
Multi-Label Classification using Sticky Brownian
Motion

Sepehr Abbasi-Zadeh
University of Toronto

sepehr@cs.toronto.edu

Christodoulos Karavasilis
University of Toronto

ckar@cs.toronto.edu

Abstract

Multi-label learning and classification deals with problems where a single instance
can be associated with multiple class labels. Binary classifiers are often used
to predict each label separately but can be misled by not exploiting potential
dependencies between different labels. A common research theme in this area
focuses on learning these label dependencies in order to improve performance
[27]. In this work, we propose a new architecture based on Brownian motion
[13] that uses binary classifiers in addition to pair-wise correlations between the
labels, and produces a label set that adheres to these dependencies. We provide
experimental results that show our architecture is comparable and sometimes
outperforms several state-of-the-art methods on real-world datasets and we identify
directions for possible improvement.

1 Introduction

Multi-label classification (MLC) is a type of a structured prediction problem [3] that has attracted a
lot of attention and has applications spanning information retrieval [20], bioinformatics [4], content
annotation [16] and web mining [22]. The goal is to learn a classifier that annotates instances
with all the relevant labels. More formally, we have an input domain X = Rd, an output domain
Y = {y1, .., yn} where ∀i ∈ [n], yi ∈ {0, 1}, and a score function S : (X , {0, 1}n)→ R. Given an
instance x ∈ X , the goal is to find argmaxy∈{0,1}nS(x, y). The solution space is large enough for
computing a brute-force solution to be infeasible. Many different approaches have been proposed
to tackle this problem and they can be divided ([23, 24]) into two main categories: a) problem
transformation methods that find a solution using one or more binary classifiers, and b) algorithm
adaptation methods that deal with the data in its entirety to predict multiple labels. A third category
of algorithms, called ensemble methods [12], was later identified as a general approach to performing
MLC, and it works by combining a number of multi-label classifiers. Recent work comparing
state-of-the-art ensembles of multi-label classifiers can be found in [14].

It is generally accepted that to achieve strong generalization in MLC models, one should exploit
potential correlations between the labels [28, 26, 24, 9]. Given n binary classifiers that output the
probability of the corresponding label being true (e.g. logistic regression), and a correlation matrix
W ∈ Rn×n that models pair-wise dependencies between the labels, we introduce a technique which
we call Brownian Inference (BI) that predicts the final labels while maintaining these dependencies.
The core idea is using sticky brownian motion (SBM) [1] as a randomized rounding method that
works by performing a correlated random walk in an n−dimensional space.

To get an intuition, assume we have the three following labels: golf_pitch, football_field, and
golf_flag. We now want to annotate the image of the golf pitch shown in Figure 1. Let’s assume
our binary classifiers returned the following probabilities for each label: P [golf_pitch] = 0.6,
P [football_field] = 0.4, P [golf_flag] = 0.85. The model is slightly agnostic between golf pitch

Learning to Search (LTS 2019), Toronto, Canada.

Figure 1: Image of a golf pitch. Figure 2: Image of a football field.

Figure 3: Correlations between three labels.

and football field as they can look quite similar. Additionally, assume we have access to a correlation
matrix (learned by an independent process) with the following entries:

• corr(golf_pitch, football_field) = -0.97

• corr(golf_pitch, golf_flag) = 0.89

• corr(football_field, golf_flag) = -0.92

A visualization of the correlation matrix can be found in Figure 3. Guided by these dependencies, our
method is unlikely to return a vector containing both gold_pitch and football_field. Intuitively, this is
due to the fact that in each step it uniformly samples a point on the surface of the shown ellipsoid
shown as the correlation matrix of Figure 3. Therefore, the motion is more likely to go toward the
directions that have stronger dependencies. Running BI on this toy example we actually return the
correct vector 70% of the time and never do we get those two labels together. Additionally, using the
randomized rounding method of including a label with its corresponding probability (e.g. the label
golf_pitch is added with probability 0.6), returns the correct vector 30% of the time. This example is
an easy way to see why taking advantage of label correlations can vastly improve prediction accuracy.

Our architecture is explained in detail in section 3. The correlation matrix W can be heuristically
computed (e.g. using the Pearson correlation coefficient between each two label vectors) or learned
using stochastic gradient descent. We have experimented with both and, as shown in section 4, the
latter performs much better but with an additional overhead on running time. We showcase the
advantage of BI that uses label correlations over independent binary classification and also compare
it against various state-of-the-art methods on real datasets.

2

2 Related work

Binary relevance [6] is the approach of using a binary classifier independently for each label. This is
the most common problem transformation method that has attracted a lot of attention [27] because of
its simplicity and elegance. In order to utilize correlations among the labels, many augmentations have
been proposed (see [27] and references therein). A different family of methods [18, 25] considers the
label powerset. A new single-label dataset is generated with a different class for every combination of
labels. This approach effectively considers label correlations but the issue is that the the complexity
is exponential in the number of labels. A popular approach that considers label dependencies is
that of using classifier chains [19]. Assuming n labels, a chain of n binary datasets is generated,
with the feature space of each classifier being augmented with the label predictions of previous
classifiers. The chain-induced label ordering has a direct impact on performance and different chain
ordering techniques have been considered in the literature [10], with ensembles of classifier chains
trying to overcome the problem of choosing the right chain ordering altogether. In contrast, we
aim to capture label correlations in a more intuitive and abstract way, by having our correlation
matrix be independent of the core binary learning process, and making it easier to test and search
for the underlying dependencies. There have also been efforts to create techniques (e.g. by pruning
infrequently occurring labels) for scalable MLC [17, 8]. The special problem of extreme multi-label
classification [2] deals with cases where the number of labels is extremely large but only a small
subset is relevant for every instance.

3 Model description

Brownian motion [13] in an n-dimensional domain U is defined by an n× n correlation matrix W
and a starting point Z(0) ∈ U .
The diffusion process proceeds as follows:

while Z(t) /∈ ∂U :

Z(t+ 1) = Z(t) + δW 1/2Bt where Bt ∼ N (0, In)

t = t+ 1.

(1)

Here N (0, In) is a multivariate (n-dimensional) Gaussian vector, and δ > 0 is an infinitesimal step
size. In our problem, we assume that the set of all possible labels is of size n. Accordingly, we assume
U = [0, 1]n in the Brownian motion description, in which each vertex of U corresponds to a possible
vector of labels. That is, since by running the sticky1 Brownian procedure it is guaranteed that the
final solution is a vertex v of U , we set the i−th label to 1 if vi = 1, and 0 otherwise. Further, for
solving the inference problem on a given instance x, the starting point Z(0) is given to us as follows:
Z(0)i = P [`i = 1|x] ∀i ∈ [n]. Therefore, for an instance x, to solve the inference problem 1, we
just need to obtain Z(0) from n different (possibly uncorrelated) learners, and also train a correlation
matrix W based on a loss function L(y, ŷW (x)), where y, ŷW (x) ∈ {0, 1}n. We do not impose any
constraint on the loss function, but we assume that for any pair of (y, ŷW (x)) ∈ {0, 1}n × {0, 1}n
we can compute the loss. An overview of the model is presented in Figure 4.

The following theorem relates the expected loss that we get by running the sticky Brownian motion
to the correlation matrix W .
Theorem 1. For a given instance s ∈ X , let ŷW (s) be the output of running the sticky Brownian
motion with correlation matrix W , starting from point Z(0) ∈ [0, 1]n. Also, let uW : [0, 1]n → R be
the (unique) solution to the following boundary value partial differential equation:∑

i,j∈[n]

wij
∂2uW
∂xi∂xj

= 0

s.t. uW (a) = Lext(a) ∀a ∈ ∂[0, 1]n,

where Lext is a unique extension of the loss function L on the boundaries of the cube U yet to be
defined. Then we have:

EZ(0) [L(y, ŷW (s))] = uW (Z(0)) .

1It’s called sticky because as soon as we hit a surface, it is fixed and we continue the movement in a lower
dimension.

3

Figure 4: Model overview.

The extended function Lext is defined recursively as the solution to the same PDE projected to the
corresponding spanned subspace.

It turns out that the solution to the previous PDE is unique and it is a harmonic function [13].
Therefore, it is infinitely differentiable. Thus, Theorem 1 gives us enough information for updating
the correlation matrix W which minimizes the expected loss L using a simple stochastic gradient
descent method which have access to the gradients of the form ∂L

∂W . However, since we do not know
the closed-form solution to the mentioned PDE, it is not possible to find the gradient analytically.
Therefore, we use a Monte Carlo sampling method to find an unbiased gradient estimator numerically,
and note that this method does not require to find the extended function Lext. To make sure that
the correlation matrix W remains positive definite, we assign each label a k-dimensional vector,
and we learn the k-dimensional representation of that label. This representation in turn gives us the
correlation between each two labels by taking the dot product between their corresponding vectors
and normalizing it. This way, the resulting correlation matrix by the definition remains a positive
definite matrix.

4 Experiments

Our evaluation metrics are Hamming distance and Accuracy. Hamming distance is defined as the
average symmetric difference between predicted and true vectors normalized by the total number of
labels. Accuracy is defined as the average ratio of correctly predicted labels over the number of true
labels in addition to wrongly predicted labels. More formally, let Y be the true labels, Z the predicted
labels, and ∆ be the binary operator computing the symmetric difference between two sets. Hamming
distance is given by 1

mtest

∑mtest

1=i
1
q |Zi∆Yi|, and Accuracy is given by 1

mtest

∑mtest

1=i
|Zi∩Yi|
|Zi∪Yi| .

The datasets2 we used along with some statistics can be found in table 1. The total number of
instances is m, number of features is d, and number of labels is n. The density (dens) is defined
as the mean number of relevant labels for each example divided by the total number of labels, and
diversity (div) is the ratio of distinct labelsets that appear over the total number of possible labelsets.
These datasets contain a pre-defined division between train and test data, making it easier to compare
our results against those reported in other papers.

We compare our model against four state-of-the-art methods that, as reported in [14], seem to achieve
the best performance over many datasets when using the Hamming distance and Accuracy metrics.
The Ensemble of Binary Relevance classifiers (EBR) [19] is generated using bagging [7] of binary
classifiers, each trained on a random subset of the instances. The Ensemble of Classifier Chains
(ECC) [19] consists of multiple classifier chains, each using a random chain and trained on randomly
selected instances. The final predictions are obtained by averaging the confidence values for each

2Detailed description and origin of datasets can be found in http://www.uco.es/kdis/mllresources

4

label. The AdaBoost.MH method [21] is based on the AdaBoost algorithm and works by maintaining
different sets of weights over the instances and the labels. The Random Forest of Predictive Clustering
Trees (RF-PCT) [11] method uses predictive clustering trees [5] as base classifiers trained on instances
sampled by bagging.

The Random method corresponds to the independent inclusion of a label randomly with probability
proportional to the confidence returned by the corresponding binary classifier. BIheur corresponds
to Brownian inference with the correlation matrix being heuristically computed using the Pearson
correlation coefficient between each two label vectors in the training set. BItrain uses a correlation
matrix initialized heuristically but then improved over many iterations using stochastic gradient
descent.

For the BItrain and BIheur, we implemented the Walk-on-Spheres algorithm [15] which is a faster
simulation of the Brownian motion. For the binary classifiers, we have used logistic regression
learners.

The reported results for BItrain are not as good as BIheur for the CHD_49 dataset, and this is due
to the fact that the experiments did not converge on our laptops before the deadline. We used a
quad-core core i7 2.7GHz laptop with 16GB of RAM for doing these experiments. Time constraints
were also the reason we didn’t include additional datasets.

Table 1: Datasets

Dataset Domain m d n dens div
CHD_49 Medicine 555 49 6 0.430 0.531
EMOTIONS Music 593 72 6 0.311 0.422

Table 2: Hamming Distance Results (lower is better)

Dataset EBR ECC AdaB.MH RF-PCT BIheur BItrain Random
CHD_49 0.301 0.295 0.307 0.312 0.345 0.351 0.355
EMOTIONS 0.202 0.204 0.302 0.209 0.316 0.291 0.320

Table 3: Accuracy Results (higher is better)

Dataset EBR ECC AdaB.MH RF-PCT BIheur BItrain Random
CHD_49 0.513 0.540 0.464 0.533 0.521 0.513 0.504
EMOTIONS 0.513 0.539 0.045 0.548 0.553 0.572 0.546

5 Conclusion

We have verified that using label correlations in addition to binary classifiers can greatly increase
prediction accuracy. We have introduced a new architecture that uses underlying label dependencies
in addition to binary learners and predicts the final labels while maintaining those connections. The
way we model these dependencies (i.e. pair-wise correlation matrix) is independent of the binary
learning process and this makes it easier to experiment, exploit, and further refine the correlations
in a way that increases the accuracy of our model. Being able to extract these correlations using
methods of varying complexity (e.g. simple heuristics or learned over time), we have the additional
flexibility of choosing different methods to balance the performance trade-off between different parts
of our architecture (binary learning, correlation computation and brownian rounding). By conducting
experiments, we have shown that our approach is comparable and in fact sometimes outperforms
existing state-of-the-art methods in standard real-world datasets.

One disadvantage of our method is its seeming difficulty to scale. The most promising results are
given by BItrain that uses a learned correlation matrix. The cost to learn and improve this matrix
might be too high for certain applications and even though a more specialized implementation would
surely help, it is not clear if it would affect overall scalability. Estimating the gradient (as discussed
in section 3) in an efficient way is a promising direction to making our method more scalable. The
issue of scalability is also amplified if we consider higher order correlations (instead of just pair-wise)

5

between variables. Even though our model in theory can support correlations over multiple variables,
it is not clear how feasible it is in practice to consider more complicated dependencies.

Future work could be experimenting with different ways (both heuristic and learned) of computing
the correlation matrix and better understanding the trade-offs between correlation quality and overall
performance, both in terms of predictive accuracy and efficiency. We would also like to test more
specialized implementations to better compare the running time and scalability of our approach
compared to state-of-the-art methods.

References
[1] S. Abbasi-Zadeh, N. Bansal, G. Guruganesh, A. Nikolov, R. Schwartz, and M. Singh. Sticky

brownian rounding and its applications to constraint satisfaction problems. arXiv preprint
arXiv:1812.07769, 2018.

[2] R. Babbar and B. Schölkopf. Data scarcity, robustness and extreme multi-label classification.
Machine Learning, pages 1–23, 2019.

[3] G. BakIr, T. Hofmann, B. Schölkopf, A. J. Smola, and B. Taskar. Predicting structured data.
MIT press, 2007.

[4] Z. Barutcuoglu, R. E. Schapire, and O. G. Troyanskaya. Hierarchical multi-label prediction of
gene function. Bioinformatics, 22(7):830–836, 2006.

[5] H. Blockeel, L. De Raedt, and J. Ramon. Top-down induction of clustering trees. arXiv preprint
cs/0011032, 2000.

[6] M. R. Boutell, J. Luo, X. Shen, and C. M. Brown. Learning multi-label scene classification.
Pattern recognition, 37(9):1757–1771, 2004.

[7] L. Breiman. Bagging predictors. Machine learning, 24(2):123–140, 1996.

[8] J. Deng, O. Russakovsky, J. Krause, M. S. Bernstein, A. Berg, and L. Fei-Fei. Scalable multi-
label annotation. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, pages 3099–3102. ACM, 2014.

[9] E. Gibaja and S. Ventura. A tutorial on multilabel learning. ACM Computing Surveys (CSUR),
47(3):52, 2015.

[10] E. C. Goncalves, A. Plastino, and A. A. Freitas. A genetic algorithm for optimizing the label
ordering in multi-label classifier chains. In 2013 IEEE 25th International Conference on Tools
with Artificial Intelligence, pages 469–476. IEEE, 2013.

[11] D. Kocev, C. Vens, J. Struyf, and S. Džeroski. Ensembles of multi-objective decision trees. In
European conference on machine learning, pages 624–631. Springer, 2007.

[12] G. Madjarov, D. Kocev, D. Gjorgjevikj, and S. Džeroski. An extensive experimental comparison
of methods for multi-label learning. Pattern recognition, 45(9):3084–3104, 2012.

[13] P. Mörters and Y. Peres. Brownian motion, volume 30. Cambridge University Press, 2010.

[14] J. M. Moyano, E. L. Gibaja, K. J. Cios, and S. Ventura. Review of ensembles of multi-label
classifiers: models, experimental study and prospects. Information Fusion, 44:33–45, 2018.

[15] M. E. Muller et al. Some continuous monte carlo methods for the dirichlet problem. The Annals
of Mathematical Statistics, 27(3):569–589, 1956.

[16] G.-J. Qi, X.-S. Hua, Y. Rui, J. Tang, T. Mei, and H.-J. Zhang. Correlative multi-label video
annotation. In Proceedings of the 15th ACM international conference on Multimedia, pages
17–26. ACM, 2007.

[17] J. Read. Scalable multi-label classification. PhD thesis, University of Waikato, 2010.

[18] J. Read, B. Pfahringer, and G. Holmes. Multi-label classification using ensembles of pruned
sets. In 8th IEEE international conference on data mining, pages 995–1000. IEEE, 2008.

6

[19] J. Read, B. Pfahringer, G. Holmes, and E. Frank. Classifier chains for multi-label classification.
Machine learning, 85(3):333, 2011.

[20] C. Sanden and J. Z. Zhang. Enhancing multi-label music genre classification through ensemble
techniques. In Proceedings of the 34th international ACM SIGIR conference on Research and
development in Information Retrieval, pages 705–714. ACM, 2011.

[21] R. E. Schapire and Y. Singer. Boostexter: A boosting-based system for text categorization.
Machine learning, 39(2-3):135–168, 2000.

[22] L. Tang, S. Rajan, and V. K. Narayanan. Large scale multi-label classification via metalabeler.
In Proceedings of the 18th international conference on World wide web, pages 211–220. ACM,
2009.

[23] G. Tsoumakas and I. Katakis. Multi-label classification: An overview. International Journal of
Data Warehousing and Mining (IJDWM), 3(3):1–13, 2007.

[24] G. Tsoumakas, I. Katakis, and I. Vlahavas. Mining multi-label data. In Data mining and
knowledge discovery handbook, pages 667–685. Springer, 2009.

[25] G. Tsoumakas, I. Katakis, and I. Vlahavas. Random k-labelsets for multilabel classification.
IEEE Transactions on Knowledge and Data Engineering, 23(7):1079–1089, 2010.

[26] J. Zhang, X. Wu, and V. S. Sheng. Learning from crowdsourced labeled data: a survey. Artificial
Intelligence Review, 46(4):543–576, 2016.

[27] M.-L. Zhang, Y.-K. Li, X.-Y. Liu, and X. Geng. Binary relevance for multi-label learning: an
overview. Frontiers of Computer Science, 12(2):191–202, 2018.

[28] M.-L. Zhang and Z.-H. Zhou. A review on multi-label learning algorithms. IEEE transactions
on knowledge and data engineering, 26(8):1819–1837, 2013.

7

	Introduction
	Related work
	Model description
	Experiments
	Conclusion

