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Overview

Prolog is a Turing-complete, declarative programming language based on first-order logic. A program in
pure Prolog is a collection of Horn clauses of the form:

H ← B1, B2, ..., Bn

with H being the head of the rule, and B1, .., Bn making up the body. Such a rule is interpreted as “If B1

and B2 and ... Bn are true, then H is also true”. In this tutorial, we are concerned with a subset of pure
Prolog.

Some examples:
Socrates is a man.

man( s o c r a t e s ) .

Note that “man” can be thought of as a unary predicate, and “socrates” as a constant.
Every man is mortal. (∀X(man(X)→ mortal(X)))

mortal (X):−man(X) .

‘X’ is a variable. The convention in Prolog is that constants start with a lower case, whereas variables
start with an upper case. Consider a program with the above two clauses. We can make queries to see if
something is true.

?−man( s o c r a t e s ) .
yes

?−man( zeus ) .
no

?−mortal ( bob ) .
no

?−mortal (X) .
X = so c r a t e s
yes

Consider now the parent-child relationships as shown in the figure below. We can encode that information
with the following program:

parent (pam, bob ) .
parent ( tom , bob ) .
parent ( tom , l i z ) .
parent (bob , ann ) .
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parent (bob , pat ) .
parent ( pat , j im ) .

Queries:

?−parent (bob , pat ) .
yes

?−parent ( l i z , pat ) .
no

?−parent ( tom , ben ) .
no

?−parent (X, l i z ) .
X = tom
yes

?−parent (bob , X) .
X = ann −> ;
X = pat
yes

?−parent (Y, jim ) , parent (X, Y) .
X = bob
Y = pat
yes

?−parent (X, Y) , parent (Y, jim ) .
X = bob
Y = pat
yes

?−parent ( tom , X) , parent (X, Y) .
X = bob
Y = ann −> ;
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X = bob
Y = pat
yes

?−parent (X, ann ) , parent (X, pat ) .
X = bob
yes

We can also define a predicate to denote the predecessor relation.

p r edec e s so r (X,Y):− parent (X,Y) .
p r edec e s so r (X,Y):− parent (X,Z) , p r edec e s so r (Z ,Y) .

The first rule can be thought of as the base case.

?−predec e s so r ( tom , pat )
yes

When trying to answer a query, Prolog parses the program from top to bottom, and within the body of a
rule, from left to right. This is important to remember, in order to choose a correct ordering of our rules.
A wrong ordering might even result in an infinite loop. For example, consider the following rearrangement
of the predecessor rules defined above.

p r edec e s so r (X,Y):− predec e s so r (Z ,Y) , parent (X,Z ) .
p r edec e s so r (X,Y):− parent (X,Y) .

Queries for the predecessor predicate would never terminate.

The symbol ‘ ’ is used to denote an anonymous variable. For example we can write:

ha s ch i l d (X):− parent (X, ) .

as a rule for someone having a child. This can simplify the writing and understanding of programs. Anony-
mous variables can be used multiple times in a sentence without being bound to the same value.

somebody has chi ld :−parent ( , ) .

Structured data. Consider wanting to represent information about a lecture on AI that takes place every
Tuesday 10 to 12 by John Doe in the Bahen building, room 123. One way to do this would be the following:

course ( i n t r o t o a i , tuesday , 10 , 12 , john , doe , bahen , 1 2 3 ) .

Another way to represent it would be:

course ( i n t r o t o a i , t ime s l o t ( tuesday , 1 0 , 1 2 ) , l e c t u r e r ( john , doe ) , l o c a t i o n ( bahen , 1 2 3 ) ) .

The second statement represents ‘course’ as a relation between four items. Using structured data can often
improve readability and allows us to write more concise rules that promote modularity.

Lists are a powerful data structure that is often used in Prolog. ‘[ ]’ denotes the empty list. ‘|’ is used
to denote the head of the list, followed by the tail of the list, i.e. [Head|Tail]. The following lists are
equivalent:
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[ ann , tom , bob , pat ]
[ ann | [ tom , bob , pat ] ]
[ ann | [ tom | [ bob , pat ] ] ]
[ ann | [ tom | [ bob | [ pat ] ] ] ]
[ ann | [ tom | [ bob | [ pat | [ ] ] ] ] ]
[ ann , tom | [ bob , pat ] ]
[ ann , tom , bob | [ pat ] ]
[ ann , tom , bob , pat | [ ] ]

More examples of lists:

[ a ]
[X]
[X, Y]
[X |Y]
[ [ ] ]
[ 2 , 3 |L ]
[ p (1 , 3 ) |R]
[ [ 1 , 2 ] , [ 3 , 4 , 5 ] , [ ] , [ 6 ] ]
[A, B | [ e , f , g ] ]
[ q ( [ 2 , 7 ] ) , r ( [ [ 4 ] ] ) ]
[ [ a , b ] | [ c , d ] ]
[ | ]

Consider the problem of translating word for word. We want to define “translate(Words,Mots)”, where
Mots is a list of French words that is the translation of the list of English words Words. dict(X,Y) denotes
a dictionary that gives us the direct translation of individual words.

t r a n s l a t e ( [ ] , [ ] ) .
t r a n s l a t e ( [Word |Words ] , [ Mot |Mots ]) : − d i c t (Word ,Mot ) , t r a n s l a t e (Words , Mots ) .

d i c t ( the , l e ) .
d i c t ( dog , ch ien ) .
d i c t ( chases , chasse ) .
d i c t ( cat , chat )

Query:

?− t r a n s l a t e ( [ the , dog , chases , the , cat ] ,X) .
X = [ le , chien , chasse , l e , chat ]
yes

The translation can also work the other way around (French to English).

Negation in Prolog is implemented following the negation as failure paradigm, a notion closely related
to the closed world assumption1. In other words, if Prolog is unable to prove an assertion, it considers it
to be false. One must be careful when using negation, to make sure the resulting behavior is as expected.
Negation can be used with the ‘not()’ or the ‘\+’ operator.
Example:

sad (X):−not ( happy (X) ) .
happy (X):− b e au t i f u l (X) , r i c h (X) .

1The assumption that every true statement is known to be true.

4



r i c h ( b i l l ) .
b e a u t i f u l ( michael ) .
r i c h ( michael ) .
b e au t i f u l ( c i n d e r e l l a ) .

Queries:

?−sad ( b i l l ) .
Yes

?−sad ( c i n d e r e l l a ) .
Yes

?− sad ( michael ) .
No

?−sad ( jim ) .
Yes

?−sad ( Someone ) .
No

Equality operator. There are a few different notions of equality in logic programming. We focus on the ‘=’
operator which is used or unification equality, and succeeds when the two terms can be unified. Examples:

?−X = X
X = X
Yes

?−X = Y
Y = X
Yes

?−X = a
X = a
Yes

?−a = a
Yes

?−a = b
No

Example programs.

1. Let friends(A,B) denote that A and B are friends. How do we express the fact that this is a
symmetrical relation? Wrong solution:

f r i e n d s (X,Y):− f r i e n d s (Y,X) .

The above would result in an infinite loop. Better solution:

f r i e n d s (bob , tom ) .
f r i e n d s (bob , l i l l y ) .

a r e f r i e n d s (X,Y):− f r i e n d s (X,Y) .
a r e f r i e n d s (X,Y):− f r i e n d s (Y,X) .

Defining a new predicate is a common way of avoiding such loops.
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2. Let friend(A,B) denote that A and B are friends. A person is popular if they have at least two
friends. Define predicate popular(X).

f r i e n d s (bob , tom ) .
f r i e n d s (bob , l i l l y ) .

a r e f r i e n d s (X,Y):− f r i e n d s (X,Y) .
a r e f r i e n d s (X,Y):− f r i e n d s (Y,X) .

popular (X):− a r e f r i e n d s (X,Y) , a r e f r i e n d s (X,Z) ,not (Y=Z ) .

3. The Monkey and Banana problem. A hungry monkey enters a room where there is a banana hanging
from the center of the room. To grab the banana, the monkey has to be on the same level and in the
middle of the room. There is a box next to a window which the monkey has to use in order to reach
the banana. A visual representation of the problem, along with the state structure we are using, is
shown in the figure below. We want to see if/how the monkey can get the banana.

‘%’ and ‘/* */’ are used for line-comments and blocks of comments respectively.

%I f the monkey i s on the box in the middle o f the room , i t can ge t the banana
move( s t a t e ( middle , onbox , middle , hasnot ) ,

grasp ,
s t a t e ( middle , onbox , middle , has ) ) .

%The monkey can c l imb on the box , assuming they both are at the same l o c a t i o n
move( s t a t e (P, on f l oo r , P, H) ,

climb ,
s t a t e (P, onbox , P, H) ) .

%The monkey can push the box from one l o c a t i o n to another
move( s t a t e (P1 , on f l oo r , P1 , H) ,

push (P1 , P2 ) ,
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s t a t e (P2 , on f l oo r , P2 , H) ) .

%The monkey can walk to any l o c a t i o n
move( s t a t e (P1 , on f l oo r , B, H) ,

walk (P1 , P2 ) ,
s t a t e (P2 , on f l oo r , B, H) ) .

canget ( s t a t e ( , , , has ) ) . %base case
canget ( State1 ):−move( State1 , Move , State2 ) , canget ( State2 ) .

Query:

?−canget ( s t a t e ( atdoor , on f l oo r , atwindow , hasnot ) ) .
yes

What if we want to record the actions required to get to the goal state? We can use a list, and define
canget() as follows:

canget ( s t a t e ( , , , has ) , [ ] ) .
canget ( State , [ Action | Actions ] ) :−move( State , Action , NewState ) ,

canget (NewState , Act ions ) .

Query:

?−canget ( s t a t e ( atdoor , on f l oo r , atwindow , hasnot ) , Act ions ) .
Act ions = [ walk ( atdoor , atwindow ) , push ( atwindow , middle ) , climb , grasp ]
yes
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