
An Experimental Study of Algorithms for Online Bipartite

Matching

ALLAN BORODIN and CHRISTODOULOS KARAVASILIS, University of Toronto, Canada

DENIS PANKRATOV, Concordia University, Canada

We perform an experimental study of algorithms for online bipartite matching under the known i.i.d input
model with integral types. In the last decade, there has been substantial effort in designing complex algorithms
to improve worst-case approximation ratios. Our goal is to determine how these algorithms perform on more
practical instances rather than worst-case instances. In particular, we are interested in whether the ranking
of the algorithms by their worst-case performance is consistent with the ranking of the algorithms by their
average-case/practical performance. We are also interested in whether preprocessing times and implemen-
tation difficulties that are introduced by these algorithms are justified in practice. To that end, we evaluate
these algorithms on different random inputs as well as real-life instances obtained from publicly available
repositories. We compare these algorithms against several simple greedy-style algorithms. Most of the com-
plex algorithms in the literature are presented as being non-greedy (i.e., an algorithm can intentionally skip
matching a node that has available neighbors) to simplify the analysis. Every such algorithm can be turned
into a greedy one without hurting its worst-case performance. On our benchmarks, non-greedy versions of
these algorithms perform much worse than their greedy versions. Greedy versions perform about as well as
the simplest greedy algorithm by itself. This, together with our other findings, suggests that simplest greedy
algorithms are competitive with the state-of-the-art worst-case algorithms for online bipartite matching on
many average-case and practical input families. Greediness is by far the most important property of online
algorithms for bipartite matching.

CCS Concepts: • Mathematics of computing → Graph algorithms; Random graphs; • Theory of com-

putation → Online algorithms;

Additional Key Words and Phrases: Bipartite graphs, bipartite matching, stochastic input models, greedy
algorithms

ACM Reference format:

Allan Borodin, Christodoulos Karavasilis, and Denis Pankratov. 2020. An Experimental Study of Algorithms
for Online Bipartite Matching. J. Exp. Algorithmics 25, 1, Article 1.4 (March 2020), 37 pages.
https://doi.org/10.1145/3379552

Part of this work was done while the first author was at the Toyota Technological Institute at Chicago, and the last author

was a postdoc at the University of Toronto.

This research is supported by NSERC.

Authors’ addresses: A. Borodin and C. Karavasilis, University of Toronto, 10 King’s College Road, Toronto, ON, M5S 3G4,

Canada; emails: {bor, ckar}@cs.toronto.edu; D. Pankratov, Concordia University, 1515 Ste-Catherine St. W., Montreal, QC,

H3G 2W1, Canada; email: denis.pankratov@concordia.ca.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 Association for Computing Machinery.

1084-6654/2020/03-ART1.4 $15.00

https://doi.org/10.1145/3379552

ACM Journal of Experimental Algorithmics, Vol. 25, No. 1, Article 1.4. Publication date: March 2020.

https://doi.org/10.1145/3379552
mailto:permissions@acm.org
https://doi.org/10.1145/3379552

1.4:2 A. Borodin et al.

1 INTRODUCTION

One of the most active areas of theoretical computer science is the design and analysis of “effi-
cient” approximation algorithms. Often the objective is to establish the best approximation ra-
tio achieved by a polynomial time algorithm. Such analysis is often done in terms of adversarial
worst-case inputs, or in the case of stochastic analysis, in terms of a worst-case i.i.d.1 distributional
setting. However, such analysis can be and is challenged as to whether or not these worst-case ap-
proximation bounds reflect results for more “realistic” settings. There are many reasons for the
perceived and observed gap between theory and practice: asymptotic time bounds can hide large
constant factors, typical inputs are not worst-case inputs, and simple algorithms are much easier
to implement and are usually preferred (by practitioners) over more complex algorithms.
The most common approach to better understanding the gap between theory and practice is to

perform experimental studies with respect to data that better reflects reality.2 Following this ap-
proach, we wish to study relatively simple greedy and “greedy-like” algorithms for online bipartite
matching in comparison with more complex non-greedy algorithms that have been designed for a
known distribution stochastic setting. Since bipartite matching can be solved offline optimally and
relatively efficiently, we are able to precisely compute the observed competitive ratios. Greedy of-
fline algorithms for matching in general graphs have also been experimentally studied in the past
[19].
A matching is a collection of vertex-disjoint edges in a graph. The bipartite matching problem

asks to compute either exactly or approximately the cardinality of a maximum-size matching in a
given bipartite graph. In addition, we typically want to find such a matching itself. In the adver-
sarial online setting, one side of the bipartite graph is known in advance, while vertices from the
other side arrive one by one. When an online vertex arrives, you learn the identity of this vertex
together with identities of all its neighbors (all of them have to be on the other side of the partition).
When an online vertex arrives, an algorithm can pick one of its available neighbors to match this
vertex to. In the online setting, such a decision is final and cannot be changed in the future. Thus,
an online algorithm makes decisions without seeing any future input items but knowing the past
items. A typical application for maximum cardinality bipartite matching is the task of assigning
jobs to workers. Offline nodes correspond to workers, while online nodes correspond to jobs that
arrive online and have to be assigned (if possible) to some available appropriate worker. Not all
jobs can be executed by all workers and the goal is to assign as many jobs as possible.
The assumption that an online algorithm does not know anything about the future input is

quite pessimistic. In practical applications, instances of online maximum matching often need to
be solved over and over again. It is natural to assume that these instances come from some input
distribution. Thus, by observing past instances and collecting historical data we can estimate pa-
rameters of the input distribution. Armed with this historical data, an algorithm might perform
better on future online instances, because it will have some statistical information about online
input items. The known i.i.d. model describes a particular distribution family that has recently
received a lot of attention in the bipartite matching community, in part because it is widely appli-
cable in practice and can also be analyzed theoretically. The set of neighbors of an online vertex is
called its type. From historical data one can derive the frequency of certain types of online nodes
appearing in an input instance. This information is then aggregated into a data structure, called a

1i.i.d. = independent, identically distributed.
2This is not to say that the gap between theory and practice is restricted to experimental studies. Other approaches, such as

smoothed analysis, as initiated in [29], and perturbation stable instances, as initiated in [4], have also been proposed. Thus

far, these insightful analytical approaches have not yet been widely accepted. Arguably, experimental analysis remains the

most common method for trying to understand the comparative performance of algorithms.

ACM Journal of Experimental Algorithmics, Vol. 25, No. 1, Article 1.4. Publication date: March 2020.

Experimental Study of Online Bipartite Matching Algorithms 1.4:3

type graph. A type graph is a bipartite graph that on one side has nodes that appear as offline nodes
in input instances. On the other side, the type graph contains nodes of distinct types together with
a probability of each type occurring. Thus, for each type i we know the probability pi of a node of
this type arriving: pi ≥ 0 and

∑
i pi = 1. With n offline nodes, the number of distinct types is 2n ,

but typically not all types are present with positive probability. Oftentimes the set of types is very
sparse, and even linear in n. Once we have this type graph information, we assume that an online
bipartite instance graphG is generated according to the following randomized process. The set of
offline nodes ofG is the same as the set of offline nodes of the type graph, but each online node of
G is sampled from the same distribution p independently at random.
In terms of the jobs and workers application, the known i.i.d. model corresponds to each job

having a type which determines a set of workers that can work on that job. Based on past input
instances, one can derive how frequently a job of a given type arrives. Then the input instance is
assumed to be generated by simply sampling types of jobs independently from this distribution.
Analyzing an algorithm with this extra information is equivalent to analyzing the algorithm in the
known i.i.d. model.
Many other applications of online bipartite matching exist. For example, in the kidney exchange

problem [28], the offline nodes correspond to kidney recipients and online nodes correspond to
donors. The donors arrive online and edges represent compatibility constraints. Most bipartite
matching problems have weighted variations that model real-world applications more realistically
with internet advertising (e.g., Display Ads, AdWords) being a commonly studied case (see [23] for
a detailed introduction). In the task of assigning jobs to workers, an edge weight could represent
the profit of the assignment of the job to the corresponding worker. In this article, we study the
unweighted problem, which models compatibility constraints and remains an important research
topic for many applications.
In our study, we consider both synthetically generated type graphs as well as some type graphs

based on real-world applications. Our experimental study indicates that simple greedy and greedy-
like algorithms (that are unaware of the type graph) perform quite well in terms of the observed
competitive ratio when compared to the significantly more complex algorithms designed to ex-
ploit the given known type graph. That is, while the provable worst-case approximation ratios (in
expectation over the distribution) of these non-greedy algorithms are much better than what can
be achieved by the simple greedy-like algorithms we consider, there is a good reason why practi-
tioners might want to use simple greedy algorithms. The more complicated algorithms for known
type graphs are stated as being non-greedy (in the sense that an online node is not necessarily
matched whenever possible). However, we show that “greediness” can be easily achieved with-
out loss of generality and, moreover, greediness is necessary for any algorithm to achieve good
performance in practice.
The remainder of the article is organized as follows. In Section 2, we describe the set of algo-

rithms under consideration. This includes two simple greedy algorithms (namely, a simple deter-
ministic greedy algorithm and the randomized Ranking algorithm [17]), and five state-of-the-art
algorithms for the known type graph model with integral types. Some of these algorithms have
only been informally described in the literature and we provide a more detailed description when
needed. We also consider a linear time two-pass “online” algorithm [11], which experimentally is
almost a proxy for obtaining optimality. In Section 3, we discuss the datasets we use as well as the
experimental setup. Section 4 provides the experimental results in terms of the observed competi-
tive ratio. We also provide some timing results verifying that indeed the simple linear time greedy
algorithms are significantly faster than the algorithms designed for known type graphs. Finally, in
Sections 5 and 6, we summarize the experimental results drawing some overall conclusions from
our experimental study.

ACM Journal of Experimental Algorithmics, Vol. 25, No. 1, Article 1.4. Publication date: March 2020.

1.4:4 A. Borodin et al.

2 PRELIMINARIES

We consider bipartite graphsG = (L,R,E) with bi-partition (L,R). We shall often refer to the nodes
in L as the left nodes, or the left-hand-side (LHS, for short) nodes, or the online nodes. Similarly,
the nodes in R are referred to as the right nodes, the right-hand-side (RHS) nodes, or the offline
nodes.
In the online version of bipartite matching, the right side is known to the algorithm in advance.

The left-hand-side nodes are revealed one-by-one in a given order. When an online node is re-
vealed, all its neighbors are revealed as well. After each arrival of an online node, the algorithm
makes an irrevocable decision on which neighbor to match the current online node (if at all).
Without loss of generality, we can also allow for the offline nodes to be associated with different
capacities. A node having capacity c means it can be matched at most c times. This is achieved by
generating c copies of that node before running the algorithm.

2.1 Definitions and Notation

Let M be a matching in a bipartite graph G = (L,R,E). We say � ∈ L participates in the matching
M if there is r ∈ R such that {�, r } ∈ M . We write M (�) to denote such r . If � does not participate
inM , then we defineM (�) := ⊥. The same notions are defined for r ∈ R symmetrically.
We shall measure the performance of an algorithm in one of two ways: in terms of the observed

asymptotic approximation ratio, or in terms of the fraction of the matched offline nodes.

Definition 2.1. Let ALG be an online algorithm (possibly randomized) solving the bipartite
matching problem over random graphs Gn parameterized by the input size n = |R |. We write
ALG(Gn) to denote the expected size of the matching (random variable) that is constructed by
running ALG on Gn . We write OPT(Gn) to denote the size of a maximum matching in Gn . The
asymptotic approximation ratio of ALG with respect toGn is defined as

ρ (ALG,Gn) = lim inf
n→∞

E(ALG(Gn))

E(OPT(Gn))
.

The fraction of matched offline nodes of ALG with respect toGn is defined as

μ (ALG,Gn) = lim inf
n→∞

E(ALG(Gn))

n
.

The expectations above are taken over the randomness of the algorithm and the randomness of
the input.

2.2 Known I.I.D. Model and Integral Types

In the known i.i.d. model, one first chooses a type graph G = (L,R,E) and a distribution p : L →
[0, 1] on the LHS nodes. In this case, the nodes in L are also referred to as types. The type graph
together with the distribution is given to the algorithm in advance. In the known i.i.d. model, an

actual input instance Ĝ = (L̂,R, Ê) is a random variable and is generated from G as follows. The

right-hand side R is the same in G and Ĝ, but the left-hand-side of Ĝ consists ofm i.i.d. samples

from p. Thus, say a given node �̂ ∈ L̂ has type � ∈ L, then the neighbors of �̂ in Ĝ are the same as

the neighbors of � inG. The graph Ĝ is presented to the algorithm in the vertex arrival model (the
order of vertices is the same as the order in which they were generated). Note that a particular

type � can be absent altogether or can be repeated a number of times in Ĝ. We refer to Ĝ as the
instance graph. Note that the instance graph is fully specified by a pair (G,v) where G is a type
graph and v is a vector of types, i.e., v ∈ Lm . When G is clear from the context, we will refer to v
as an instance. The probability of seeing a particular vector v is given by p (v) =

∏m
i=1 p (vi).

ACM Journal of Experimental Algorithmics, Vol. 25, No. 1, Article 1.4. Publication date: March 2020.

Experimental Study of Online Bipartite Matching Algorithms 1.4:5

Table 1. Algorithms with their Respective

Provable Competitive Ratios

Algorithm Worst-case analysis
BrubachEtAl 0.7299 [8]
JailletLu 0.7293 (1 − 2/e2) [15]
ManshadiEtAl 0.7025 [21]
BahmaniKapralov 0.6990 [3]
Ranking 0.6961 [20]

FeldmanEtAl 0.6702 (1−2/e2

4/3−2/3e
) [12]

Category-Advice 0.6321 (1 − 1/e) [11]
3-Pass 0.6321 (1 − 1/e)) [6]
Greedy 0.6321 (1 − 1/e) [17]
MinDegree 0.6321 (1 − 1/e)
KarpSipser 0.6321 (1 − 1/e)

A known i.i.d. problem is said to have integral types if the expected number of times a particular
type occurs is integral. We will denote the number of times type � occurs in an instance by the
random variable Z� . Then the condition of integral types is equivalent to E(Z�) = p (�)m ∈ Z.
While the parameters |L|, |R |, andm can all be different, the most common setting ism = |L|. This
assumption together with integral types implies that without loss of generality one can take p
to be the uniform distribution on L (by duplicating types as necessary). An additional common
assumption is that |L| = |R |. In that case, we talk about a single parameter n = |L| = |R | =m.
In our empirical evaluations, we only consider integral types, so when we say “known i.i.d.

model” we mean the known i.i.d. model with integral types and uniform distribution, unless stated
otherwise.

2.3 Algorithms

In this section, we describe all algorithms that are included in our experimental study:

(1) SimpleGreedy.
(2) Ranking due to Karp et al. [17].
(3) FeldmanEtAl due to Feldman et al. [12].
(4) BahmaniKapralov due to Bahmani and Kapralov [3].
(5) ManshadiEtAl due to Manshadi et al. [21].
(6) JailletLu due to Jaillet and Lu [15].
(7) BrubachEtAl due to Brubach et al. [8].
(8) Category-Advice due to Dürr et al. [11].
(9) 3-Pass due to Borodin et al. [6].
(10) MinDegree.
(11) KarpSipser due to Karp and Sipser [16].
(12) Offline optimal algorithm that runs Edmonds-Karp flow algorithm on the canonical flow

network associated with a bipartite graph. Sometimes, we initialize the algorithm by a
solution computed by one of the other algorithms.

The provable competitive ratios of these algorithms are shown in Table 1. We begin by presenting
several algorithms that work in the online adversarial setting. This is followed by the description
of algorithms that work in the known i.i.d. setting, and other algorithms that do not fit into online

ACM Journal of Experimental Algorithmics, Vol. 25, No. 1, Article 1.4. Publication date: March 2020.

1.4:6 A. Borodin et al.

or known i.i.d. settings. Observe that algorithms that are designed for the online adversarial setting
also work in the known i.i.d. setting—they just ignore the side information, i.e., the type graph.
It is worth noting that preprocessing is the running time bottleneck of algorithms using the type
graph and the matching phase is executed in linear time for all algorithms.

2.3.1 Algorithms for Online Adversarial Setting. We start with a helper subroutine, which we
call GreedyWithPermutation. This online algorithm accepts the RHS R and a permutation π of
R. The rank of r ∈ R, denoted by rkπ (r), is the position of r when in the arrangement of R accord-
ing to π . The GreedyWithPermutation algorithm matches each online node with an available
neighbor of smallest rank (if there is at least one available neighbor). The pseudocode is presented
in Algorithm 1.

ALGORITHM 1: A helper algorithm.

procedure GreedyWithPermutation(G = (L,R,E),π : R → R)
for all � ∈ L do

When � arrives, let N (�) be the set of unmatched neighbors of �.
if N (�) � ∅ then

Match � with argmin{rkπ (r) | r ∈ N (�)}.

SimpleGreedy. Next, we describe the simplest online algorithm—SimpleGreedy. The Simple-
Greedy algorithm is obtained by fixing a permutation π on the RHS and applying GreedyWith-
Permutation. While π could be any fixed permutation (not depending on the type graph), for
concreteness, we define it to be the following. The RHS nodes are labeled with strings over some
alphabet. We define πalphabet to be the ordering of the RHS nodes alphabetically according to their
labels. Thus, formally SimpleGreedy(G)=GreedyWithPermutation(G,πalphabet). A tight analy-
sis of the performance of Greedy in the random order and known i.i.d. models can be found in
[14].

Remark 2.1. A word of caution with regard to the terminology: SimpleGreedy should not be
confused with an arbitrary greedy algorithm. When we say that an algorithm is greedy, we mean
that it has the following property: whenever a given online node has at least one unmatched neigh-
bor, this online node is guaranteed to be matched. This property alone is not sufficient to specify
the algorithm, since the algorithm also needs to break ties when several unmatched neighbors are
available. SimpleGreedy is a very specific greedy algorithm, which breaks ties according to an
alphabetical order. It turns out that any algorithm for online bipartite matching can be turned into
a greedy one without hurting its approximation ratio. In particular, without loss of generality, an
optimal algorithm is greedy. Thus, the whole area of designing good online algorithms for bipartite
matching revolves around designing better and better tie-breaking rules. We discuss this in more
detail below when we talk about more advanced algorithms for the known i.i.d model.

Ranking. The next algorithm is Ranking due to Karp et al. [17]. Unlike the previous algorithms,
Ranking is randomized. Let SR denote the set of all permutations of the RHS R. Ranking samples
π uniformly at random from SR prior to seeing any online nodes. This is followed by running
GreedyWithPermutation with π as the input permutation—see Algorithm 2. The original paper
contained a bug in the proof of the algorithm’s performance and alternative proofs were later
published [10, 14].

2.3.2 Algorithms for Known I.I.D. Setting. We start with a special subroutine. Consider a bipar-
tite graph of maximum degree 2, that is, a set of paths and cycles. Such a graph can be decomposed

ACM Journal of Experimental Algorithmics, Vol. 25, No. 1, Article 1.4. Publication date: March 2020.

Experimental Study of Online Bipartite Matching Algorithms 1.4:7

ALGORITHM 2: A randomized algorithm due to Karp et al. [17]

procedure Ranking(G = (L,R,E))
Sample a permutation π : R → R uniformly at random.
Run GreedyWithPermutation(G,π).

into two matchings, which we will call blue and red. Strictly speaking, the blue subgraph returned
by the subroutine is not always a matching; sometimes it is a matching plus some extra edges.
However, the blue subgraph always satisfies the property that there is at most one edge incident
on each LHS node, i.e., the blue subgraph is a “matching on the left.” For simplicity and slightly
abusing notation, we shall sometimes refer to both blue and red subgraphs as matchings. How-
ever, for clarity, we can say that the blue edges form a “semi-matching.” When we actually run the
Feldman et al. algorithm on an i.i.d. instance, the blue edges become a matching as determined by
the assignment of the online node. We present a particular decomposition in Algorithm 3, which
we call BlueRedDecomposition and which is due to Feldman et al. [12]. This decomposition is
used in several algorithms that we consider later.

ALGORITHM 3: Blue red decomposition due to Feldman et al. [12]. Applies to bipartite graphs
of maximum degree 2.

procedure BlueRedDecomposition(G = (L,R,E))
Color edges of the cycles alternating blue and red.
Color edges of the odd-length paths alternating blue and red, with more blue than red.
For the even-length paths that start and end with nodes in R, alternate blue and red.
For the even-length paths that start and end with nodes in L, color the first two edges blue,

then alternate red, blue, red, blue, and so on.
return (semi-matching formed by blue edges, matching formed by red edges).

FeldmanEtAl.The first algorithm to ever beat the 1 − 1/e barrier of the online adversarial model
in the known i.i.d. model is due to Feldman et al. [12]. The algorithm has a preprocessing stage
and the online stage. In the preprocessing stage, the algorithm solves the following modification
of the standard network flow problem for biparite matching: add two new nodes s and t , add
directed edges each from s to r for each r ∈ R, and add directed edges from � to t for each � ∈ L,
orient the rest of the edges in G from RHS to LHS (these edges will be called the graph edges).
Each outgoing edge from s , as well as each incoming edge into t , has capacity 2. The rest of the

edges have capacities 1. We denote this flow network by G̃. The algorithm of Feldman et al. finds
an integral optimal solution to this network flow problem. The subgraph induced by the graph
edges with positive flow on them has maximum degree 2. The last step of the preprocessing stage
is to apply BlueRedDecomposition to this subgraph to obtain a blue semi-matching Mb and a
red matching Mr . In the online stage, the algorithm receives online nodes in the i.i.d. fashion and
matches them as follows: if a node of type i arrives for the first time, the algorithm tries to match
it to Mb (i). If Mb (i) = ⊥ or Mb (i) has been previously matched, the algorithm leaves the current
node unmatched. If a node of type i arrives for the second time, the algorithm tries to match it to
Mr (i). Otherwise, a node of type i is left unmatched. See Algorithm 4 for the pseudocode.

BahmaniKapralov. Bahmani and Kapralov [3] observed that the performance of the Feldman
et al. algorithm can be improved by modifying the preprocessing stage. Recall, that G refers to

the type graph, G̃ to the associated flow network in FeldmanEtAl, and f is an integral max flow

in G̃. Consider a subset A of L and define Az to be those vertices in A such that the amount of

ACM Journal of Experimental Algorithmics, Vol. 25, No. 1, Article 1.4. Publication date: March 2020.

1.4:8 A. Borodin et al.

ALGORITHM 4: The known i.i.d. algorithm of Feldman et al. [12].

procedure FeldmanEtAl(G = (L,R,E) – type graph)
� Preprocessing stage:

Set up flow network G̃ = (Ṽ , Ẽ), where

Ṽ = L ∪ R ∪ {s, t }
Ẽ = {(s, r) | r ∈ R} ∪ {(�, t) | � ∈ L} ∪ {(r , �) | {r , �} ∈ E}.
Set up capacities cap (s, r) = 2, cap (�, t) = 2 for � ∈ L, r ∈ R and cap (r , �) = 1 for (r , �) ∈ Ẽ.
Solve the flow network to obtain a maximum integral flow f .
Let G ′ denote the bipartite subgraph induced by edges {r , �} such that f (r , �) = 1.
Set (Mb ,Mr) = BlueRedDecomposition(G ′).

� Online stage:
for all arriving online nodes u do

Let � denote the type of u.
if it is the first arrival of type � andMb (�) � ⊥ andMb (�) is unmatched then

Match u toMb (�).

if it is the second arrival of type � andMb (�) � ⊥ andMb (�) is unmatched then
Match u toMr (�).

flow through them in f is z for z ∈ {0, 1, 2}. In other words, no flow goes through vertices in A0,
one unit of flow goes through each vertex in A1, and two units of flow go through each vertex in
A2. The main insight of Bahmani and Kapralov is that the more balanced the flow is the better,
i.e., we want A1 to be as large as possible. They give a procedure that redirects some of the flow
fromA2 intoA0 without affecting the optimality of the flow. The procedure actually works on two
sets A ⊆ L and B ⊆ R and can be done to balance the flow either on the left or on the right. We
first describe the procedure and then show which sets to apply it to in order to improve on the
algorithm of Feldman et al.
Let us first define the procedure to balance the left side (the right side can be handled similarly).

The algorithm sets up a completely new flow network Ĝ as follows: the vertex set of the network
consists ofA ∪ B together with two new vertices sA and tA. We add an edge (sA,a) of unit capacity
for each a ∈ A2 and an edge (a, tA) of unit capacity for each a ∈ A0. For each edge (b,a) such that
a ∈ A,b ∈ B, and f (b,a) = 1, we add an edge (a,b) to the flow network of unit capacity (note that

this essentially reverses the edges with positive flow in G̃). For each (b,a) in G̃ with f (b,a) = 0 (in

G̃), we add an edge (b,a) to Ĝ of unit capacity (note that this essentially preserves the graph edges

in G̃ that do not carry any flow). Let fA denote an integral maximum flow in the newly constructed
flow network. If we use the convention that f (a,b) = −f (b,a), then by adding fA to f on edges
(b,a) and fixing the flow on edges (a, t) accordingly, we essentially “undo” some flow going into

A2 nodes and replace it with a flow going into A0 nodes in G̃.
Perhaps, this is best illustrated with a small example. Consider K4,2 type graph, where L =
{�1, �2, �3, �4} and R = {r1, r2}. One possible max flow that the Feldman et al. algorithm finds for
the corresponding network is to send two units of flow through r1 and into �1, �2 and to send
two units of flow through r2 and into �1, �2. Call this flow f . Consider A = L and B = R. Then
A2 = {�1, �2} and A0 = {�3, �4}. Solving the new flow problem corresponding to the balancing pro-
cedure, we find that we can send one unit of flow through �1 to r1 and to �3 and another unit of
flow through �2 to r2 and to �4. Thus, this new flow can be used to augment f : it undoes one unit
of flow from r1 to �1 and replaces it with one unit of flow from r1 to �3, and it undoes one unit of
flow from r2 to �2 and replaces it with one unit of flow from r2 to �4. This results in a new flow

ACM Journal of Experimental Algorithmics, Vol. 25, No. 1, Article 1.4. Publication date: March 2020.

Experimental Study of Online Bipartite Matching Algorithms 1.4:9

being completely balanced on the LHS, i.e., A1 = L. The two balancing procedures are described
in Algorithms 5 and 6.

ALGORITHM 5 : The balancing procedure on the LHS due to Bahmani and Kapralov [3] that
takes as input type graph G, a maximum integral flow for the flow network from Feldman et al.
and two sets A ⊆ L and B ⊆ R. Returns a flow fA in the new flow network that can be used to
define a more balanced f .

procedure BalanceLeft(G = (L,R,E),A,B, f)

Set up flow network ĜA = (V̂A, ÊA), where

V̂A = A ∪ B ∪ {sA, tA}
ÊA = {(sA,a) | a ∈ A2} ∪ {(a, tA) | a ∈ A0} ∪ {(a,b) | f (b,a) = 1} ∪ {(b,a) | f (b,a) = 0}.
Set capacities of all edges in ÊA to 1.
Solve the flow network to obtain a maximum integral flow fA.
return fA.

ALGORITHM 6 : The balancing procedure on the RHS due to Bahmani and Kapralov [3] that
takes as input type graph G, a maximum integral flow for the flow network from Feldman et al.,
and two sets A ⊆ L and B ⊆ R. Returns a flow fA in the new flow network that can be used to
define a more balanced f .

procedure BalanceRight(G = (L,R,E),A,B, f)

Set up flow network ĜB = (V̂B , ÊB), where

V̂B = A ∪ B ∪ {sB , tB }
ÊB = {(sB ,b) | b ∈ B0} ∪ {(b, tB) | b ∈ B2} ∪ {(a,b) | f (b,a) = 1} ∪ {(b,a) | f (b,a) = 0}.
Set capacities of all edges in ÊB to 1.
Solve the flow network to obtain a maximum integral flow fB .
return fB .

Now, let (S,T) be the min cut in the flow network G̃ obtained in a standard way: S is defined to
be the set of nodes reachable from s in the residual network defined by max flow f . Define SL =

S ∩ L, SR = S ∩ R,TL = T ∩ L,TR = T ∩ R. The Bahmani and Kapralov algorithm computes fL =

BalanceLeft(G,TL,TR , f) and fR = BalanceRight(G, SL, SR , f). It then creates a subgraph of
G consisting of those edges {r , �} that have f (r , �) + fL (r , �) + fR (r , �) > 0 (using the convention
f (u,v) = −f (v,u)). The rest is exactly as in Feldman et al.—use BlueRedDecomposition on this
subgraph and use the resulting blue and red matchings in the online stage in the same way as
Feldman et al. See Algorithm 7 for the pseudocode.

ManshadiEtAl. The next algorithm is due to Manshadi et al. [21] and it is based on the idea
of a fractional optimal solution. Fix an algorithm for obtaining an offline optimal solution (e.g.,
Edmonds-Karp). Consider all possible instances arising out of the given type graph G = (L,R,E).
Recall, that an instance can be described as a vector of types v ∈ Ln . We assume without loss of
generality that the expected number of arrivals of nodes of a given type � is bounded above by 1.
The matchingM given by the optimal algorithm can be viewed as an indicator vector of length |E |
indexed by edge names. This indicator vector specifies for each position {�, r } whether {�, r } is in
M or not. Abusing the notation, we denote this indicator vector by OPT(v). An optimal fractional
solution is given by the expected value of this indicator vector, i.e., fOPT =

∑
v ∈Ln p (v) OPT(v).

ACM Journal of Experimental Algorithmics, Vol. 25, No. 1, Article 1.4. Publication date: March 2020.

1.4:10 A. Borodin et al.

ALGORITHM 7: The known i.i.d. algorithm of Bahmani and Kapralov [3].

procedure BahmaniKapralov(G = (L,R,E) – type graph)
� Preprocessing stage:

Compute f as in Algorithm 4.
Compute the canonical (S,T) cut from f .
Set fL = BalanceLeft(G,TL,TR , f).
Set fR = BalanceRight(G, SL, SR , f).
Let G ′ be induced by edges {r , �} such that f (r , �) + fL (r , �) + fR (r , �) > 0 (using the con-

vention f (u,v) = −f (v,u)).
Set (Mb ,Mr) = BlueRedDecomposition(G ′).

� Online stage:
Same as in Algorithm 4.

Observe that fOPT ∈ [0, 1]E and for each edge {�, r } ∈ E, we have fOPT ({�, r }) = the probability
that edge {�, r } appears in an optimal matching.
Let W{�,r } denote the random variable indicating the event that {�, r } appears in an optimal

matching. Let Z� denote the number of online nodes generated of type �. For each �, we have∑
r :{�,r }∈E W{�,r } ≤ Z� . By taking the expectation of both sides, we have

∑
r :{�,r }∈E fOPT ({�, r }) ≤ 1

(using the assumption described above). For a given type � let r1, . . . , rk be its neighbors in G
ordered such that fOPT ({�, r1}) ≥ fOPT ({�, r2}) ≥ · · · ≥ fOPT ({�, rk }). Add a dummy node rk+1 and

define fOPT ({�, rk+1}) = 1 −
∑k

i=1 fOPT ({�, ri }). The dummy node simulates the event that � is not
matched in an optimal solution—for the purpose of the algorithm, the dummy node is always
considered to be matched before the online stage.
Now, fOPT ({�, ·}) defines a probability mass function (PMF) on the neighbors of �. The algo-

rithm of Manshadi et al. samples two random neighbors from this distribution during the online
stage in the following correlated fashion. Partition the interval [0, 1] into k + 1 consecutive non-
overlapping intervals Ip where the length of Ip is fOPT ({�, rp }). We denote this partition byI� . Also,
partition the interval [0, 1] into k + 1 consecutive non-overlapping intervals Jp where the length
of Jp is fOPT ({�, rp+1}) if p ≤ k and the length of Jk+1 is fOPT ({�, r1}). We denote this partition by
J� . In order to sample from the PMF on the neighbors of �, one could sample a uniform random
number between 0 and 1 and output the neighbor of � corresponding to the interval to which
the number belongs. If we do this procedure independently for I intervals and J intervals, we get
two independent samples. Instead, Manshadi et al. do the correlated sampling—a single number
is sampled between 0 and 1. Let Ip and Jq be the intervals in which this number falls. The two
neighbors returned by the procedure are the two neighbors of � corresponding to Ir and Jq . The
partitioning of [0, 1] into I intervals and J intervals was chosen so that there is as little overlap
between intervals corresponding to the same neighbor as possible.
When an online node of type � arrives, the algorithm of Manshadi et al. performs a correlated

sampling from I� and J� as described above. Let r�,1 and r�,2 denote the two samples returned
by the correlated sampling procedure. The algorithm tries to match the online node first to r�,1.
If r�,1 was matched previously, the algorithm tries to match the online node to r�,2. If r�,2 was
matched previously, the algorithm gives up on matching the online node. See Algorithm 8 for the
pseudocode. There is an outstanding issue of how to compute fOPT in practice. This is a difficult
problem, and rather than computing it exactly, Manshadi et al. suggest approximating it by the
Monte Carlo method—sample a number of instances, solve them optimally, and record the fraction
of times each edge appears in an optimal offline solution. This is whatwe do in our implementation,
as well (see Section 2.5).

ACM Journal of Experimental Algorithmics, Vol. 25, No. 1, Article 1.4. Publication date: March 2020.

Experimental Study of Online Bipartite Matching Algorithms 1.4:11

ALGORITHM 8: The known i.i.d. algorithm of Manshadi et al. [21].

procedure ManshadiEtAl(G = (L,R,E) – type graph)
� Preprocessing stage:

Compute a fractional optimal matching fOPT.
For each � construct the two partitions I� and J� .

� Online stage:
for all arriving online nodes u do

Let � denote the type of u.
Let r�,1 and r�,2 be the two neighbors of � returned by the correlated sampling procedure

performed on I� and J� as described in the text.
if r�,1 is unmatched then

Match u to r�,1.
else if r�,2 is unmatched then

Match u to r�,2.
else

Leave u unmatched.

JailletLu. Jaillet and Lu [15] introduced a template of algorithms called Random Lists Algo-
rithms, RLA for short, for online bipartite matching under the known i.i.d. input model. For type
�, define Ω� to be the set of all possible ordered (sub)lists of neighbors of � in the type graph. In the
preprocessing stage, an RLA constructs a distribution D� on Ω� for each � ∈ L. In the online stage,
when a node of type � arrives, the RLA samples a list of neighbors fromD� and matches the online
node to the first available neighbor according to that list. If there are no available neighbors in that
list, the online node is left unmatched. The pseudocode for this template appears in Algorithm 9.
In order to get an actual algorithm out of this template, one has to specify how D� are constructed
in the preprocessing step.

ALGORITHM 9: Random Lists Algorithm template due to Jaillet and Lu [15].

procedure RLA(G = (L,R,E) – type graph)
� Preprocessing stage:

For each � ∈ L construct a distribution D� on Ω� .
� Online stage:

for all arriving online nodes u do
Let � denote the type of u.
Sample a list of neighbors of � from Ω� according to D� .
if all neighbors in the list are matched then

Leave u unmatched.
else

Match u to the first available neighbor in the list.

Jaillet and Lu [15] also gave an actual algorithm based on this template, which we refer to as
JailletLu. Jaillet and Lu consider the following LP:

maximize
∑

�∈L,r ∈R f�,r
subject to

∑
�:{�,r }∈E f�,r ≤ 1 r ∈ R,∑
r :{�,r }∈E f�,r ≤ 1 � ∈ L,

f�,r ∈ [0, 2/3] � ∈ L, r ∈ R, {�, r } ∈ E.

(1)

ACM Journal of Experimental Algorithmics, Vol. 25, No. 1, Article 1.4. Publication date: March 2020.

1.4:12 A. Borodin et al.

A vertex solution f ∗ to this LP has the property that f ∗
�,r
∈ {0, 1/3, 2/3} for all � ∈ L, r ∈ R. Re-

strict the neighbors of � to only those r that have f ∗
�,r
> 0. There can be at most three neighbors,

since for such r we have f ∗
�,r
≥ 1/3. If

∑
r :{�,r }∈E f ∗

�,r
< 1, then add a dummy node d� and define

f ∗
�,d�
= 1 −∑r :{�,r }∈E f ∗

�,r
. Even after adding dummy nodes, each � has at most three neighbors.

Jaillet and Lu define D� such that it is supported only on lists of these restricted neighborhoods.
More specifically, if � has a single neighbor, then D� assigns unit weight to the list consisting of
that neighbor; if � has two neighbors r1, r2, then D� assigns probability f ∗

�,r1
to the list 〈r1, r2〉 and

probability f ∗
�,r2

to the list 〈r2, r1〉; if � has three neighbors r1, r2, r3, then D� assigns probability 1/6

to each permutation of r1, r2, r3. After that, JailletLu runs RLA with these distributions.

BrubachEtAl. Next we describe the state-of-the-art3 algorithm for the known i.i.d. input model
with integral arrival rates due to Brubach et al. [8]. This algorithm is (predictably) the most difficult
to explain and implement. It is a RLA-style algorithm. The preprocessing stage consists of five
steps:

(1) solve a special LP,
(2) round the solution,
(3) apply the first modification to the rounded solution,
(4) apply the second modification to the modified solution from the second step, and
(5) define distributions D� on Ω� for each � ∈ L.

Next, we describe each of these steps in detail. Step 1—Brubach et al. define and solve the
following LP:

maximize
∑

�∈L,r ∈R f�,r
subject to

∑
�:{�,r }∈E f�,r ≤ 1 r ∈ R,∑
r :{�,r }∈E f�,r ≤ 1 � ∈ L,

0 ≤ f�,r ≤ 1 − 1
e

� ∈ L, r ∈ R, {�, r } ∈ E,
f�1,r + f�2,r ≤ 1 − 1

e2
�1, �2 ∈ L, r ∈ R, {�1, r }, {�2, r } ∈ E,

(2)

The idea behind LP (2) is to introduce extra constraints to bring the optimal value of the objec-
tive down closer to the fractional optimal solution, while maintaining feasibility of the fractional
optimal solution. Let f ∗ denote an optimal solution to (2). Step 2 is to apply the rounding proce-
dure of Gandhi et al. [13] to 3f ∗, i.e., f ∗ multiplicatively scaled by 3. This results in an integral

vector f̃ such that f̃�,r ∈ {0, 1, 2, 3}. Then, Brubach et al. scale the rounded solution back down

and set h := f̃ /3. For completeness, we describe the rounding procedure here. Say an edge in our
bipartite graph is fractional if f ∗

�,r
� Z. While there are fractional edges remaining, repeat the fol-

lowing. Find either a cycle or a maximal path consisting only of fractional edges. Let P denote this
cycle/path, and partition it into two matchingsM1 andM2. Define

α = min
{
γ > 0 | (∃(i, j) ∈ M1 : f

∗
i, j + γ = �f ∗i, j �) ∧ (∃(i, j) ∈ M2 : f

∗
i, j − γ = � f ∗i, j �)

}
,

β = min
{
γ > 0 | (∃(i, j) ∈ M1 : f

∗
i, j − γ = � f ∗i, j �) ∧ (∃(i, j) ∈ M2 : f

∗
i, j + γ = �f ∗i, j �)

}
.

With probability β/(α + β round f ∗i, j to f ∗i, j + α for all {i, j} ∈ M1 and to f ∗i, j − α for all {i, j} ∈ M2.

With complementary probability, round f ∗i, j to f ∗i, j − β for all {i, j} ∈ M1 and to f ∗i, j + β for all
{i, j} ∈ M2

Step 3—the first modification to h. Restrict the original type graph to a subgraph of edges {�, r }
such that h�,r > 0. This graph is sparse—each online node can have at most three neighbors. In
Step 3, the goal is to break certain 4-cycles—see Figure 1 for details. Formally, this procedure is

3The state-of-the-art is in terms of the best provable competitive ratio over worst-case type graphs.

ACM Journal of Experimental Algorithmics, Vol. 25, No. 1, Article 1.4. Publication date: March 2020.

Experimental Study of Online Bipartite Matching Algorithms 1.4:13

Fig. 1. Three possible cycles induced by h. The thin edges correspond to h�,r = 1/3 and thick edges corre-

spond to h�,r = 2/3.

done by breaking all (C2)-type cycles first. Then, if there is a (C3)-type cycle, break it. Return to
trying to break (C2) cycles. This way you always try to break (C2) cycles first. This continues until
all (C2) and (C3) cycles are broken.

Step 4—the secondmodification toh. We call the result of this modificationh′. This modification
is presented in Figure 2. In that figure, the numbers next to an offline node r indicate the total value
ofh at that node, i.e.,

∑
� h(�, r). Thin edges correspond toh�,r = 1/3 and thick edges correspond to

h�,r = 2/3. The number above the edge corresponds to the newly assigned h
′. For example, a thin

edge with value 0.15 above it means that h�,r = 1/3 and after modification we have h
′(�, r) = 0.15.

Any edges not covered by one of the cases in the figure retain their old value of h.
Lastly, in Step 5, the distributions on lists are defined as follows. If � has 1 or 0 neighbors in

the sparse graph based on h′, then the distribution is fully supported on either the single-element
list or the empty list, respectively. If � has two neighbors, say, r1 and r2, then the distribution
is supported on two lists (r1, r2) and (r2, r1) with the probability of (r1, r2) being proportional to
h′(�, r1). If the neighborhood of � consists of three vertices, say, r1, r2, r3, then the distribution
is supported on all possible permutations of (r1, r2, r3), such that the probability that the list is

(ri , r j , rk) is proportional to
h′ (�,ri)h′ (�,r j)

h′ (�,r j)+h′ (�,rk) . Algorithm 10 summarizes this procedure.

2.3.3 Algorithms for Other Settings. Category-Advice. Dürr et al. [11] suggested a greedy-
like algorithm that performs a second pass over the input called Category-Advice. The
Category-Advice algorithm belongs to the class of category algorithms that were introduced
in the work of Dürr et al. These algorithms are neither online nor known i.i.d. They can be viewed
as conceptually simple offline algorithms, or online algorithms with advice (see [7]), or as defining
their own computational model.
A category algorithm starts with a permutation σ of the offline nodes (e.g., given adversarially,

or by an alphabetical order of names of the offline nodes). Instead of running GreedyWithPer-
mutation directly with σ , the algorithm starts by computing a category function c : R → Z. The
algorithm updates σ to σc as follows: σc is the unique permutation satisfying that for allv1,v2 ∈ R,
we have σc (v1) < σc (v2) if and only if c (v1) < c (v2) or (c (v1) = c (v2) and σ (v1) < σ (v2)). Then,
GreedyWithPermutation is performed with σc as the permutation of the offline nodes. In other

ACM Journal of Experimental Algorithmics, Vol. 25, No. 1, Article 1.4. Publication date: March 2020.

1.4:14 A. Borodin et al.

Fig. 2. Three possible cycles induced by h. The thin edges correspond to h�,r = 1/3 and thick edges corre-

spond to h�,r = 2/3. Numbers above edges correspond to new values of h′. The numbers next to r nodes

correspond to total values of h. The two magic numbers are x1 = 0.2744 and x2 = 0.15877.

ALGORITHM 10: The known i.i.d. algorithm due to Brubach et al. [8].

procedure BrubachEtAl(G = (L,R,E) – type graph)
� Preprocessing stage:

Solve LP (2). Let f ∗ denote an optimal solution. (Step 1)
Scale f ∗ multiplicatively to 3f ∗ and apply the rounding procedure of Gandhi et al. [13].

(Step 2)
Set h to be the scaled down (multiplicatively by 1/3) rounded solution.
Apply the two modification steps to get h′. (Steps 3 and 4)
Define the distributions on (sub)lists of neighbors. (Step 5)

� Online stage:
Run RLA with the above distribution.

words, a category algorithm partitions the offline nodes into | Im(c) | categories and specifies the
ranking of the categories; the ranking within the category is induced by the initial permutation σ .
The Category-Advice algorithm starts with σ , and in the first pass, runs GreedyWithPermu-

tation with σ . LetM be the matching obtained in the first pass. The category function c : R → [2]
is defined as follows: c (v) = 1 if v does not participate inM and c (v) = 2 otherwise. In the second
pass, the Category-Advice algorithm runs GreedyWithPermutation with σc . The output of
the second run of GreedyWithPermutation is declared as the output of the Category-Advice
algorithm. In other words, in the second pass the algorithm gives preference to those vertices that
were not matched in the first pass. Algorithm 11 shows the pseudocode.
3-Pass. The algorithm of Dürr et al. was extended to multiple passes in [6]. In this article, we shall
only consider the generalization of the algorithm to three passes, which we call 3-Pass. In the first

ACM Journal of Experimental Algorithmics, Vol. 25, No. 1, Article 1.4. Publication date: March 2020.

Experimental Study of Online Bipartite Matching Algorithms 1.4:15

ALGORITHM 11: The Category-Advice algorithm of Dürr et al. [11].

procedure Category-Advice(G = (L,R,E),σ : R → R)
SetM = GreedyWithPermutation(G,σ).
Define c : R → [2] by c (v) = 1 ifM (v) = ⊥ and c (v) = 2 otherwise.
Define σc as stated in the main text.
Return GreedyWithPermutation(G,σc).

two passes, the algorithm behaves the same way as Category-Advice. The generalization is quite
natural: in the third pass, the algorithm prefers to match an incoming node to an offline node that
was not matched in the first or second pass. If there is no such node available, then 3-Pass prefers
to match an incoming node to an offline node that was not matched in the first pass. If there is
no such offline node, then 3-Pass matches an incoming node to the first (according to the original
fixed ordering) available offline node.

MinDegree.A commonly used heuristic for matching in general graphs is picking the node with
the minimum degree, the idea being that this lowers the probability of the remaining nodes be-
coming unmatchable. In the offline setting, the minimum degree heuristic can be utilized to decide
not only which node to match next, but also which neighbor it should be matched to, resulting
in a one-sided and a two-sided version of the MinDegree algorithm, respectively. This distinction,
along with the tie-breaking strategy used, gives rise to a family of MinDegree algorithms, some
of which have also been studied in the context of bipartite graphs [18]. In our study, we consider
a natural online variation of the MinDegree algorithm where the offline degrees, as they are be-
ing formed online,4 guide the matches. Since the arriving online node is always the one to be
matched next, ours can be considered as a one-sided algorithm in this regard. We break ties in a
fixed predetermined order.

ALGORITHM 12: Online MinDegree

procedure MinDegree(G = (L,R,E))
Initialize the degree of every offline node to 0.
for all � ∈ L do

When � arrives, increment the degrees of its neighbors by one.
Let N (�) be the set of unmatched neighbors of � of minimum degree.
if N (�) � ∅ then

Match � with argmin{rkπalphabet
(r) | r ∈ N (�)}.

KarpSipser. Similar to the MinDegree algorithm, Karp and Sipser [16] considered an algorithm
that picks a node of degree 1, if it exists, otherwise it chooses a node randomly. This is another
commonly studied strategy and was shown to be quite effective for offline bipartite matching [18].
As with MinDegree, we consider an online variation of this greedy algorithm that looks at the
offline degrees.

2.4 Conversion to Greedy

As mentioned in Remark 2.1, all of the complicated known i.i.d. algorithms from the previous sec-
tion are presented in the corresponding papers as non-greedy to simplify the analysis. For example,
suppose that u is an online node of type �. Moreover, assume that it is the third arrival of type �

4Each new online node increases the degree of its neighbors by one.

ACM Journal of Experimental Algorithmics, Vol. 25, No. 1, Article 1.4. Publication date: March 2020.

1.4:16 A. Borodin et al.

ALGORITHM 13: Online KarpSipser

procedure KarpSipser(G = (L,R,E))
Initialize the degree of every offline node to 0.
for all � ∈ L do

When � arrives, increment the degrees of its neighbors by one.
Let N (�) be the set of unmatched neighbors of � of degree one.
Let N ′(�) be the set of unmatched neighbors of �.
if N (�) � ∅ then

Match � with argmin{rkπalphabet
(r) | r ∈ N (�)}.

else if N ′(�) � ∅ then
Sample a permutation π : R → R uniformly at random.
Match � with argmin{rkπ (r) | r ∈ N ′(�)}.

and consider the behavior of FeldmanEtAl. Regardless of how many neighbors of u are avail-
able, FeldmanEtAl is not going to match u since FeldmanEtAl only attempts to match first and
second arrivals of a given type. A greedy algorithm would match u if it had at least one available
neighbor. Similar considerations hold for the rest of the algorithms in that section. Thus, vanilla
versions of these algorithms immediately forgo a constant fraction of possible matches in order
to simplify the analysis and optimize for the worst-case. Clearly, there are type graphs (e.g., the
complete type graph), on which any greedy algorithmwould be able to find a perfect matching. On
such graphs, the complicated algorithms would be vastly outperformed by any greedy algorithm.
Fortunately, as stated in Pena and Borodin [26] and sketched in Borodin et al. [6], there is a

simple idea to turn all of these algorithms into greedy ones while preserving their worst-case
guarantees. The idea is just to run a greedy algorithm, and if there are several available neighbors,
break ties by using the suggestions of the non-greedy algorithm. More precisely, we are going to
convert a non-greedy algorithm ALG to a greedy algorithm ALG′. At all times, ALG′ will simulate
ALG and know to which node ri ∈ R (if any) ALG would match each online node �i ∈ L. Consider
the first time that a non-greedy algorithm ALG is about to leave an online node �i ∈ L unmatched
even though there is an available neighbor. Instead, our greedy algorithm ALG′ will match �i with
an arbitrary available neighbor r ′ ∈ R. Now ALG′ continues on simulating ALG until ALG tries
to match some later �j with the r ′ used to match �j . If there is still an available r ′′ to match �j ,
then that match is made. And we continue in this manner always making a match according to
ALG when possible and otherwise making an arbitrary match if one is still available. If at any time
ALG wanted to match some later �j to some r that has been used by ALG

′, �j will go unmatched.
But in this case, the addition of matching �i offsets the loss of not matching �j . Moreover, this
modification is easy to implement and does not seem to have a significant effect on the runtime.
To apply this conversion to an adaptive5 algorithm, we would keep a second copy of the graph for
the non-greedy algorithm to operate on so that the performance guarantee is maintained despite
our greedy choices. In our experiments, we report the performance of both greedy and non-greedy
versions of known i.i.d. algorithms.

2.5 Notes on Implementation

We used the adjacency list representation of graphs for all of the above algorithms. Compared to
adjacency matrix representation, this allowed for significant speedup on sparse graphs.

5An algorithmwhose order of preference over the offline nodes changes dynamically as new nodes arrive and the matching

is formed.

ACM Journal of Experimental Algorithmics, Vol. 25, No. 1, Article 1.4. Publication date: March 2020.

Experimental Study of Online Bipartite Matching Algorithms 1.4:17

The max flow problems in FeldmanEtAl and BahmaniKapralov are solved via straightfor-
ward implementations of the Edmonds-Karp max flow algorithm. The same algorithm is used to
obtain an optimal maximum matching.
For ManshadiEtAl, we estimate a fractional optimal solution by running the Edmonds-Karp

algorithm initialized with a greedy solution (for speed) on 100 samples generated for a given type
graph.
The linear program (1) in JailletLu can be formulated as a max flow problem with integral

capacities. This is done by rescaling constraints by a multiple of 3, and constructing the following
flow network. Add a source s and a sink t , connect s to each r ∈ R via edges of capacity 3, connect
each � ∈ L to t via edges of capacity 3, orient edges ofG from R to L, and assign capacity 2 to them.
In our implementation, we use Edmonds-Karp to solve this max flow problem via an integral flow.
Then f ∗ can be obtained by scaling the max flow by a multiple of 1/3.
We solve the linear program (2) in BrubachEtAl using the simplex method in the GNU Linear

Programming Kit (GLPK) [1]. The actual code is freely available at [2].

3 EXPERIMENTAL SETUP

All our experiments were performed on a personal laptop with an Intel Core i5-7300HQ processor
clocked at 2.5 GHz. The laptop had 8 GB 2400 MHz DDR4 of RAM and 256 GBM.2 SSD. The laptop
was running Windows 10 64-bit Home edition. All algorithms under consideration were coded in
C++ and compiled with Microsoft Visual Studio Community 2017 version 15.5.7. The code was
compiled for the 64-bit target architecture with an optimization flag O2. The implementation is
single-threaded, so all algorithm runs were performed on a single core.
In the rest of this section, we describe our benchmarks for online bipartite matching algorithms

under the known i.i.d. input model with integral types. Our benchmarks can naturally be split
into three categories; namely, parameterized families of graphs, stand-alone graphs, and bipartite
graphs derived from real-world graphs (whichwewill call “real-world graphs” for short). Graphs in
these categories refer to type graphs with the understanding that instance graphs corresponding to
a particular type graph from the benchmarkwill be obtained by samplingn online nodes uniformly
at random from all possible types, i.i.d.
Families of graphs are obtained by either a random or a deterministic process that has a natural

parameter. For example, this parameter could be a proxy for edge density of a graph. For families
of graphs, we will be interested in the performance of the algorithms as a function of the given
parameter.
We call a graph stand-alone if it is obtained either by a random or a deterministic process,

but there are no associated parameters. For example, worst-case graphs for online algorithms. Al-
though all graphs can be parameterized by the size of the graph, we are interested in the asymptotic
behavior of the algorithms on large graphs, so we typically take stand-alone graphs of largest size
that can be solved in reasonable time by all algorithms under consideration. Note that stand-alone
graphs are not necessarily fixed and can still be the result of a random process.
Stand-alone graphs FewG, ManyG, Rope, Hexa, Zipf are taken from Cherkassky et al. [9],

where these graphs were used to measure the performance of various offline algorithms for bi-
partite matching. Our implementation of the generating procedures for these graphs does not
perfectly match the code accompanying the paper [9], because their code is designed for more
general families of graphs. Instead, our implementation follows the descriptions in the paper [9]
itself, where parameters are often fixed to certain values that simplify the generating process.
We also consider a number of graphs that are publicly available from online repositories.
Most of our synthetically generated instances are bipartite. A few of our synthetically generated

instances, as well as all real-world instances are non-bipartite. In case of a non-bipartite graph, we

ACM Journal of Experimental Algorithmics, Vol. 25, No. 1, Article 1.4. Publication date: March 2020.

1.4:18 A. Borodin et al.

use one of the following twoways of creating a bipartite graph out of a non-bipartite graph. LetG =
(V ,E) be a given graph that is not necessarily bipartite. The first way of creating a bipartite graph
out ofG is the standard technique of the the duplicating method. The idea is to duplicate the vertex
set V . Let L = V be the first copy of V and R = V be the second copy. Put an edge between � ∈ L
and r ∈ R if and only if {�, r } ∈ E. We call the second way of creating a bipartite graph out ofG the
random balanced partition method. In thismethod, we partitionV randomly into two blocksL andR,
such that |L| = �|V |/2� and |R | = �|V |/2�. We keep only those edges that connect two vertices from
different partitions. Solving the matching problem on a graph obtained from the random balanced
partition method applied to social network graphs has a natural interpretation. This corresponds
to dividing the whole population into two groups and pairing up as many “friends” (“co-authors,”
“co-stars,” etc.) from the two groups as possible.

3.1 Families of Graphs

Erdős-Rényi Graphs. A graph of this family is denoted by Gn,n,p . We have that |L| = |R | = n
and for each � ∈ L and r ∈ R an edge {�, r } is included in G with probability p independently. We
consider p to be of the form c/n and c is the parameter defining this family of graphs.

Random Regular on the Left (Right) Graphs. We say that a graphG is d-regular on the
left (right) if the degree of every vertex in L (in R) is the same and equal to d . To generate a random
graph that is d-regular on the left, for each � we sample a uniformly random subset of d vertices
from R and declare them to be neighbors of �. The samples for different � are independent. The
procedure to generate d-regular graphs on the right is analogous. These families of graphs are
parameterized by d .

Molloy-Reed. Molloy and Reed [24] gave a procedure to generate a graph with a given degree
distributionp. We describe the procedure for non-bipartite graphs. To generate a graph onn nodes,
for each node u, sample its degree from p. Initially, degree d of u corresponds to d non-paired ends
of edges. The idea is to choose randomly two such ends of edges and connect them together—
this forms an edge and decreases the number of non-paired edges by one for each of the two
participating vertices. While there are vertices with non-paired edges, pick two such vertices at
random and pair up one end of an edge from the first vertex with one end of an edge from the
second vertex. There are a couple of problems with this procedure as stated. First of all, if the
sum of all degrees is odd, this procedure will leave one end of an edge non-paired. This is fixed
by modifying the first step—after sampling degrees of vertices and before pairing up any ends of
edges. While the total degree is odd, pick a random vertex and resample its degree. The second
problem is that this procedure does not necessarily generate a simple graph—i.e., there might be
self-loops and duplicate (parallel) edges. To address this issue, when pairing up edges, we perform
100 random samples of pairs of vertices to try and find ends of edges that do not result in self-loops
or parallel edges. If all of these trials fail, then we add the self-loop or the parallel edge of the last
trial. At the end of the procedure we obtain the graph by removing all self-loops and parallel edges.
While the Erdős-Rényi model is natural, it does not seem to model many real-life scenarios, such

as social networks. It has long been observed that degree distributions of many social networks
(e.g., Facebook, Twitter, movie actor databases, researcher co-authorship databases) are not bino-
mial, but rather seem to have heavy tails. Thus, they are more accurately modeled by power-law
distributions. Newman et al. [25] describe a particular family of distributions that combined with
the Molloy-Reed procedure results in a fairly accurate model of many social networks. This family
of distributions is called a power-law distribution with exponential cutoff. This distribution has
two parameters: τ , which is called the exponent, and κ, which is called the cutoff. The idea is that
for small values of d , the probability of a node having degree d should be modeled by x−τ (the

ACM Journal of Experimental Algorithmics, Vol. 25, No. 1, Article 1.4. Publication date: March 2020.

Experimental Study of Online Bipartite Matching Algorithms 1.4:19

Fig. 3. Upper Triangular

graph.

Fig. 4. Manshadi-Hard graph.

power-law part), but for d > κ the probability should be dropping off exponentially (the exponen-
tial cutoff part). Formally, it is defined as follows. Let pd denote the probability of our random
variable having value d ; then we have

pd =

{
0 if d = 0
cx−τ e−d/κ if d > 0,

where c is the normalizing constant. The Molloy-Reed procedure on a power-law distribution
with exponential cutoff, followed by the random balanced partition method, defines a family of
type graphs that is parameterized by τ and κ.

Preferential Attachment Bigraphs. We also consider the following natural modification
of the preferential attachment model that immediately produces bipartite graphs without having
to use the random balanced partition method. We refer to this model as the preferential attachment
bigraph model. To generate a bigraph in this model, start with n offline nodes R and introduce
online nodes L one at a time. The model has a single parameter c which is the average degree
of an online node. When a new online node i ∈ L arrives, sample Zi ∼ Bin(n, c/n) to decide on
a number of its offline neighbors. Let dj denote the current degree of an offline node j ∈ R. De-
fine a probability distribution μ on offline nodes such that μ (j) =

1+dj

n+
∑

t∈R dt
. Sample RHS nodes

from μ i.i.d. repeatedly until Zi unique offline nodes are generated. These offline nodes define the
neighborhood of the current online node i . Update the dj and continue.

3.2 Stand-Alone Graphs

Upper-Triangular (UT). Figure 3. This graph is the fixed graph defined by an upper-triangular
adjacency matrix with the columns representing online nodes that arrive from right to left. This
is known to be the worst-case example for Ranking in the adversarial online model [17].

Manshadi-Hard (MH). Figure 4. In [21], Manshadi et al. present a type graph for which no
online algorithm can achieve an expected competitive ratio better than 1 − 1

e2
≈ 0.86. LetG (L,R,E)

be the type graph where L = L1 ∪ L2, |L1 | = |R | = n, and L2 = n/e . There is a perfect matching
between the vertices of L1 and R and a complete bipartite graph between L2 and R. Each type has
arrival rate 1 and there are |L| = n(1 + 1/e) online i.i.d. draws.

ACM Journal of Experimental Algorithmics, Vol. 25, No. 1, Article 1.4. Publication date: March 2020.

1.4:20 A. Borodin et al.

Fig. 5. Feldman-Hard graph. De-

picted with red-dotted and blue-

dashed edges are the cycles

(u1,x1,v1,y1,w1, z1,u1) and (un/4,

xn/4,vn/4,yn/4,wn/4, zn/4,un/4),
respectively. The remaining edges

form two complete bipartite graphs.

Fig. 6. Graph FewG and

ManyG. For i = 0, . . . ,k − 1,

vertices in Li are assigned ran-

dom neighbors from groups

Ri−1 to Ri+1.

Feldman-Hard (FH). Figure 5. Feldman et al. [12] present a family of graphs that is the worst
case for their algorithm, proving that their analysis of the competitive ratio of their algorithm is
tight. R is partitioned into four blocks: K ,U ,V , andW , each of size n/4. Similarly, L is partitioned
into four blocks: I ,X ,Y , and Z , each of size n/4. We use a lower-case letter to refer to an element
in the given block, e.g., elements ofU are denoted byui , where i ∈ [n/4]. The edge set consists of a
6-cycle (ui ,xi ,vi ,yi ,wi , zi ,ui) for i ∈ [1, n

4], a complete bipartite betweenK andX , and a complete
bipartite graph between I andW .

FewG and ManyG. Figure 6. To construct these bipartite graphs, the vertices in L are randomly
permuted and then L and R are partitioned into k groups of equal size. Each vertex of the i-th
group of L is assigned Y random neighbors from the (i − 1)-th through (i + 1)-th group of R (with
wrap around). To be consistent with previous literature ([9]), Y is set to be binomially distributed
with E(Y) = 5, and we consider the two cases of k = 32 (FewG) and k = 256 (ManyG).

rope. Figure 7. For this graph, vertices in L and R are grouped into t = n/d groups of size d ,
denoted L0 . . . Lt−1 and R0 . . .Rt−1. Block i on one side is connected to block i + 1 on the other side,
for i = 0 . . . t − 2; block Lt−1 is connected to block Rt−1. Thus, the graph is a “rope” that zigzags
between the two sides of the graph, first up and then down. Consecutive pairs of blocks along

ACM Journal of Experimental Algorithmics, Vol. 25, No. 1, Article 1.4. Publication date: March 2020.

Experimental Study of Online Bipartite Matching Algorithms 1.4:21

Fig. 7. Graph Rope. Blue

dotted edges correspond to

perfect matchings and red

dashed edges correspond

to random bipartite graphs.

Edge (Lt−1,Rt−1) can be

either dotted or dashed.

Fig. 8. Graph Hexa. Connecting

groups form a complete bipartite

graph. Each edge depicts a

random hexagon between the

corresponding groups.

the rope are connected alternately by perfect matchings and random bipartite graphs of average
degree d − 1, beginning and ending with perfect matchings. As in [9], we fix d = 6.
hexa. Figure 8. In these graphs, each side is partitioned into

√
n blocks of size

√
n each. A random

bipartite hexagon is added between block i on one side and block j on the other side for all i, j ∈
[
√
n]. This results in the average degree of each vertex being 6. The randomhexagon is generated by

the following procedure. Pick three random nodes on each side (inside the corresponding blocks),
say, �1, �2, �3 and r1, r2, r3. Sample two random permutations π ,σ : [3]→ [3]. Add the following
cycle to the graph (�π (1), rσ (1), �π (2), rσ (2), �π (3), rσ (3), �π (1)).

zipf. In these bipartite graphs, we have |L| = |R | = n and an edge between nodes �i ∈ L and r j ∈ R
exists with probability roughly proportional to 1/ij. More precisely, the probability is Pr(�i ∼ r j) =

min(n ·d
log2 n

· 1
i ·j , 1) with d = 6 and i, j ∈ [n]. This results in graphs that are denser around vertices

with smaller indices.

3.3 Real-World Data

To perform experiments on real datasets, we used some publicly available graphs from theNetwork
Data Repository [27]. In the experiments, we used both the duplicating method and the random
balanced partition method of bipartite transformations.
The socfb datasets are social frienship networks extracted from Facebook. Nodes are users

and edges represent friendship ties. The bio-CE datasets correspond to biological datasets
representing links by similar phylogenetic profiles and gene neighborhoods of bacterial and
archaeal orthologs. We also used two econ datasets that model US economic transactions in 1972

ACM Journal of Experimental Algorithmics, Vol. 25, No. 1, Article 1.4. Publication date: March 2020.

1.4:22 A. Borodin et al.

Table 2. Real-World Graph Statistics

Dataset Application Domain Nodes Edges Max Degree Avg. Degree
socfb-Caltech36 social networks 769 16.7k 248 43
socfb-Reed98 social networks 962 18.8k 313 39
bio-CE-GN biological networks 2.2k 53.7k 242 48
bio-CE-PG biological networks 1.9k 47.8k 913 51
econ-mbeaflw economic networks 492 49.5k 679 201
econ-beause economic networks 507 44.2k 766 174

by connecting commodities to commodities and industries. These datasets, along with various
properties of the corresponding graphs, can be found in the following links6:

—http://networkrepository.com/socfb-Caltech36.php
—http://networkrepository.com/socfb-Reed98.php
—http://networkrepository.com/bio-CE-GN.php
—http://networkrepository.com/bio-CE-PG.php
—http://networkrepository.com/econ-mbeaflw.php
—http://networkrepository.com/econ-beause.php

Table 2 summarizes some real-world graph statistics.

4 EXPERIMENTAL RESULTS

In this section, we present results of our experiments and provide some comments about the ex-
periments. However, we leave the main discussion about performance of algorithms and lessons
learned from the experiments to Section 5. With as many algorithms and as many graphs as we
consider in this article, it is difficult to present all of the data in a completely satisfying way. We
settled on the following presentation formats. For families of graphs, we plot the performance of an
algorithm as a time series with an independent variable being the parameter corresponding to the
family of graphs and the dependent variable being the achieved competitive ratio. The time series
allows us to identify regimes of parameters that are easy and that are hard for most algorithms. We
list the performance of algorithms in those regimes sorted according to their competitive ratios.
Whenwe plot the results for these regimes, we also graphically indicate sample standard deviations
by horizontal line segments: the length of each segment is 2 standard deviations and the segment is
centered around the sample mean. We treat stand-alone and real-world instances differently. We
collect the performance of all algorithms on all stand-alone instances in one table, and on real-
world instances in two tables (one for the random bipartition conversion method and one for the
duplicating method). We also use the following notation: we add a letter “g” in brackets following
an algorithm’s name to indicate the greedy version of the algorithm, e.g., FeldmanEtAl(g). The
algorithm’s name by itself (e.g., FeldmanEtAl) refers to a non-greedy version of the algorithm.
We have also tested for statistical significance of the results using t-tests and even when the per-
formance of two algorithms differs by 0.01, the p-values are less than 1%, allowing us to compare
them with confidence. The rest of this section is organized as follows. We describe the results
for families of graphs in Subsections 4.1, 4.2, 4.3, and 4.4. We present our results for stand-alone
graphs in Subsection 4.5 and real-world instances in Subsection 4.6. Finally, we finish with a small
discussion of running times in Subsection 4.7.

6Accessed 2018-05-25.

ACM Journal of Experimental Algorithmics, Vol. 25, No. 1, Article 1.4. Publication date: March 2020.

http://networkrepository.com/socfb-Caltech36.php
http://networkrepository.com/socfb-Reed98.php
http://networkrepository.com/bio-CE-GN.php
http://networkrepository.com/bio-CE-PG.php
http://networkrepository.com/econ-mbeaflw.php
http://networkrepository.com/econ-beause.php

Experimental Study of Online Bipartite Matching Algorithms 1.4:23

Fig. 9. Performance of all non-greedy algorithms on

Erdős-Rényi family of graphs.

Fig. 10. Performance of FeldmanEtAl algorithm on

Erdős-Rényi family of graphs.

Fig. 11. Performance of BahmaniKapralov algo-

rithm on Erdős-Rényi family of graphs.

Fig. 12. Performance of ManshadiEtAl algorithm

on Erdős-Rényi family of graphs.

4.1 Erdős-Rényi Experiments

The experiments in this section were performed with Erdős-Rényi type graphs where the number
of nodes was fixed to be 1,000 on each side, and the parameter c varied from 0.1 to 14.9 with a
step of 0.2. For each value of c , 100 type graphs were generated. The reported competitive ratios of
algorithms are (ratios of) the average values over these 100 trials. In Figure 9 you can see the time
series of performance of all non-greedy algorithms in this experiment. Each non-greedy algorithm
is compared with greedy algorithms (including its own counterpart) in Figures 10, 11, 12, 13, and
14. We did not plot Ranking, since its behavior in this experiment was analogous to that of Sim-
pleGreedy. Observe that from Figures 9 and, for example, 10, one can infer all other figures. We
only show other figures here for completeness, and in the future experiments we shall omit them.
Looking at the figures, we observe that there are essentially three regimes of c that are of interest
in this experiment: (1) small c , i.e., a sparse type graph, regime; (2) “hard” values of c , where the
relative order of algorithms changes, and performance of greedy algorithms experiences a dip;
and (3) asymptotic, i.e., steady-state, value of c , where the performance guarantees of various non-
greedy algorithms stabilizes. In order to “zoom-in” and see what happens in each of these regimes,

ACM Journal of Experimental Algorithmics, Vol. 25, No. 1, Article 1.4. Publication date: March 2020.

1.4:24 A. Borodin et al.

Fig. 13. Performance of JailletLu algorithm on

Erdős-Rényi family of graphs.

Fig. 14. Performance of BrubachEtAl algorithm on

Erdős-Rényi family of graphs.

Fig. 15. Performance of all algorithms on Erdős-

Rényi graph with c = 1.9.

Fig. 16. Performance of all algorithms on Erdős-

Rényi graph with c = 4.9.

we plotted competitive ratios of algorithms in decreasing order (top to bottom) for c = 1.9 (regime
(1)), c = 4.9 (regime (2)), and c = 14.9 (regime(3)) in Figures 15, 16, and 17, respectively.

4.2 Random Left-Regular Experiments

The experiments in this subsection are based on type graphs with 1,000 nodes on each side, where
left-hand-side nodes are of degree d each. As before, results are averaged over 100 i.i.d. trials. We
present time series of all non-greedy algorithms in Figure 18, and we present FeldmanEtAl ver-
sus greedy algorithms in Figure 19. Figures comparing other non-greedy algorithms with greedy
algorithms are omitted, since they are very similar to Figure 19, as discussed at the beginning of
Subsection 4.1. We identify three regimes ofd that correspond to (1) sparse case (d = 2), (2) difficult
case (d = 5), and (3) asymptotic case (d = 30). This is very similar to what we did in Subsection 4.1.
The competitive ratios of different algorithms under these regimes are plotted in Figures 20, 21,
and 22.

ACM Journal of Experimental Algorithmics, Vol. 25, No. 1, Article 1.4. Publication date: March 2020.

Experimental Study of Online Bipartite Matching Algorithms 1.4:25

Fig. 17. Performance of all algorithms on Erdős-Rényi graph with c = 14.9.

Fig. 18. Performance of all non-greedy algorithms

on Left-Regular family of graphs.

Fig. 19. Performance of FeldmanEtAl algorithm on

Left-Regular family of graphs.

4.3 Molloy-Reed Experiments

TheMolloy-Reed family of graphs has two parameters: τ andκ. Thus, we generated a whole grid of
results. More specifically, for each value of τ from 0.5 to 4.0 with a step of 0.1 and for each value ofκ
from 1 to 96with a step of 5, we generated 100Molloy-Reed graphs with those values of τ andκ and
averaged competitive ratios of algorithms over these 100 runs. Since plotting three-dimensional
time series is awkward, we present τ - and κ-slices of the resulting grid for values of τ and κ that
exhibit more interesting behavior.We showwhat competitive ratios of non-greedy algorithms look
like as a function of τ when κ is fixed to 96 in Figure 23, and as a function of κ when τ is fixed to 0.5
in Figure 24. Time series comparing the non-greedy version of BahmaniKapralov with greedy
algorithms for the respective scenarios are shown in Figures 25 and 26. As in other subsections,
comparisons of other non-greedy algorithms with greedy algorithms look very similar, so we omit
them. For τ = 0.5, we identify two regimes: difficult regime for greedy algorithms, where κ = 11;
and a steady-state regime, where κ = 41. We “zoom in” to show competitive ratios of algorithms
for these two regimes in Figures 27 and 28. Similarly, the two regimes for κ = 96 are when τ = 1.0
and when τ = 2.0. Those are depicted in Figures 29 and 30.

ACM Journal of Experimental Algorithmics, Vol. 25, No. 1, Article 1.4. Publication date: March 2020.

1.4:26 A. Borodin et al.

Fig. 20. Performance of all algorithms on Left-

Regular graph with d = 2.

Fig. 21. Performance of all algorithms on Left-

Regular graph with d = 5.

Fig. 22. Performance of all algorithms on Left-Regular graph with d = 30.

4.4 Preferential Attachment Bigraph Experiments

The experiments in this subsection are based on type graphs with 1,000 nodes on each side, where
types are generated via the preferential attachment method with a single parameter c . The values
of c range from 0.1 to 14.9 with a step of 0.1. All results are averaged over 100 i.i.d. trials.We present
time series of all non-greedy algorithms in Figure 31, and we present BahmaniKapralov versus
greedy algorithms in Figure 32. Figures comparing other non-greedy algorithms with greedy al-
gorithms are omitted, since they can be inferred from the given two figures, as discussed at the
beginning of Subsection 4.1. We identify three regimes of c that correspond to (1) sparse case
(c = 2.1), (2) intermediate case (c = 8.1), and (3) asymptotic case (c = 14.9); this is similar to Sub-
section 4.1. The competitive ratios of different algorithms are plotted in Figures 33, 34, and 35.

4.5 Stand-Alone Graphs

In this subsection, we collect competitive ratios of all algorithms considered in this article
on all stand-alone graphs, as discussed in Section 3. Since some of the algorithms and graph

ACM Journal of Experimental Algorithmics, Vol. 25, No. 1, Article 1.4. Publication date: March 2020.

Experimental Study of Online Bipartite Matching Algorithms 1.4:27

Fig. 23. Performance (as a function of τ) of all non-

greedy algorithms on the Molloy-Reed family of

graphs with κ = 96.

Fig. 24. Performance (as a function of κ) of all non-

greedy algorithms on the Molloy-Reed family of

graphs with τ = 0.5.

Fig. 25. Performance (as a function of τ) of the Bah-

maniKapralov algorithm on the Molloy-Reed fam-

ily of graphs with κ = 96.

Fig. 26. Performance (as a function ofκ) of the Bah-

maniKapralov algorithm on the Molloy-Reed fam-

ily of graphs with τ = 0.5.

constructions are randomized, we show results that are averaged over 100 trials. See Table 3 for the
summary.

4.6 Real-World Instances

In this subsection, we collect competitive ratios of our algorithms on graphs based on real-world
applications, as discussed in Section 3. That is, since these application graphs are not bipartite, we
consider two methods of converting them into a bipartite graph: the random bipartition method,
and the duplicating method. Since some of the algorithms and the random bipartition conversion
method are randomized, we show results that are averaged over 100 trials. See Table 4 for the
summary of results for the random bipartition method, and Table 5 for the duplicating method.

4.7 Running Times

In this section, we describe our experimental findings about running times of the algorithms under
consideration. We have not dedicated a lot of time to optimizing runtimes of individual algorithms
or to finding state-of-the-art libraries for LP solving, for example. Our aim is not to provide an

ACM Journal of Experimental Algorithmics, Vol. 25, No. 1, Article 1.4. Publication date: March 2020.

1.4:28 A. Borodin et al.

Fig. 27. Performance of all algorithms on the

Molloy-Reed graph with τ = 0.5,κ = 11.

Fig. 28. Performance of all algorithms on the Molloy-

Reed graph with τ = 0.5,κ = 41.

Fig. 29. Performance of all algorithms on the

Molloy-Reed graph with τ = 1.0,κ = 96.

Fig. 30. Performance of all algorithms on the

Molloy-Reed graph with τ = 2.0,κ = 96.

extensive scalability study, but rather to see if complicated algorithms with an off-the-shelf imple-
mentation incur prohibitive runtime costs. The main difference between complicated and simple
algorithms is that the complicated algorithms have a non-trivial preprocessing component. The-
oretically, we know that pre-processing adds a significant overhead to the running time and in
certain cases it asymptotically dominates the online matching phase of the algorithm (see the dis-
cussion of BrubachEtAl at the end of this section). The goal of this section is to see if this is
supported by our experiments, and, indeed, it is. We observe how running times scale with the
number of edges. For that purpose, we present running times from random left-regular graph ex-
periments. The edge density for the other dataset families in Section 3.1 is also controlled by a
single parameter and the runtimes for experiments for these datasets behave exactly the same
way. Thus, the conclusions we derive for the random left-regular graph experiments are quite
general and are expected to carry over to other scenarios. In the random left-regular graph exper-
iment, the number of online nodes is fixed to be 1,000, the same as the number of offline nodes.

ACM Journal of Experimental Algorithmics, Vol. 25, No. 1, Article 1.4. Publication date: March 2020.

Experimental Study of Online Bipartite Matching Algorithms 1.4:29

Fig. 31. Performance of all non-greedy algorithms

on the Preferential Attachment Bigraph family of

graphs.

Fig. 32. Performance of the BahmaniKapralov al-

gorithm on the Preferential Attachment Bigraph

family of graphs.

Fig. 33. Performance of all algorithms on the Prefer-

ential Attachment Bigraph graph with c = 2.1.

Fig. 34. Performance of all algorithms on the Prefer-

ential Attachment Bigraph graph with c = 8.1.

The neighborhood of each online node is decided by selecting a subset of neighbors of size d uni-
formly at random. Thus, as d increases, the total number of edges increases. Figure 36 shows how
the running times of the various algorithms scale with d .
For ease of presentation, we omit greedy versions of complicated algorithms (i.e., FeldmanEtAl,

BahmaniKapralov, ManshadiEtAl, JailletLu, BrubachEtAl). In our experiments, greedy ver-
sions had the same runtimes as their non-greedy versions, because turning an algorithm into a
greedy one has virtually no overhead. Runtimes of complicated algorithms are dominated by their
preprocessing stages. Therefore, the more complicated is the preprocessing stage, the slower is the
algorithm. Greedy-like algorithms have either no or minimal preprocessing, e.g., SimpleGreedy
and Category-Advice, and thus are the fastest algorithms, as expected. BahmaniKapralov is
essentially FeldmanEtAl with some additional preprocessing steps, thus the two algorithms be-
have similarly with BahmaniKapralov being slightly slower. JailletLu is slower still, but not
by much. The behavior of ManshadiEtAl might seem mysterious at first as the running time

ACM Journal of Experimental Algorithmics, Vol. 25, No. 1, Article 1.4. Publication date: March 2020.

1.4:30 A. Borodin et al.

Fig. 35. Performance of all algorithms on the Preferential Attachment Bigraph graph with c = 14.9.

Table 3. Performance of Algorithms on Stand-alone Graphs

Algorithm UT MH FH FewG ManyG Rope Hexa Zipf
FeldmanEtAl 0.76 0.76 0.67 0.77 0.80 0.92 0.75 0.86

FeldmanEtAl(g) 0.90 0.87 0.88 0.89 0.92 0.99 0.89 0.96
BahmaniKapralov 0.76 0.76 0.80 0.77 0.80 0.93 0.76 0.93

BahmaniKapralov(g) 0.90 0.87 0.93 0.89 0.92 0.99 0.89 0.98
ManshadiEtAl 0.77 0.79 0.84 0.78 0.80 0.91 0.77 0.89

ManshadiEtAl(g) 0.89 0.87 0.96 0.89 0.92 0.99 0.89 0.96
JailletLu 0.78 0.80 0.78 0.79 0.82 0.93 0.78 0.87

JailletLu(g) 0.90 0.87 0.87 0.89 0.92 0.99 0.89 0.94
BrubachEtAl 0.78 0.81 0.78 0.79 0.82 0.94 0.78 0.87

BrubachEtAl(g) 0.91 0.87 0.92 0.89 0.92 0.99 0.89 0.95
MinDegree 0.98 0.87 0.91 0.89 0.92 0.99 0.89 0.92
KarpSipser 0.82 0.87 0.92 0.88 0.92 0.99 0.87 0.91

SimpleGreedy 0.66 0.87 0.91 0.86 0.90 0.99 0.86 0.87
Ranking 0.92 0.87 0.95 0.87 0.91 0.99 0.87 0.93

Category-Advice 0.76 0.95 0.99 0.92 0.95 1.00 0.92 0.97
3-Pass 0.77 0.95 0.99 0.92 0.95 1.00 0.92 0.97

increases sharply until d = 4 and then suddenly drops almost matching the greedy runtime. To
explain this behavior, we recall how the preprocessing step of ManshadiEtAl works. It samples
100 graphs from the distribution specified by the type graph and solves each of the samples opti-
mally. Thus, the runtime depends not only on the density of the edges, but also on how easy it is
to solve a sample optimally. The runtime plot suggests that the case d = 4 is the hardest to solve
optimally (among integral d). Clearly, as d increases, it becomes easier and easier to find a perfect
matching in the samples. This leads to a faster runtime when d > 4. Of course, we applied a sim-
plification where we fixed the number of samples used by ManshadiEtAl in the preprocessing
stage to be 100. In practice, one would have to adjust the number of samples with the density of the
graph with denser type graphs requiring far more samples. Thus, one would expect the runtime of

ACM Journal of Experimental Algorithmics, Vol. 25, No. 1, Article 1.4. Publication date: March 2020.

Experimental Study of Online Bipartite Matching Algorithms 1.4:31

Table 4. Performance of Algorithms on Real-Life Instances Transformed into Bipartite

Instances via the Random-Bipartition Method

Algorithm Caltech36 Reed98 CE-GN CE-PG beause mbeaflw
FeldmanEtAl 0.78 0.78 0.78 0.81 0.76 0.74

FeldmanEtAl(g) 0.91 0.91 0.94 0.96 0.94 0.95
BahmaniKapralov 0.80 0.81 0.84 0.89 0.80 0.76

BahmaniKapralov(g) 0.92 0.92 0.96 0.98 0.96 0.96
ManshadiEtAl 0.81 0.81 0.84 0.87 0.81 0.79

ManshadiEtAl(g) 0.91 0.91 0.96 0.97 0.96 0.96
JailletLu 0.81 0.81 0.80 0.82 0.78 0.77

JailletLu(g) 0.91 0.91 0.94 0.96 0.95 0.96
BrubachEtAl 0.81 0.81 0.81 0.83 0.79 0.77

BrubachEtAl(g) 0.91 0.91 0.94 0.95 0.94 0.95
MinDegree 0.88 0.88 0.94 0.95 0.95 0.97
KarpSipser 0.84 0.84 0.91 0.94 0.90 0.92

SimpleGreedy 0.87 0.87 0.93 0.94 0.94 0.95
Ranking 0.86 0.87 0.93 0.94 0.94 0.95

Category-Advice 0.92 0.93 0.97 0.98 0.97 0.97
3-Pass 0.92 0.93 0.97 0.98 0.97 0.97

Table 5. Performance of Algorithms on Real-Life Instances Transformed into Bipartite

Instances via the Duplicating Method

Algorithm Caltech36 Reed98 CE-GN CE-PG beause mbeaflw
FeldmanEtAl 0.77 0.77 0.77 0.80 0.74 0.73

FeldmanEtAl(g) 0.90 0.90 0.95 0.95 0.94 0.97
BahmaniKapralov 0.78 0.78 0.82 0.88 0.76 0.75

BahmaniKapralov(g) 0.91 0.91 0.97 0.98 0.95 0.97
ManshadiEtAl 0.79 0.78 0.84 0.86 0.78 0.77

ManshadiEtAl(g) 0.90 0.90 0.96 0.97 0.95 0.96
JailletLu 0.79 0.79 0.79 0.81 0.77 0.76

JailletLu(g) 0.90 0.90 0.95 0.96 0.95 0.97
BrubachEtAl 0.80 0.79 0.80 0.82 0.77 0.76

BrubachEtAl(g) 0.91 0.91 0.94 0.95 0.95 0.97
MinDegree 0.88 0.87 0.94 0.95 0.95 0.98
KarpSipser 0.82 0.82 0.91 0.93 0.91 0.94

SimpleGreedy 0.72 0.72 0.95 0.95 0.91 0.94
Ranking 0.86 0.86 0.93 0.94 0.94 0.97

Category-Advice 0.82 0.83 0.98 0.99 0.96 0.97
3-Pass 0.83 0.84 0.98 0.99 0.96 0.97

ManshadiEtAl to scale muchworse thanwhat is suggested by our figure. So far, our plot suggests
that the runtimes of simple greedy-like algorithms scale linearly with the number of edges, while
the runtimes of other more complicated algorithms scale like small polynomials. When it comes
to the last complicated algorithm, BrubachEtAl, the runtime scales exponentially with d . The
runtime of BrubachEtAl is dominated by the part of the preprocessing stage that corresponds to

ACM Journal of Experimental Algorithmics, Vol. 25, No. 1, Article 1.4. Publication date: March 2020.

1.4:32 A. Borodin et al.

Fig. 36. Running times left-side regular family of graphs.

solving the LP. The number of constraints in the LP of BrubachEtAl is asymptotically larger than
the number of edges (assuming |V | = o(|E |)). More specifically, let e (r) denote the number of edges
incident on a node r ∈ R in the given type graph. The number of constraints in the LP of Bruba-
chEtAl is at least

∑
r ∈R e (r)2 ≥ |E |2/n (by Cauchy-Schwarz). Using the simplex method from the

GNU Linear Programming Toolkit even with moderately dense graphs (e.g., d = 100) already re-
sults in excessive runtimes and in memory consumption of over 6 GB. One could potentially try to
optimize this step, possibly applying interior-point methods to very large instances and designing
new heuristics to speed up this computation. We suspect that such efforts would not be worth
it; it does not seem feasible to run BrubachEtAl on very large instances (e.g., number of edges
on the order of tens of millions), and furthermore, simpler methods either match or surpass its
performance in terms of the competitive ratio on many instances that we consider in this study.

5 DISCUSSION

As seen in Figure 9, in the Erdős-Rényi family of graphs, all algorithms exhibit somewhat simi-
lar performance. All algorithms performmuch better than their theoretical worst-case guarantees.
This is expected because of the randomness in the input. Figures 10–14 showcase the experimental
competitive ratios of each algorithm along with its greedy version, SimpleGreedy, and Category-
Advice (2-Pass). All algorithms seem to follow similar trends. More specifically, the non-greedy
versions show a drop in performance as c increases. This is to be expected since non-greedy algo-
rithms ignore a certain fraction of the input while the offline optimum increases when the graph is
getting denser. Greedy algorithms always perform close to optimumwhen the graph is very sparse
or very dense and this behavior is evident as the greedy versions achieve a global minimum around
c = 4.9. For a theoretical explanation of this behavior, see [22] and [5]. Figures 15–17 show an ex-
perimental ranking of the algorithms before, around, and after the global minimum, respectively.
What stands out the most is that even the simplest greedy algorithms, SimpleGreedy, Ranking,
MinDegree, and KarpSipser, always outperform the more sophisticated non-greedy algorithms
that make use of the type graph, while the greedy versions of the latter perform only slightly

ACM Journal of Experimental Algorithmics, Vol. 25, No. 1, Article 1.4. Publication date: March 2020.

Experimental Study of Online Bipartite Matching Algorithms 1.4:33

better than simple greedy ones. Interestingly, Category-Advice is always the best performing al-
gorithm, while MinDegree is the best performing purely online algorithm on very dense graphs
(c = 14.9). For c = 14.9, the experimental ranking of the non-greedy algorithms is consistent with
Table 1. For c = 1.9 and c = 4.9, BahmaniKapralov is the best and worst non-greedy algorithm,
respectively, while in both cases JailletLu is doing slightly better than BrubachEtAl. It’s worth
noting that the proven competitive ratios of JailletLu and BrubachEtAl only differ by 0.0006
and the number of simulations required to achieve a low enough error margin is beyond our com-
putational resources. We also note that 3-Pass is always guaranteed to perform at least as well
as Category-Advice, but sometimes our plots list Category-Advice above 3-Pass. In these in-
stances, the two algorithms gave identical performance, and the plot generating procedure broke
ties in favor of Category-Advice. In all our experiments, 3-Pass was either identical to Category-
Advice or gave minuscule improvements. This is explained by an already impressive performance
of Category-Advice. When the instance graph has a near-perfect matching, one can expect the
first and second pass to cover almost all offline nodes. The third pass differs from the first two only
in its behavior on the nodes that were not matched in either of the first two passes. If the first two
passes already cover all or almost all nodes, then the third pass doesn’t actually do anything, and
this is what we observed.
The Random Regular family of graphs paints a similar picture. The results are almost iden-

tical for Left Regular and Right Regular, so we only present the former. The performance of all
non-greedy algorithms is depicted in Figure 18. The main difference compared to the Erdős-Rényi
family is that the algorithms converge a bit faster as the graph gets denser. The results of the
non-greedy Feldman algorithm compared to its greedy version and other greedy algorithms are
shown in Figure 19. Other non-greedy algorithms exhibit similar behavior. We see that the greedy
algorithms achieve a global minimum around d = 5 and that there seems to be a slightly bigger
gap between the non-greedy algorithms and their greedy versions than in the Erdős-Rényi exper-
iment. As seen in Figures 20–22, for d = 5 and d = 30, the ranking of the non-greedy algorithms
agrees with their respective theoretical guarantees, while for d = 2 BahmaniKapralov performs
the best, and BrubachEtAl is second worst after FeldmanEtAl. Simple greedy algorithms are
consistently better than all non-greedy algorithms, while greedy algorithms that use information
from the type graph perform marginally better than simple greedy ones on sparser graphs. Inter-
estingly, MinDegree quickly becomes the best performing online algorithm, even for d = 5.
For the Molloy-Reed family of graphs, Figures 23 and 24 show the performance of non-greedy

algorithms as functions of τ and κ, respectively. The behavior of all algorithms is again very sim-
ilar. We can see that as κ increases, the graph is getting denser, which results in an expected
drop in performance as more nodes that could be included in an optimal matching are being re-
jected. On the contrary, as τ increases, the graph is getting less dense and the performance in-
creases. In fact, as shown in the indicative plot of BahmaniKapralov (Figure 25), as τ increases
and the graph becomes sparse, non-greedy algorithms achieve performance close to that of greedy
ones. The experimental performance-based ranking of algorithms in various settings is shown in
Figures 27–30. Simple greedy algorithms consistently outperform non-greedy algorithms but
the greedy versions of algorithms that use the type graph achieve slightly better results (al-
though MinDegree manages to outperform BrubachEtAl(g) and JailletLu(g) in the setting
of τ = 0.5,κ = 41). The ranking of non-greedy algorithms varies a lot among different parame-
ter settings. As opposed to other graphs, FeldmanEtAl does not always come last, and it even
outperforms BrubachEtAl in the setting of (τ = 2,κ = 96.0).
Results for the Preferential Attachment Bigraph family (Figures 31–35) agree with the pat-

terns observed thus far. The greedy version of only one of the non-greedy algorithms is presented
in a plot (Figure 32), and the rest are similar. Simple greedy algorithms do better than all non-greedy

ACM Journal of Experimental Algorithmics, Vol. 25, No. 1, Article 1.4. Publication date: March 2020.

1.4:34 A. Borodin et al.

algorithms but, with the exception of MinDegree, are outperformed by the greedy versions of al-
gorithms using the type graph. BahmaniKapralov(g) is the best performing online algorithm for
the sparse case but afterwards the heuristic algorithm MinDegree climbs to the top. For c = 8.1
and c = 14.9, ManshadiEtAl is the best non-greedy algorithm, whereas for c = 2.1 it comes sec-
ond to BahmaniKapralov.
Similar trends appear in the results for stand-alone graphs (Table 3), with algorithms performing

much better than their worst-case guarantees. One exception is graph UT, where SimpleGreedy
is the worst performing algorithm. This is to be expected as that is the worst-case graph for that
algorithm. Besides SimpleGreedy, Category-Advice and 3-Pass algorithms also achieve low per-
formance on graph UT. On the other hand, MinDegree is the best algorithm for UT, followed by
Ranking, even though in the adversarial setting this is its worst-case graph for the latter. More-
over, it seems that 0.78 is an upper bound of all other non-greedy algorithms on UT, indicating that
this graphmight be a useful theoretical benchmark. GraphMH is a hard instance that produces the
best known upper bound for the known i.i.d. input model with integral types. All greedy online
algorithms achieve the same, best online performance, while Category-Advice and 3-Pass re-
sult in a substantial improvement. The exceptionally low performance of FeldmanEtAl on graph
FH verifies it as its worst-case graph. What is also interesting about FH is that the experimental
performance-based ranking of the algorithms is not consistent with the ranking of Table 1. Specifi-
cally, the best non-greedy algorithm is ManshadiEtAl with 0.84, followed by BahmaniKapralov
and the remaining algorithms in their usual ordering. Rope seems to be the easiest class that all
algorithms can handle quite well. The worst performance on graph Rope is 0.91 achieved by Man-
shadiEtAl. The second easiest graph is Zipfwhere the worst performing algorithm is FeldmanE-
tAl with a competitive ratio of 0.86. On graphs FewG and ManyG, the ranking of the non-greedy
algorithms based on their performance follows their ranking based on their worst-case analysis.
Overall, ManyG appears to be an easy graph, which might be due to a quite uniform distribution
of edges over the offline nodes. Hexa appears to be an instance of similar hardness to MH. The
best performing algorithms get 0.89, only slightly better than the best performance on MH (0.87),
while the worst algorithm (FeldmanEtAl with 0.75) is slightly worse than the worst performance
on MH (0.76). It is also worth noting that the multiple-pass offline algorithms do not result in a
performance increase as big as on graph MH.
Overall, the ranking of the non-greedy algorithms as presented in Table 1 remains fairly con-

sistent in the stand-alone graphs, except for FH and Zipf where ManshadiEtAl and Bah-
maniKapralov take the lead. Additionally, simple greedy algorithms always outperform the non-
greedy algorithms that make use of the type graph, with the former always being slightly better,
and with the only exception being graph UT, where SimpleGreedy experiences a drop in per-
formance. For most graphs, MinDegree is in the set of algorithms that achieve the best perfor-
mance. In just two graphs, namely, UT and Zipf, there exist online algorithms that beat the offline
multiple-pass algorithms.
As shown in Tables 4 and 5, the performance on real instances is also much better than the

worst-case guarantees, which justifies looking at random graphs for an indication of real-world
performance. The results using both the random-bipartition method and the duplicating method
are very similar in terms of the experimental performance-based ranking of the algorithms, with
the graphs produced using the random-bipartition method being seemingly easier. The numbers
achieved by Ranking and SimpleGreedy are pretty much identical when random-bipartition is
used, while Ranking is significantly better when the duplicatingmethod is used.MinDegree is the
best out of the simple greedy algorithms, but with the exception of dataset mbeaflw, there’s always
a greedy version of an algorithm that uses the type graph that performs just as well. In datasets
Caltech36 and Reed98, the ranking of Table 1 is maintained for non-greedy algorithms. In CE-GN

ACM Journal of Experimental Algorithmics, Vol. 25, No. 1, Article 1.4. Publication date: March 2020.

Experimental Study of Online Bipartite Matching Algorithms 1.4:35

and CE-PG, ManshadiEtAl and BahmaniKapralov outperform the rest. In beause and mbeaflw
ManshadiEtAl is the best algorithm, while in beause using the random-bipartition method, Bah-
maniKapralov comes in a close second, outperforming BrubachEtAl and JailletLu.
The experimental performance-based ranking of the non-greedy algorithms is generally consis-

tent with their provable competitive ratios. BrubachEtAl and JailletLu perform very similarly
and are usually on top, although on some graphs, ManshadiEtAl and BahmaniKapralov can
outperform the rest. FeldmanEtAl almost always comes last (with a few exceptions, e.g., Molloy-
Reed), but FeldmanEtAl(g) is often one of the best online algorithms. MinDegree, KarpSipser,
Ranking, and SimpleGreedy get excellent results and almost always outperform all non-greedy
algorithms. MinDegree seems to be the most powerful out of the simple greedy algorithms stud-
ied here, and with its heuristic having such a minimal overhead, it is quite impressive. After
turning non-greedy algorithms into greedy algorithms, the ranking of the resulting algorithms
is not very predictable. FeldmanEtAl(g) does quite well and its place in the ranking improves.
BrubachEtAl(g) and JailletLu(g) can drop in rankings and become some of the worst greedy
algorithms, while it is not unusual for BahmaniKapralov(g) to become the best. It is not straight-
forward to predict how an algorithm will behave after it turns greedy but the transformation
appears to be very beneficial as the greedy versions significantly outperform non-greedy algo-
rithms. Category-Advice seems to be a great algorithm to use in streaming models and when
dealing with massive datasets. Even though it can improve substantially over the SimpleGreedy
solution, an additional pass (as done in 3-Pass) does not seem to provide much benefit, as discussed
before.

6 CONCLUSION

In this article, we experimentally studied various online bipartite matching algorithms under the
known i.i.d. input model with integral types. Type graphs that were used in our evaluations came
from different sources, including randommodels of social networks, real-life networks, and stand-
alone graphs that appeared previously inmatching-related literature. Broadly speaking, algorithms
under consideration can be split into two groups: simple algorithms that do not make use of the
additional information (i.e., the type graph), and more complicated algorithms that often have a
computationally intensive preprocessing step that tries to utilize the type graph for future predic-
tions. The more complicated algorithms were developed and analyzed by researchers in the worst-
case known i.i.d. setting so as to demonstrate more realistic performance bounds in contrast to the
purely adversarial setting. These algorithms are often presented as being non-greedy to simplify
the analysis. In contrast, most simple algorithms are naturally greedy. It is relatively easy to convert
complicated algorithms into greedy ones without hurting the worst-case performance guarantee
and without any significant computational overhead. Thus, intuitively an algorithm for online bi-
partite matching can be viewed as consisting of two parts; namely, the complicated preprocessing
part, and the greedy part. One of the main questions we try to answer in this work is how much
each part is contributing to the competitive ratio on “practical instances,” where practical instances
are modeled by the type graphs discussed above. It turns out that most of the work is done by the
greedy part. In particular, the simple greedy algorithm tends to outperform all non-greedy ver-
sions, sometimes quite significantly. It also tends to perform comparably to the greedy versions of
more complicated algorithms. In certain scenarios, the more complicated algorithms turned into
greedy ones outperform the simple greedy algorithm, although it is questionable whether the per-
formance boost is worth the extra computational effort in practice. In certain cases, this overhead
can become computationally intractable in practice (e.g., running BrubachEtAl on type graphs
with millions of nodes).

ACM Journal of Experimental Algorithmics, Vol. 25, No. 1, Article 1.4. Publication date: March 2020.

1.4:36 A. Borodin et al.

There are many problems suggested by our work and many future directions are worth explor-
ing. We list some of them here:

Open Problem 6.1. We conjecture that a practical study of online bipartite matching under the
known i.i.d. with fractional types would result in very similar results and conclusions to what we ob-
served with integral types. Does there exist a “practical instance” with fractional types that highlights
the necessity to use more complicated algorithms?

Open Problem 6.2. It is important to perform a similar evaluation on real-life data for online ad-
vertising, which is one of the main applications of online bipartite matching. Such data is proprietary
and is not available to the public. Creating a public repository of such benchmarks would be a great
contribution to the field on its own.

Open Problem 6.3. In order to bridge the gap between theory and practice one needs to consider
models other than worst-case. Known i.i.d. was the first step in this direction for online bipartite match-
ing, since worst-case over type graphs allows for much better competitive ratios than worst-case over
adversarial inputs. However, the area does not have to stop at known i.i.d. It is important to design
and analyze new stochastic input models that better match practical inputs for certain application
domains, e.g., online advertising.

Open Problem 6.4. In an attempt at being fair and testing all algorithms on the same type graphs,
we were limited to consider graphs with at most 1,000 nodes due to prohibitive computational require-
ments of BrubachEtAl. One could perform a study on extremely large instances with millions or
billions of nodes by excluding algorithms with too much preprocessing. We suspect that the results of
such a study would be similar to ours, and they would highlight the importance of using very simple
greedy algorithms in large-scale applications. Would any of the complicated algorithms be able to
handle such instances? Would the extra computation be worth it?

Open Problem 6.5. There are many extensions of online bipartite matching, including edge-
weighted matching, vertex-weighted matching, matching with capacity constraints (i.e., the so-called
b-matching), and so on. Performing an experimental study similar to the current one for those exten-
sions is an interesting open problem. Such a study might reveal certain ranges of parameters which
make extensions of the matching problem behave very differently from the vanilla matching problem
with respect to the algorithms considered in this article.

ACKNOWLEDGMENTS

We thank Michael Kapralov for discussing the BahmaniKapralov algorithm. We are thankful to
the anonymous reviewers who provided a lot of constructive comments that led to an improved
version of the article. In particular, the MinDegree algorithm in the known i.i.d. input model that
we consider in this article was inspired by the offline MinDegree algorithm, which was suggested
by one of the reviewers. This ended up being an excellent algorithm and we are thankful to the
reviewer for the suggestion.

REFERENCES

[1] [n.d.]. GNU Linear Programming Kit, Version 4.32. Retrieved May 11, 2018 from http://www.gnu.org/software/glpk/

glpk.html.

[2] Denis Pankratov, Allan Borodin, and Christodoulos Karavasilis. [n.d.]. Online Bipartite Matching Library. Retrieved

August 8, 2018 from https://users.encs.concordia.ca/∼denisp/online-bm-lib.tar.gz.
[3] Bahman Bahmani and Michael Kapralov. 2010. Improved bounds for online stochastic matching. In Proc. of ESA.

170–181.

[4] Yonatan Bilu and Nathan Linial. 2012. Are stable instances easy? Combinatorics, Probability & Computing 21, 5 (2012),

643–660.

ACM Journal of Experimental Algorithmics, Vol. 25, No. 1, Article 1.4. Publication date: March 2020.

http://www.gnu.org/software/glpk/glpk.html
http://www.gnu.org/software/glpk/glpk.html
https://users.encs.concordia.ca/~denisp/online-bm-lib.tar.gz

Experimental Study of Online Bipartite Matching Algorithms 1.4:37

[5] A. Borodin, C. Karavasilis, and D. Pankratov. 2018. Greedy bipartite matching in random type Poisson arrival model.

In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM

2018. 5:1–5:15. DOI:https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2018.5

[6] Allan Borodin, Denis Pankratov, and Amirali Salehi-Abari. 2018. On conceptually simple algorithms for variants of

online bipartite matching. In Approximation and Online Algorithms, Roberto Solis-Oba and Rudolf Fleischer (Eds.).

Springer International Publishing, 253–268.

[7] Joan Boyar, Lene M. Favrholdt, Christian Kudahl, Kim S. Larsen, and Jesper W. Mikkelsen. [n.d.]. Online algorithms

with advice: A survey. ACM Comput. Surv. 50, 2 ([n. d.]), 19:1–19:34.

[8] Brian Brubach, Karthik Abinav Sankararaman, Aravind Srinivasan, and Pan Xu. 2016. New algorithms, better bounds,

and a novel model for online stochastic matching. In Proc. of ESA. 24:1–24:16.

[9] Boris V. Cherkassky, Andrew V. Goldberg, Joao C. Setubal, and Jorge Stolfi. 1998. Augment or push: A computational

study of bipartite matching and unit-capacity flow algorithms. Journal of Experimental Algorithmics 3, 8 (1998).

[10] Nikhil R. Devanur, Kamal Jain, and Robert D. Kleinberg. 2013. Randomized primal-dual analysis of RANKING for

online bipartite matching. In Proc. of SODA. 101–107.

[11] Christoph Dürr, Christian Konrad, and Marc Renault. 2016. On the power of advice and randomization for online

bipartite matching. In Proc. of ESA. 37:1–37:16.

[12] Jon Feldman, Aranyak Mehta, Vahab S. Mirrokni, and S. Muthukrishnan. 2009. Online stochastic matching: Beating

1-1/e. In FOCS 2009. 117–126.

[13] Rajiv Gandhi, Samir Khuller, Srinivasan Parthasarathy, and Aravind Srinivasan. 2006. Dependent rounding and its

applications to approximation algorithms. Journal of the ACM 53, 3 (May 2006), 324–360. DOI:https://doi.org/10.1145/
1147954.1147956

[14] Gagan Goel and Aranyak Mehta. 2008. Online budgeted matching in random input models with applications to

adwords. In Proc. of SODA. 982–991.

[15] Patrick Jaillet and Xin Lu. 2014. Online stochastic matching: New algorithms with better bounds. Mathematics of

Operations Research 39, 3 (2014), 624–646.

[16] Richard M. Karp andMichael Sipser. 1981. Maximummatchings in sparse random graphs. In 22nd Annual Symposium

on Foundations of Computer Science, 1981. 364–375.

[17] R. M. Karp, U. V. Vazirani, and V. V. Vazirani. 1990. An optimal algorithm for on-line bipartite matching. In Proc. of

STOC. 352–358.

[18] Johannes Langguth, Fredrik Manne, and Peter Sanders. 2010. Heuristic initialization for bipartite matching problems.

ACM Journal of Experimental Algorithmics 15 (2010).

[19] Jacob Magun. 1998. Greedy matching algorithms, an experimental study. ACM Journal of Experimental Algorithms 3

(1998).

[20] Mohammad Mahdian and Qiqi Yan. 2011. Online bipartite matching with random arrivals: An approach based on

strongly factor-revealing LPs. In Proc. of STOC. 597–606.

[21] Vahideh H. Manshadi, Shayan Oveis Gharan, and Amin Saberi. 2011. Online stochastic matching: Online actions

based on offline statistics. In Proc. of SODA. 1285–1294.

[22] A. Mastin and P. Jaillet. 2013. Greedy online bipartite matching on random graphs. ArXiv e-prints (July 2013).

arxiv:cs.DS/1307.2536

[23] A. Mehta. 2012. Online matching and ad allocation. Theoretical Computer Science 8, 4 (2012), 265–368,

[24] Molloy Michael and Reed Bruce. 1995. A critical point for random graphs with a given degree se-

quence. Random Structures & Algorithms 6, 2–3 (1995), 161–180. DOI:https://doi.org/10.1002/rsa.3240060204
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/rsa.3240060204.

[25] Mark E. J. Newman, Duncan J. Watts, and Steven H. Strogatz. 2002. Random graph models of social networks. Pro-

ceedings of the National Academy of Sciences USA 99, Suppl 1 (2002), 2566–2572.

[26] Nicolas Pena and Allan Borodin. 2019. On extensions of the deterministic online model for bipartite matching and

max-sat. Theoretical Computer Science 770 (2019), 1–24.

[27] Ryan A. Rossi and Nesreen K. Ahmed. 2015. The network data repository with interactive graph analytics and visu-

alization. In Proceedings of the 29th AAAI Conference on Artificial Intelligence. http://networkrepository.com.

[28] Alvin E. Roth, Tayfun Sönmez, and M. Utku Ünver. 2007. Efficient kidney exchange: Coincidence of wants in markets

with compatibility-based preferences. American Economic Review 97, 3 (June 2007), 828–851.

[29] Daniel A. Spielman and Shang-Hua Teng. 2009. Smoothed analysis: An attempt to explain the behavior of algorithms

in practice. Communications of the ACM 52, 10 (2009), 76–84.

Received November 2018; revised September 2019; accepted October 2019

ACM Journal of Experimental Algorithmics, Vol. 25, No. 1, Article 1.4. Publication date: March 2020.

https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2018.5
https://doi.org/10.1145/1147954.1147956
https://doi.org/10.1145/1147954.1147956
https://doi.org/10.1002/rsa.3240060204
http://networkrepository.com

