 Summary & Open Directions

We presented an experimental study for the problem of online fair division of indivisible items in a
relaxed online model that doesn’t generate the most pessimistic adversarial examples, but aims at
modeling real inputs more accurately, assuming we have access to a distribution from which items
are drawn. This isn’t an unrealistic assumption as past data can be used to predict the future,
and this model has also been used in the context of other problems. A very common assumption
that we didn’t extensively discuss is the idea of having normalized utilities. That assumption has

4



been used to break previous barriers [GPT20], and its overall necessity and practical justification
has been argued for [Gor+20]. Therefore it makes sense to extend such an experimental study to
the normalized case. It’s easy to imagine many additional directions, such as items arriving from
different distributions (similar to the prophet inequality setting), performance as the number of
items increases, both agents and items arriving online, restricted deletion of items, and of course,
designing algorithms that take advantage of the known distribution. Lastly, we think another
promising direction is using algorithms with advice [MV20]. These would be algorithms equipped
with error-prone predictions about future input. Similar to how [Gor+20] uses promised utilities
from uniform allocation in the context of divisible items, promised utilities could also be used
assuming we have predictions about different metrics in some optimal allocation.

References

[Gol+01] Ken Goldberg et al. “Eigentaste: A constant time collaborative filtering algorithm”.
In: information retrieval 4.2 (2001), pp. 133–151.

[Fel+09] Jon Feldman et al. “Online stochastic matching: Beating 1-1/e”. In: 2009 50th Annual
IEEE Symposium on Foundations of Computer Science. IEEE. 2009, pp. 117–126.

[HMZ11] Bernhard Haeupler, Vahab S Mirrokni, and Morteza Zadimoghaddam. “Online stochas-
tic weighted matching: Improved approximation algorithms”. In: International work-
shop on internet and network economics. Springer. 2011, pp. 170–181.

[Meh13] Aranyak Mehta. “Online matching and ad allocation”. In: (2013).

[Ale+15] Martin Aleksandrov et al. “Online fair division: Analysing a food bank problem”. In:
arXiv preprint arXiv:1502.07571 (2015).

[BKV18] Siddharth Barman, Sanath Kumar Krishnamurthy, and Rohit Vaish. “Greedy al-
gorithms for maximizing Nash social welfare”. In: arXiv preprint arXiv:1801.09046
(2018).

[Ben+18] Gerdus Benade et al. “How to make envy vanish over time”. In: Proceedings of the
2018 ACM Conference on Economics and Computation. 2018, pp. 593–610.

[Car+19] Ioannis Caragiannis et al. “The unreasonable fairness of maximum Nash welfare”. In:
ACM Transactions on Economics and Computation (TEAC) 7.3 (2019), pp. 1–32.

[AW20] Martin Aleksandrov and Toby Walsh. “Online fair division: A survey”. In: Proceedings
of the AAAI Conference on Artificial Intelligence. Vol. 34. 09. 2020, pp. 13557–13562.

[GPT20] Vasilis Gkatzelis, Alexandros Psomas, and Xizhi Tan. “Fair and Efficient Online Al-
locations with Normalized Valuations”. In: arXiv preprint arXiv:2009.12405 (2020).

[Gor+20] Artur Gorokh et al. “Online Nash Social Welfare via Promised Utilities”. In: arXiv
preprint arXiv:2008.03564 (2020).

[MV20] Michael Mitzenmacher and Sergei Vassilvitskii. “Algorithms with predictions”. In:
arXiv preprint arXiv:2006.09123 (2020).

[Sin+20] Sean R Sinclair et al. “Sequential Fair Allocation of Limited Resources under Stochas-
tic Demands”. In: arXiv preprint arXiv:2011.14382 (2020).

[ZP20] David Zeng and Alexandros Psomas. “Fairness-efficiency tradeoffs in dynamic fair di-
vision”. In: Proceedings of the 21st ACM Conference on Economics and Computation.
2020, pp. 911–912.

5



[BMS21] Anna Bogomolnaia, Hervé Moulin, and Fedor Sandomirskiy. “On the fair division of
a random object”. In: Management Science (2021).

[GKP21] Yuan Gao, Christian Kroer, and Alex Peysakhovich. “Online Market Equilibrium
with Application to Fair Division”. In: arXiv preprint arXiv:2103.12936 (2021).

6


