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Abstract. We consider the problem of online interval scheduling on
a single machine, where intervals arrive online in an order chosen by
an adversary, and the algorithm must output a set of non-conflicting
intervals. Traditionally in scheduling theory, it is assumed that intervals
arrive in order of increasing start times. We drop that assumption and
allow for intervals to arrive in any possible order. We call this variant
any-order interval selection (AOIS). We assume that some online accep-
tances can be revoked, but a feasible solution must always be maintained.
For unweighted intervals and deterministic algorithms, this problem is
unbounded. Under the assumption that there are at most k different
interval lengths, we give a simple algorithm that achieves a competitive
ratio of 2k and show that it is optimal amongst deterministic algorithms,
and a restricted class of randomized algorithms we call memoryless, con-
tributing to an open question by Adler and Azar [1]; namely whether a
randomized algorithm without memory or with only “bounded” access to
history can achieve a constant competitive ratio. We connect our model
to the problem of call control on the line, and show how the algorithms
of Garay et al. [22] can be applied to our setting, resulting in an optimal
algorithm for the case of proportional weights. We also discuss the case
of intervals with arbitrary weights, and show how to convert the single-
length algorithm of Fung et al. [20] into a classify and randomly select
algorithm that achieves a competitive ratio of 2k. Finally, we consider
the case of intervals arriving in a random order, and show that for single-
lengthed instances, a one-directional algorithm (i.e. replacing intervals
in one direction), is the only deterministic memoryless algorithm that
can possibly achieve a strict competitive ratio less than 2.

Keywords: interval selection · scheduling · online algorithms · call
control

1 Introduction

We consider the problem of scheduling intervals online with revoking1. Intervals
arrive with a fixed start time and fixed end time, and have to be taken right
away, or be discarded upon arrival, while no intervals in the solution conflict.

1 Displacing one or more previously scheduled intervals with a conflicting new interval.
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The algorithm has to decide which intervals to include in the final schedule, so
as to optimize some objective.

In the unweighted case, the goal is to maximize the number of intervals in the
final solution. In the weighted case, we want an interval-set of maximum weight.
Following previous work, we allow some revoking of online decisions, which is
often considered even in the conventional start-time-ordered scheduling model.
More precisely, if a newly arrived interval conflicts with other intervals already
taken by the algorithm, we are able to take the new interval and discard the
conflicting intervals. We are able to displace multiple existing intervals at once,
although this won’t be needed in the unweighted case. To avoid confusion, we
should note that preemption2 is often used in the interval selection literature to
mean precisely this revoking of previous decisions we just described. Under this
definition, preemption is allowed in our model. When we discard an interval it
is final and it cannot be taken again.

We focus mainly on the unweighted case, where all intervals have the same
weight. We discuss the competitive ratio of the problem in terms of k, the num-
ber of distinct interval lengths. However our algorithm does not need a priori
knowledge of k. We show that a simple, deterministic, “memoryless” algorithm
that only replaces when the new interval is entirely subsumed by an existing
one, achieves the optimal competitive ratio in terms of the parameter k. We
also show that “memoryless” randomized algorithms can not do any better. The
main difference between our model and most of the interval selection literature,
is allowing intervals to arrive in any order, a strict generalization of the ordered
case. Bachmann et al. [5] have studied the any-order input model in the con-
text of “t-intervals” (we are concerned with t = 1). They consider randomized
algorithms, and don’t allow revoking. In that model, they get a lower bound of
Ω(N), with N being the number of intervals in a given input instance. The next
most closely related problem is that of call admission [21] on the line graph,
with online intervals corresponding to paths of a given line graph. The connec-
tion between call control on the line graph and interval selection has been noted
before, but has not been carefully defined. We wish to clarify this connection by
explaining the similarities as well as the differences, and how results correspond.
We note that the parameter k ≤ N (respectively, k ≤ n − 1) is an obvious
refinement of the number of intervals (respectively, the number of vertices for
call admission on a line graph with n vertices).

The applications of interval selection problems are plentiful. Some examples
are resource allocation, network routing, transportation, and computer wiring.
We refer the reader to the surveys by Kolen et al. [27], and Kovalyov et al. [30]
for an overview of results and applications in the area of interval scheduling.

Related Work. Lipton and Tomkins [31] introduced the online interval schedul-
ing problem. In our terminology, they consider the arrival of intervals with
increasing start times (ordered), and interval weights that are proportional to

2 In contrast to revoking, preemption in much of the scheduling literature means the
pausing of a scheduled job, and resuming it later.
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the lengths. They don’t allow displacement of existing intervals, and give a ran-
domized algorithm with competitive ratio O((logΔ)1+ε), where Δ is the ratio of
the longest to shortest interval.

In the unweighted case with increasing starting times, Faigle and Nawijn
[17] give an optimal 1-competitive algorithm that is allowed to revoke previous
decisions (replace intervals). In the weighted case with increasing starting times,
Woeginger [37] shows that for general weights, no deterministic algorithm can
achieve a constant competitive ratio. Canetti and Irani [11] extend this and
show that even randomized algorithms with revocable decisions cannot achieve
a constant ratio for the general weighted case. For special classes of weight
functions based on the length (including proportional weights), Woeginger [37]
gives an optimal deterministic algorithm with competitive ratio 4. Seiden [34]
gives a randomized (2+

√
3)-competitive algorithm when the weight of an interval

is given by a continuous convex function of the length. Epstein and Levin [16]
give a 2.45-competitive randomized algorithm for weights given by functions of
the length that are monotonically decreasing, and they also give an improved
1 + ln(2) ≈ 1.693 upper bound for the weight functions studied by Woeginger
[37]. Fung et al. [20] provide the best known upper bounds, giving barely random
algorithms that achieve a competitive ratio of 2 for all the Woeginger weight
functions. These algorithms randomly choose one of two deterministic algorithms
at the beginning. More generally, barely random algorithms have access to a
small number of deterministic algorithms, and randomly choose one.

Restricting interval lengths has previously been considered in the literature,
e.g. Lipton and Tomkins [31] study the case of two possible lengths, and Bach-
mann et al. [5] consider single and two-length instances. For the related offline
problem of throughput maximization, Hyatt-Denesik et al. [25] consider c dis-
tinct processing times. The special case of single-length jobs has been studied in
the job scheduling [6,13,35], sum coloring [9], and the interval selection literature
[19,32]. Woeginger [37] also points out how his results can be extended to the
case of equal lengths and arbitrary weights. Miyazawa and Erlebach [32] point
out the equivalency between fixed length (w.l.o.g. unit) instances, and proper
interval instances, i.e. instances where no interval is contained within another.
This is because of a result by Bogart and West [8], showing the equivalency of
the corresponding interval graphs in the offline setting.

There has also been some work on multiple identical machines. For the case
of equal-length, arbitrary-weight intervals, Fung et al. [19] give an algorithm that
is 2-competitive when m, the number of machines, is even, and (2+ 2

2m−1 ) when
m is odd. Yu & Jacobson [38] consider C-benevolent (weight function is convex
increasing) jobs and get an algorithm that is 2-competitive when m is even, and
(2 + 2

m )-competitive when m is odd.
In the problem of call control, a graph is given, and requests that correspond

to pairs of nodes of the graph arrive online. The goal is to accept as many requests
as possible, with the final set consisting of disjoint paths. When the underlying
graph is a line, this problem is closely related to ours. For call control on the line,
Garay et al. [22] give optimal deterministic algorithms. In the unweighted case,



178 A. Borodin and C. Karavasilis

they achieve a O(log(n)) competitive ratio, where n is the number of the vertices
of the graph. In the case of proportional weights (weight is equal to the length
of the path), they give an optimal algorithm that is (

√
5+2) ≈ 4.23-competitive

(its optimality was shown by Furst and Tomkins [36]). Adler and Azar [1] use
randomization to overcome the log(n) lower bound, and give a 16-competitive
algorithm. Emek et al. [15] study interval selection in the streaming model,
and show how to modify their streaming algorithm to work online, achieving a
competitive ratio of 6, improving upon the 16-competitive algorithm of Adler
and Azar. It is noteworthy that the Adler and Azar algorithm uses memory
proportional to the entire input sequence. In contrast, the Emek et al. algorithm
only uses memory that is within a constant factor of a current OPT solution. It
is still an open question if a randomized algorithm using only constant bounded
memory can get a constant ratio in the unweighted case. We show that for a
strict, but natural definition of memoryless randomized algorithms, a constant
ratio cannot be obtained. The algorithms presented in this paper, along with
the optimal algorithms by Garay et al. [22] and Woeginger [37], fall under our
definition of memoryless. It is worth noting that similar notions of memoryless
algorithms, and comparison between randomized memoryless and deterministic,
have appeared in the k-server, caching, and facility location literature [12,14,
18,26,28,29,33]. We would note that barely random algorithms as described
earlier (i.e. algorithms that initially generate some random bits, which are used
in every online step), are not memoryless but usually satisfy bounded memory.
The algorithms by Fung et al. [20] are an example of this. More generally, this
use of initial random bits are the classify and randomly select algorithms (e.g.
Lipton and Tomkins [31] and Awerbuch et al. [3]). It’s important to note that
such algorithms may require prior knowledge of bounds on lengths of intervals.
In the full version of the paper [10] we discuss our meaning of memoryless and
bounded memory online algorithms, and the relation to randomness, advice, and
the Adler and Azar question.

The problem of admission control has also been studied under the model
of minimizing rejections [2,7] instead of maximizing acceptances. An alternative
input model for interval selection is that of arriving conflicts [23] instead of single
intervals, with the algorithm being able to choose at most one item from each
conflict. We also note that an instance of interval selection can be represented as
an interval graph, with intervals corresponding to vertices, and edges denoting a
conflict between two intervals. Generally, interval graphs reveal much less about
the instance compared to receiving the actual intervals. In the interval graph
representation, arriving vertices may have an adjacency list only in relation to
already arrived vertices, or they may show adjacency to future vertices as well.

Our Results. For the unweighted adversarial case, we know that no determin-
istic algorithm is bounded (follows from [22]). Assuming there are at most k
different lengths, we show how a simple greedy algorithm achieves a competitive
ratio of 2k. We also give a matching lower bound that holds for all deterministic
algorithms, as well as “memoryless” randomized algorithms. We note that an
instance with k different lengths can have a nesting depth of at most k−1. Alter-
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natively, we can state our results in terms of d, the nesting depth (see Fig. 1),
noting that d ≤ (k − 1). This implies that our 2k bounds can be restated as
2(d+1). We also show how to extend the classify and randomly select paradigm
used by Fung et al. [20] to obtain a randomized algorithm that is 2k-competitive
for the case of arbitrary weights and k different interval lengths. It’s worth not-
ing that the analysis by Canetti and Irani [11] implies an Ω(

√
k) lower bound

for randomized algorithms with arbitrary weights.
We show how the problem of call control on the line [22] relates to inter-

val selection, and in particular how their log n-competitive algorithm for the
unweighted case and their (2 +

√
5)-competitive algorithm for proportional

weights carries over to interval selection. In doing so, we explain why there
is no contradiction between our optimal 2k bound, and their optimal log n
bound. Lastly, we consider deterministic memoryless algorithms for the prob-
lem of any-order, unweighted, single-lengthed (i.e. unit) intervals with random
order arrivals. We show that the only deterministic memoryless algorithm that
can possibly perform better than the adversarial bound is one-directional, only
replacing intervals if they overlap in that particular direction.

Organization of the Paper. Section 2 has some definitions to clarify the model.
Section 3 has our upper and lower bounds in the adversarial case. Section 4 dis-
cusses arbitrary weights. Section 5 is about interval selection in the random order
model. We end with some conclusions and open problems. The connection to call
control, and the application of the proportional weights algorithm to our model
can be found in the full version of the paper.

2 Preliminaries

Our model consists of intervals arriving on the real line. An interval Ii is specified
by a starting point si, and an end point fi, with si < fi. It occupies space
[si, fi) on the line, and the conventional notions of intersection, disjointness, and
containment apply. This allows two adjacent intervals [s1, f) and [f, f2) to not
conflict, although our results would apply even if we considered closed intervals
[si, fi] with [s1, f ] and [f, f2] conflicting. There are two main ways two intervals
can conflict, and they are shown in Fig. 1. In the case of containment, we say
that the smaller intervals are subsumed by the larger one.

We use the notion of competitive ratio to measure the performance of our
online algorithms. Given an algorithm A, let ALG denote the objective value of
the solution achieved by the algorithm, and let OPT denote the optimal value
achieved by an offline algorithm. The competitive ratio of A is defined as follows:
CR(A) = OPT

ALG ≥ 1. We should note that we can repeat disjoint copies of our
nemesis sequences, and get the corresponding tight lower bounds. As a result,
we can omit the standard additive term in our definition of competitive ratio.
We will sometimes abuse notation and use ALG and OPT to denote the sets of
intervals maintained by the algorithm at some given point, and the set of inter-
vals of an optimal solution respectively. In the case of deterministic algorithms
and random arrival of intervals, the performance of an algorithm is a random
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variable, and the competitive ratios hold w.h.p. (definition of competitive ratio
remains unchanged). The algorithm we present in the case of arbitrary weights
is randomized, and its expected competitive ratio is defined as CR(A) = OPT

E[ALG] .

Fig. 1. Types of conflicts.

We sometimes refer to a chain of intervals (Fig. 2). This is a set of intervals
where each interval partially conflicts with exactly two other intervals, except
for the two end intervals that partially conflict with only one.

Fig. 2. Interval chain.

3 Adversarial Order

3.1 Unweighted

In this section, we assume an adversary chooses the instance configuration, along
with the arrival order of all intervals. Lemma 1 shows that revocable decisions
are necessary even in the case of two different lengths. Algorithm 1 is the greedy
algorithm that achieves the optimal competitive ratio of 2k in the unweighted
case, and it works as follows: On the arrival of a new interval, take it if there’s no
conflict. If there’s a conflict, take the new interval only if it is properly contained
inside an existing interval.

Lemma 1. The problem of any-order unweighted interval scheduling with two
different lengths and irrevocable decisions is unbounded.
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Fig. 3. Unweighted instance with two different lengths.

Algorithm 1.
On the arrival of I:
Is ← Set of intervals currently in the solution conflicting with I
for I ′ ∈ Is do

if I ⊂ I ′ then
Take I and discard I ′

return
end if

end for
Discard I

Proof. Consider two possible interval lengths of 1 and K (Fig. 3). Let an interval
of length K arrive first. W.l.o.g. the algorithm takes it (otherwise no smaller
intervals arrive). Then K 1-length non-overlapping intervals arrive next, all of
them overlapping with the first K-length interval. The algorithm cannot take any
of the 1-length intervals, achieving a competitive ratio of 1

K . This construction
can be repeated multiple times.

Theorem 1. Algorithm1 achieves a competitive ratio of 2k for the problem of
any-order unweighted interval scheduling with k different lengths.

Proof. We define a mapping of intervals f : OPT −→ ALG, where every interval
in ALG has at most 2k intervals in OPT mapped to it. Because intervals taken
by the algorithm might be replaced during the execution, the mapping f might
be redefined multiple times. What follows is the way optimal intervals I ∈ OPT
are charged, as soon as they arrive, to intervals I ′ ∈ ALG. There are four cases
of interest:

Case 1 : The newly arrived optimal interval is taken by the algorithm.
This can happen either because this interval did not conflict with any other
intervals taken by the algorithm, or because it was entirely subsumed by a larger
interval in ALG, in which case the algorithm would have replaced the large
interval with the new small one. In this case, this optimal interval is mapped
onto itself.

Case 2 : The newly arrived optimal interval partially conflicts with one interval
currently in ALG. In this case, this optimal interval is charged to the interval it
conflicts with.

Case 3 : The newly arrived optimal interval partially conflicts with two intervals
currently in ALG. In this case, this optimal interval can be charged to either
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of these two intervals arbitrarily. We may assume it is always charged to the
interval it conflicts with on the right. Notice also, that a newly arrived interval,
cannot partially conflict with more than two intervals in ALG.

Case 4 : The newly arrived optimal interval subsumes an interval currently in
ALG. W.l.o.g. we can assume this never happens. Any such optimal solution
OPT can be turned into an optimal solution OPT ′, with the smaller interval in
place of the larger one. We can restrict ourselves to only look at optimal solutions
where no such transformation can take place. This case also encapsulates the
case of an optimal interval perfectly coinciding with an interval taken by the
algorithm.

An interval (Il) taken by the algorithm can later be replaced, if a smaller
one (Is) comes along and is subsumed by it. When this happens, all intervals in
OPT charged to Il up to that point, will be transferred and charged to Is. As a
result, there are two ways an interval taken by the algorithm can be charged by
intervals in OPT . The first way is when an interval I ∈ OPT is directly charged
to an interval I ′ ∈ ALG when I arrives (Cases 1–4). This will be referred to as
direct charging. The second way is when a new interval, In, arrives, and replaces
an existing interval Ie, in which case all optimal intervals previously charged to
Ie, will now be charged to In. This will be referred to as transfer charging.

Proposition 1. An interval taken by the algorithm (even temporarily), can be
charged by at most two optimal intervals through direct charging.

To see why this proposition is true, we consider the three main cases of direct
charging explained earlier. In Case 1, the optimal interval is taken by the algo-
rithm and is charged to itself. Because no other optimal interval can conflict
with it, we know this interval will never be directly charged again.

In Cases 2 and 3, direct charging happens because of the optimal interval
partially conflicting with one or two intervals currently taken by the algorithm.
Because an interval taken by the algorithm can partially conflict with at most
two optimal intervals (one on each side), it can be charged twice at most.

Proposition 2. An interval taken by the algorithm can be charged by at most
2k − 2 optimal intervals through transfer charging.

Consider a sequence of interval replacements by the algorithm, where all opti-
mal intervals charged to an interval in the sequence are passed down to the next
interval in the sequence. The last interval in that sequence will have accumu-
lated all the optimal intervals charged to the previous intervals in that sequence.
Because we consider k different lengths, such a sequence can have up to k inter-
vals, participating in k − 1 transfer charging events. We also know that every
interval in that sequence can be charged at most two optimal intervals through
direct charging (Proposition 1) before being replaced. Consequently, assuming
two additional charges are added to each interval in that sequence, the last
(smallest) interval will be charged 2(k − 1) optimal intervals through transfer
charging.
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We have described a process during which every optimal interval is charged
to an interval in ALG. By Propositions 1 & 2, we know that an interval in ALG,
can be charged by 2k intervals in OPT at most. Therefore, our algorithm has
a competitive ratio of 2k for the problem of unweighted interval selection with
revocable decisions and k different possible interval lengths.

We now provide a matching lower bound, showing that no deterministic
algorithm can do better.

Theorem 2. No deterministic algorithm can achieve a competitive ratio better
than 2k for the problem of unweighted interval selection with revocable decisions
and k different lengths.

Proof. At any point during the execution, the algorithm will have exactly one
interval in its solution, while the size of the optimal solution will keep growing.
We begin by describing how the main component of the instance is constructed,
using intervals of the same length. First, the adversary must decide on an overlap
amount v, which can be arbitrarily small. All partially conflicting intervals will
overlap by exactly this amount. Consider now the instance of Fig. 4. Intervals
I1 and I2 arrive first in that order. If I1 is taken by the algorithm and is then
replaced by I2, then I4 arrives. If I1 was taken by the algorithm but was not
replaced by I2, then I3 would arrive. Because this case is symmetrical, we only
consider the former case of I2 replacing I1. What happens is that this chain
keeps growing in the same direction, until the algorithm decides to stop replacing.
When that happens, we look at the last three intervals of the chain. For example,
when I4 arrived, if the algorithm chose to not select I4 and instead maintain I2,
we stop growing the chain and consider the intervals (I1, I2, I4). If the algorithm
never stops replacing, it will end up with I5 in its solution. Notice that if the
algorithms keeps replacing a growing chain, this will hurt the competitive ratio.
In all cases, there exists an optimal solution of at least two intervals, with neither
of them being the one taken by the algorithm. Note also that this construction
requires at most four intervals of length L, occupying space at most (4L − 3v)
in total.

Fig. 4. Base adversarial construction

A small detail is that w.l.o.g. we can assume I1 is always taken by the algo-
rithm when it first arrives. Because this construction will take place a number
of times during the execution, when the algorithm will already have an interval
in its solution, it is useful to consider the case when I1 is not taken by the algo-
rithm. In this case, we start growing the chain regardless. If I2 or I4 are taken by



184 A. Borodin and C. Karavasilis

the algorithm, we treat it similarly to when I1 was taken and the algorithm kept
replacing. If the algorithm hasn’t taken any interval even after I4 has arrived,
the chain stops growing and we consider the intervals (I1, I2, I4).

Let Ialg be the interval taken by the algorithm (or I2 if no intervals were
taken). All remaining intervals to arrive will be subsumed by Ialg, and thus
will not conflict with the two neighboring intervals taken by OPT . Assuming
Ialg conflicts with one interval on the left and one on the right, that leaves
space of length (L − 2v) for all remaining intervals. Inside that space, the exact
same construction described will take place, only when the algorithm takes a
new interval, it implies Ialg is replaced. This can be thought of as going a level
deeper, and using a sufficiently smaller interval length. More precisely, if L′ is
the new (smaller) length that will be used, it must hold that L′ ≤ L+v

4 .
After each such construction is completed, the size of the optimal solution

grows by at least 2. Because there are at most k different lengths, this can be
repeated at most k times. Finally, because the algorithm only ever keeps a single
interval in its solution, it will achieve a competitive ratio of 2k.

We now extend Theorem 2 and show that the 2k lower bound also holds for
a class of randomized algorithms we call memoryless. Intuitively, memoryless
algorithms decide on taking or discarding the newly arrived interval, only by
looking at the new interval, and all the intervals currently in the solution, using
no information from previous online rounds. Although not randomized, it is
worth noting that Algorithm1, along with the optimal deterministic algorithms
for call control [22], are memoryless.

Definition 1 (Memoryless randomized algorithm). We call a randomized
algorithm memoryless, if a newly arrived interval Inew is taken with probability
F (Inew, S), where S = {I1, I2, ...} is the set of intervals currently in the solution,
and each interval is a tuple of the form (si, fi).

Notice that Definition 1 only allows us to make use of random bits of this current
step, and it does not allow access to random bits from previous rounds. In partic-
ular, this definition does not capture barely random algorithms (as mentioned in
the introduction), or algorithms that fall under the classify and randomly select
paradigm.

Theorem 3. No memoryless randomized algorithm can achieve a competitive
ratio better than 2k for the problem of unweighted interval selection with revocable
decisions and k different lengths. More specifically, for all p ∈ (0, 1], there exists
an εp > 0, such that the competitive ratio is greater than 2k − εp with probability
p.

Proof. The proof is very similar to the proof of Theorem 2. The instance has
the same structure as the one described in the proof of Theorem 2, with the
difference that whenever a new interval is taken with probability p > 0, the
adversary will have to add as many copies of that interval as necessary, so that
it is taken w.h.p. Fig. 5 shows an example of multiple copies of a new interval,
ensuring that a replacement happens w.h.p.
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Fig. 5. Replacing I1 w.h.p when F (I2, {I1}) > 0.

It is worth mentioning that similar to how we extend our lower bound to hold
for memoryless randomized algorithms, one can extend the log(n) lower bound
for call control [22] to also hold for memoryless randomized algorithms.

4 Arbitrary Weights

The case of intervals having an arbitrary weights has previously been consid-
ered for the case of single-length instances and ordered arrivals. Woeginger [37]
gives an optimal deterministic algorithm that is 4-competitive. Fung et al. [20]
give a barely random algorithm that is 2-competitive, and show that it is opti-
mal amongst barely random algorithms that choose between two deterministic
algorithms. Woeginger [37] shows that in the case of two different lengths, there
does not exist a deterministic algorithm with finite competitive ratio. We show
how to combine the barely random algorithm of Fung et al., with a classify and
randomly select algorithm, to obtain a randomized algorithm for the any-order
case, that achieves a competitive ratio of 2k, when there are k different lengths.

First, one can observe that the 2-competitive single-length algorithm by Fung
et al. [20] (Theorem 3.1), works even in the case of any-order arrivals. Our
algorithm (denoted as ARB) works as follows: Choose one of k lengths, uniformly
at random. Then execute the algorithm of Fung et al., looking only at intervals
of the chosen length.

Theorem 4. Algorithm ARB achieves a competitive ratio of 2k for the problem
of any-order interval selection with k different lengths and arbitrary weights.

Proof. Let L1, L2, ..., Lk be all the different lengths of an instance. Associated
with length Li, is a sub-instance Ci, comprised only of the intervals of length
Li. Let OPTi denote the weight of an optimal solution on sub-instance Ci. The
expected performance of the algorithm can be bounded as follows:

E[ALG] ≥ 1
k

OPT1

2
+

1
k

OPT2

2
+ ... +

1
k

OPTk

2
≥ OPT

2k

The first inequality holds because applying Fung et al. [20] on Ci gives a solution
of weight at least OPTi

2 . The second inequality holds because for every length
Lj , the total weight of the intervals of length Lj in the final solution, is at most
OPTj .
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We note that the algorithm does not need to know the actual lengths beforehand,
or even k. The algorithm can start working with the first length that appears.
When a second length arrives, the algorithm discards its current solution and
chooses the new length with probability 1

2 . More generally, when the ith length
arrives, the algorithm starts over using the new length with probability 1

i . One
can see that the probability that any length is chosen is 1

k . This procedure
can be viewed as a form of reservoir sampling. Moreover, by replacing the 2-
competitive arbitrary weights algorithm with a simple greedy algorithm, we get
a randomized algorithm for the unweighted case that is 2k-competitive and does
not use revoking.

5 Random Order

In this section, we assume the adversary chooses the instance configuration, but
the intervals arrive in a random order. We consider unweighted, single-lengthed
instances, and deterministic memoryless algorithms with revocable acceptances.
We consider various cases and show that the only type of algorithm that can
beat the adversarial bound is a one-directional algorithm, namely an algorithm
that only replaces intervals on the left side, or only on the right side, regardless of
the amount of overlap. For any other algorithm, we show how the adversary can
enforce a competitive ratio of 2, resulting in no benefit over adversarial arrivals
for single-lengthed instances.

The argument works as follows. We first consider two simple algorithms, an
algorithm that always replaces, and an algorithm that never replaces, and give a
class of instances where these algorithms are no better than 2-competitive. We
then show that for any algorithm that isn’t one-directional, we can construct
an instance on which the algorithm’s behavior is the same as that of an always-
replace, or never-replace algorithm on that class of instances. As a result, we get
the following, arguably surprising, theorem. The proof of Theorem 5 is presented
in the full version of the paper.

Theorem 5. Every deterministic memoryless algorithm that isn’t one-
directional, can be forced to a strict competitive ratio of at least 2 for the prob-
lem of online unweighted single-lengthed interval selection under random order
arrivals.

We note that in ongoing work with additional authors, we have shown that
for chain instances, the one-directional algorithm is substantially better than
2-competitive.

6 Conclusions and Open Problems

There are a number of possible directions for future work. A very natural direc-
tion is looking at specific weighted cases. Deterministically, Garay et al. [22] have
settled the case of proportional weights with an optimal, constant-competitive
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algorithm. It’s interesting to see if a similar constant can be achieved for the
more general weight functions studied by Woeginger [37], with or without ran-
domness. We considered the case of arbitrary weights in Sect. 4.

It is fair to say that we have a limited understanding of randomized algo-
rithms for interval selection. In the unweighted adversarial setting, we have
shown that no memoryless randomized algorithm can be constant-competitive.
With memory, the best known algorithm is 6-competitive, and we know of no
better lower bound than 4

3 (using a chain of 3 intervals). For some weighted
cases (including proportional weights), Fung et al. show that with one random
bit, their 2-competitive algorithm is optimal. However, these upper bounds don’t
necessarily hold in the any-order model. We also note that for arbitrary weights,
there is a gap between our 2k upper bound, and the Ω(

√
k) lower bound by

Canetti and Irani [11]. We would like to extend the memoryless model to algo-
rithms with constant memory beyond the current solution. In particular, we
would want to allow access to a few initial random bits which would also cap-
ture algorithms that fall under the classify and randomly select paradigm.

A natural extension of revocable decisions is assigning a cost to the removal
and replacement of previously accepted items, a model arguably more relevant
in practice. This has been applied to problems such as online knapsack [24], and
online advertising [4]. We find it interesting to consider interval selection with
costs, and devise algorithms that aim to optimize the solution while limiting the
total cost of revoking.

Finally, to the best of our knowledge, we have initiated the study of this
model under random order arrivals, where there are many open questions for
future work. We have only looked at single-lengthed instances, a special case
that, in the adversarial setting, doesn’t even require revoking. Looking at mul-
tiple lengths under random arrivals is a natural next step. Lastly, we have
shown that one-directional algorithms for single-lengthed instances, are the
only type of deterministic memoryless algorithms that can achieve better than
2−competitiveness. We don’t have any provable upper bounds on the perfor-
mance of a one-directional algorithm, but we have conducted experiments that
suggest it may achieve much better than 2-competitiveness. This is an interest-
ing contrast with the adversarial model, where a one-directional algorithm would
perform arbitrarily bad.

Acknowledgements. We would like to thank Denis Pankratov, Adi Rosén and Omer
Lev for many helpful comments.
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