
Towards a Methodology for Verifying Partial Model
Refinements

Rick Salay, Marsha Chechik and Jan Gorzny
University of Toronto

Toronto, Canada
{rsalay,chechik,jgorzny}@cs.toronto.edu

Abstract—Models are good at expressing information that is
known but do not typically have support for representing what
information a modeler does not know or does not care about at
a particular stage in the software development process. Partial
models address this by being able to precisely represent uncer-
tainty about model content. In previous work, we have defined
a general approach for defining partial model semantics using a
first order logic encoding. In this paper, we use this FO encoding
to formally define the conditions for partial model refinement in
the manner of the refinement of algebraic specifications. We use
this approach to verify both manual refinements and automated
transformation-based refinements. We illustrate our approach
using example models and transformations.

I. INTRODUCTION

Uncertainty in models comes from many sources: incom-
plete requirements, presence of alternative design decisions,
disagreements among stakeholders. Model-based software de-
velopment is a process in which uncertainty about the final
product is incrementally reduced through a series of refine-
ment steps. Yet modeling languages do not typically provide
adequate support for explicating uncertainty.

To illustrate, consider the class diagram in Figure 1 that
depicts a portion of a hypothetical automotive design project.
The textual notes in the diagram represent the modeler’s
uncertainty by stating specific information that is known and
unknown about the model. All of this information must be
specified ad-hoc, using natural language, since there is no
notational mechanism in the class diagram language for it.
Refinement is supposed to reduce the uncertainty; yet, natural
language expression of uncertainty makes it impossible to
accurately (or automatically) verify correctness of refinement.

To help address this gap in expressiveness, we have pro-
posed several types of partiality annotations with formal se-
mantics that could be used to augment any modeling language
with the means to accurately express uncertainty [7]. We call
the resulting model partial. Model P1 in Figure 2 shows
the use of partiality annotations to express the uncertainty
in Figure 1. In each case, the annotation is given in brack-
ets as a prefix to the element’s name. For example, the S
annotation on the operation cruiseControlOps (in class
BodyController) means that it represents a (as yet unknown)
set of operations. This captures the same information as in the
note attached to BodyController in Figure 1 – i.e., that it
contains operations for cruise control but it is still unknown
what they are. The V annotation on the EngineDisabler

Fig. 1. Class diagram for automotive example showing ad-hoc expressions
of uncertainty.

class means that it is a “variable” class and that it is still
unknown whether it is assigned to a new class or to one
of the existing classes; however, regardless of how it gets
assigned, it must contain a set of engineDisablerOps opera-
tions. Furthermore, the M-annotated composition associations
say that if engineDisabler is assigned to a new class
then it may have a composition relationship either with the
EngineController class or with the SecurityController

class. Yet it cannot have this relationship with both classes
since the well-formedness rules for class diagrams prohibit
this.

Resolving uncertainty for some of these points of partiality
is reflected by constructing a partial model refinement of
the model. For example, Figure 2 shows a partial model
refinement of the partial class diagram P1. The refinement
represents the way in which the elements in the two models are
mapped to each other and captures the uncertainty resolution
decisions made. To avoid visual clutter, we show only the
non-obvious parts of the mapping: the S-annotated opera-
tion cruiseControlOps() is refined to a set of particular
operations {cruiseOff(), setCruiseSpeed}, a decision is
made to put the engine disablement functionality into the
EngineController class by assigning the V-annotated class
EngineDisabler to it, and the M-composition relations are
eliminated.

Figure 2 shows a manual refinement, i.e., a refinement
applied to a particular model. In contrast, Figure 3 gives a
partial model transformation that can be used to generate au-
tomated refinements – refinements applied to arbitrary models.
A rule is applied by finding an instance of its left hand side
in the source model and replacing it with the fragment on
the right hand side, and the transformation corresponds to
the repeated application of the rule until it can no longer

P1

P2

R

Fig. 2. Example refinement of the partial model P1.

Fig. 3. A graph transformation rule defining transformation ReduceAbs.

be applied. Syntactically, ReduceAbs removes all occurrences
of S annotations on elements. Semantically, it means that
these elements now represent particular elements rather than
an arbitrary set of elements. From a pragmatic perspective,
this transformation reduces uncertainty about these elements
and thus is a partiality refinement transformation.

Whether we are defining manual refinements or automated
transformation-based refinements, the verification of their cor-
rectness is an important methodological consideration. This
paper uses the formalization of partial models introduced in
[7] as a foundation for a methodology for verifying correct-
ness of manual refinements. It then attempts to extend this
methodology for verification of refinement transformations.

Specifically, we make the following contributions:

• We develop and illustrate a methodology for verifying
manual partial model refinements for a partiality mecha-
nism that is both expressive and language-independent.

• We apply the methodology to the verification of two
specific partiality refinement transformations and then
discuss how our experience might be generalized to a
methodology for verifying partiality refinement transfor-
mations in general.

• We describe prototype tool support based on Alloy to
help automate the verification methodology.

The rest of the paper is organized as follows. In Section II,
we review the concept of model partiality as introduced in
[7]. In Section III, we define the verification methodology
for manual partial model refinements and in Section IV, we
illustrate its application. In Section V, we apply this methodol-
ogy to example transformations and make observations about
adapting it to the verification of partiality refinement transfor-
mations in general. In Section VI, we describe a prototype
implementation of this verification method using Alloy. In

(a)

(b)

Fig. 4. The base model (a) and a concretization (b) of the partial class
diagram P1 in Figure 2.

Section VII, we discuss related work. In Section VIII, we
discuss conclusions and future work.

II. BACKGROUND

In this section we briefly review the concepts of language-
independent partial modeling introduced in [7]. When a model
contains partiality information, we call it a partial model.
Semantically, a partial model represents the set of different
possible concrete (i.e., non-partial) models that would resolve
the uncertainty represented by the partiality. More formally:

Definition 1 (Partial model): A partial model P consists of
a base model, denoted bs(P), and a set of annotations. Let T
be the metamodel of bs(P). Then, [P] denotes the set of T
models called the concretizations of P . P is called consistent
iff [P] 6= ∅.

For example, Figure 4(a) shows the base model (i.e., what
remains when the annotations are stripped away) of the partial
class diagram P1 in Figure 2. Note that the base model need
not necessarily be well-formed and the figure illustrates this
because it violates the well-formedness rule that a singleton
class cannot be composed in two different classes. This shows
that non-well-formed base models are necessary to express
some cases of uncertainty. Figure 4(b) shows one of the con-
cretizations of P1. P1 has an infinite number of concretizations
since each of the S-annotated operations can be replaced by
any set of particular operations. Thus, although bs(P1) is not
well-formed, P1 is still consistent since it has concretizations.

We use four types of partiality annotations, each adding
support for a different type of uncertainty in a model: Anno-
tating an element with M indicates that we are unsure about
whether it should exist in the model; annotating an element
with S indicates that we are unsure about whether it should
actually be a collection of elements; annotating an element
with V indicates that we are unsure about whether it should
actually be merged with other elements; finally, annotating
the entire model with INC indicates that we are unsure about
whether it is complete.

∀𝑐: 𝐶𝑙𝑎𝑠𝑠 ⋅ ∃𝑐1, 𝑐2: 𝐶𝑙𝑎𝑠𝑠 ⋅ 𝑖𝑠𝑆𝑖𝑛𝑔𝑙𝑒𝑡𝑜𝑛 𝑐 ∧ 𝐼𝑁 𝑐, 𝑐1 ∧ 𝐼𝑁 𝑐, 𝑐2 ⇒ 𝑐1 = 𝑐2

Additional constraints:

(1) A singleton class cannot be composed in more than one class.

𝐼𝑁 𝑐, 𝑐′ ⟺ ∃𝑎: 𝐴𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑖𝑜𝑛, 𝑝, 𝑝′: 𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦 ⋅ 𝑚𝑒𝑚𝑏𝑒𝑟𝐸𝑛𝑑 𝑎, 𝑝 ∧
𝑚𝑒𝑚𝑏𝑒𝑟𝐸𝑛𝑑 𝑎, 𝑝′ ∧ 𝑡𝑦𝑝𝑒 𝑝 = 𝑐 ∧ 𝑡𝑦𝑝𝑒 𝑝′ = 𝑐^′ ∧ 𝑖𝑠𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒 𝑝′

 Fig. 5. A simplified metamodel of the UML class diagram language.

When these four types of partiality annotations are used
together, we refer to it as MAVO partiality. We state the
following proposition, without proof, that will be used in later
sections.

Proposition 1: Given MAVO model P over concrete models
with metamodel T , if bs(P) is well-formed w.r.t T then it must
also be a concretization of P and so P is consistent.

To formalize MAVO partiality, we begin by noting that a
metamodel represents a set of models and can be expressed
as a First Order Logic (FOL) theory.

Definition 2 (Metamodel): A metamodel is an FOL theory
T = 〈Σ,Φ〉, where Σ is the signature with sorts and predicates
representing the element types, and Φ is a set of sentences
representing the well-formedness constraints. The models that
conform to T are the finite FO Σ-structures that satisfy Φ
according to the usual FO satisfaction relation. We denote the
set of models with metamodel T by Mod(T).
The simple class diagram metamodel in Figure 5 fits this
definition if we interpret boxes as sorts and edges as predicates
comprising ΣCD and take the multiplicity constraints (translated
to FOL) and the additional constraint (1) as comprising ΦCD.

Like a metamodel, a partial model also represents a set of
models and thus can also be expressed as an FOL theory.
Specifically, for a partial model P , we construct a theory
FO(P) s.t. Mod(FO(P)) = [P]. Furthermore, since P repre-
sents a subset of T models, we require that Mod(FO(P)) ⊆
Mod(T). We guarantee this by defining FO(P) to be an
extension of T that adds constraints.

Let M = bs(P) be the base model of a partial model P and
let PM be the ground partial model which has M as its base
model and its sole concretization – i.e., bs(PM) = M and
[PM] = {M}. We first describe the construction of FO(PM)
and then define FO(P) in terms of FO(PM). To construct
FO(PM), we extend T to include a unary predicate for each
element in M and a binary predicate for each relation instance
between elements in M . Then, we add constraints to ensure
that the only first order structure that satisfies the resulting
theory is M itself.

We illustrate the above construction using the partial class
diagram P1 in Figure 2. Let M1 = bs(P1) be its base model
and PM1 be the corresponding ground partial model. We have:

FO(PM1) = 〈ΣCD ∪ ΣM1,ΦCD ∪ ΦM1〉 (1)

(see Definition 2), where ΣM1 and ΦM1 are model M1-specific
predicates and constraints, defined in Figure 6 that extend the
signature and constraints for class diagrams, as described in

ΣM1 has unary predicates BC(Class), CCOps(Operation)), . . . ,
and binary predicates BCownsCCOps(Class, Operation), . . .

ΦM1 contains the following sentences:
(Complete) (∀x : Class · BC(x) ∨ EC(x) ∨ SC(x) ∨ ED(x))∧

(∀x : Class, y : Operation · ownedOperation(x, y)
⇒ (BCownsCCOps(x, y) ∨ . . .)) ∧ . . .

BC:
(ExistsBC) ∃x : Class · BC(x)
(UniqueBC) ∀x, x′ : Class · BC(x) ∧ BC(x′)⇒ x = x′

(DistinctBC−EC) ∀x : Class · BC(x)⇒ ¬EC(x)
(DistinctBC−SC) ∀x : Class · BC(x)⇒ ¬SC(x)
(DistinctBC−ED) ∀x : Class · BC(x)⇒ ¬ED(x)

similarly for all other element and relation predicates

Fig. 6. The FO encoding of PM1.

Figure 5. We refer to ΣM1 and ΦM1 as the MAVO predicates
and constraints, respectively. For conciseness, we abbreviate
element names in Figure 6 - e.g., BodyController becomes
BC, etc.

Since FO(PM1) extends CD, the FO structures that satisfy
FO(PM1) are the class diagrams that satisfy the constraint
set ΦM1 in Figure 6. Assume N is such a class diagram.
The MAVO constraint Complete ensures that N contains no
more elements or relation instances than M1. Now consider
the class BC in M1. ExistsBC says that N contains at least one
class called BC, UniqueBC – that it contains no more than
one class called BC, and the clauses DistinctBC−∗ – that the
class called BC is different from all the other classes. Similar
MAVO constraints are given for all other elements and relation
instances in M1. These constraints ensure that FO(PM1) has
exactly one concretization and thus N = M1.

Relaxing the MAVO constraints ΦM1 allows additional con-
cretizations and represents a type of uncertainty indicated
by a partiality annotation. For example, if we use the INC
annotation to indicate that M1 is incomplete, we can express
this by removing the Complete clause from ΦM1 and thereby
allow concretizations to be class diagrams that extend M1.
Similarly, expressing the effect of the M, S and V annotations
for an element E correspond to relaxing ΦM1 by removing
ExistsE , UniqueE and DistinctE−∗ clauses, respectively. For
example, removing the DistinctED−∗ clauses is equivalent to
marking the class ED with V(i.e., EngineDisabler may or
may not be distinct from another class).

III. A METHODOLOGY FOR VERIFYING MANUAL
REFINEMENT OF PARTIAL MODELS

In Section II, we formally characterized the set of con-
cretizations of a partial model using an FOL encoding. In
this section, we define refinement in terms of this encoding.

Assume we have encodings FO(P) = 〈ΣP ,ΦP 〉 and
FO(P ′) = 〈ΣP ′ ,ΦP ′〉 for partial models P and P ′, respec-
tively. In the special case that they have the same base models,
i.e., ΣP ′ = ΣP , P ′ refines P iff the following conditions hold:

ΦP ′ is satisfiable (2)
ΦP ′ ⇒ ΦP (3)

Given partial models P , P ′, the following steps verify that
P ′ is a partial model refinement of P .

1) Determine first-order encodings FO(P) = 〈ΣP ,ΦP 〉
and FO(P ′) = 〈ΣP ′ ,ΦP ′〉.

2) Prove that ΦP ′ is satisfiable (1st proof obligation).
3) Determine the first-order encoding of the mapping R =
〈ΣP + ΣP ′ ,ΦR〉 as the intermediate theory, where ΦR

defines the elements of the signature ΣP in terms of
the signature ΣP ′ . Note that ΣP + ΣP ′ is the disjoint
union of the signatures so that names are made distinct
in case of clashes.

4) Prove that ΦP ′ ⇒ R(ΦP) (2nd proof obligation).

Fig. 7. A method for verifying manual MAVO refinement.

Condition (2) ensures that P ′ is consistent – i.e., that
[P ′] 6= ∅ and thus has at least one concretization. Recall from
formula (1) that ΦP ′ consists of both the MAVO sentences and
the well-formedndess rules for the modeling language and so
these must be jointly satisfiable for this condition to hold.
Condition (3) ensures that [P ′] ⊆ [P] so that P ′ has no more
concretizations than P . These conditions are proof obligations
required to be met in order to demonstrate the validity of the
refinement.

When the base models are different, we cannot use this
simple scheme because ΣP ′ 6= ΣP and so the sentences are not
directly comparable. For example, the base models differ for
the refinement shown in Figure 2. The classic solution to this
kind of problem is to first translate both FO(P) and FO(P ′)
into the same intermediate theory where the signatures are
appropriately related, or mapped, and then check whether the
implication holds in this intermediate theory. For example,
such an approach is taken by [6]. Specifically, we seek a
mapping R that defines the signature of FO(P) in terms of
the signature of FO(P ′). Such a mapping naturally defines a
translation R(ΦP) of the sentences of FO(P) to equivalent
sentences in terms of the signature of FO(P ′) by replacing
each occurrence of a sort or predicate of ΣP by its definition
in terms of ΣP ′ . Since they are over the same signature,
the translation R(ΦP) can thus be compared to ΦP ′ and the
revised second proof obligation becomes:

ΦP ′ ⇒ R(ΦP) (4)

Note that Condition (4) reduces to Condition (3) when
ΣP ′ = ΣP , as expected.

A methodology for verifying a (manual) refinement based
on the above discussion is given in Figure 7. In the following
sections, we apply this methodology to particular examples,
starting with manual refinement and then automated refine-
ment.

IV. APPLYING THE METHODOLOGY TO VERIFYING
MANUAL REFINEMENTS

In this section, we apply the refinement verification method-
ology in Figure 7 to show that the refinement in Figure 2 is
correct. We address each of the four steps of the methodology
as follows.

1) The definition of FO(P1) is given in Figure 6. Due to
lack of space we omit FO(P2) but note that ΦP2 contains
all MAVO sentences except UniqueEDOps, UniqueTCOps, and
UniqueLOOps.

2) To prove the satisfiability of ΦP2, we note that the base
model of P1 (i.e., the class diagram with all annotations
removed) is well-formed and, by Proposition 1, a well-
formed base model is always a concretization. Thus,
[P2] 6= ∅ and so ΦP2 must be satisfiable.

3) The FOL encoding of mapping R is shown in Figure 8.
4) To prove that ΦP2 ⇒ R(ΦP1), we must show that Φ ⇒

R(φP1) for each sentence φP1 ∈ ΦP1 where Φ ⊆ ΦP2. The
proof is given below.
Proof: We proceed with a proof by cases of MAVO

constraints in ΦP1. The first four cases examine the places
where P1 and P2 differ while the fifth one covers all places
where they are the same.
Case 1 (Complete): Let φ1 ∈ ΦP1 and φ2 ∈ ΦP2 be the
Complete constraints for P1 and P2, respectively. Now note
that R(φ1) is identical to φ2 everywhere except for the clause
for the Association elements. In that case, the clause in
R(φ1) is ∀x : Association · false(x) ∨ false(x) whereas the
clause in φ2 is ∀x : Association · false(x). These are clearly
semantically equivalent and so φ2 ⇒ R(φ1).

Case 2 (CCOps): ΦP1 contains the Exists
and Distinct constraints for operation CCOps:
R(ExistsCCOps) = ∃x : Operation · CO′(x) ∨ SCS′(x)
which clearly follows from the constraint ExistsCO′ in ΦP2.

R(DistinctCCOps−e) =
∀x : Operation · (CO′(x) ∨ SCS′(x))⇒ ¬e(x) and

R(Distincte−CCOps) =
∀x : Operation · e(x))⇒ ¬((CO′(x) ∨ SCS′(x))

for each operation e ∈ {TCOps, LOOps, EDOps}. Both of these
follow from {DistinctCO′−e′ ,DistinctSCS′−e′} ⊆ ΦP2.

Case 3 (EDinEC, EDinSC): ΦP1 contains the Unique and Dis-
tinct constraints for associations EDinEC and EDinSC.

R(UniqueEDinEC) = R(UniqueEDinEC) =
∀x, y : Association · false(x) ∧ false(y)⇒ x = y and

R(DistinctEDinEC−EDinSC) = R(DistinctEDinSC−EDinEC) =
∀x : Operation · false(x)⇒ ¬false(x)

Both of these are always true.

Case 4 (ED): ΦP1 contains the Exists and Unique constraints
for class ED. R(ExistsED) = ExistsEC′ and R(UniqueED) =
UniqueEC′ , and both of these EC′ constraints occur in ΦP2.

Case 5: Every other element or relationship instance a in P1 is
mapped to its equivalent a′ in P2. Thus, if the MAVO constraint
φa ∈ ΦP1 holds, then the corresponding constraint φa′ ∈ ΦP2

holds as well. Furthermore, R(φa) = φa′ and so φa′ ⇒ R(φa).
V. TOWARDS APPLYING THE METHODOLOGY TO

VERIFYING REFINING TRANSFORMATIONS

A. Two Example Transformations

We consider two transformations of MAVO partial mod-
els defined by graphical rules. The first is the language-

ΣR = ΣP1 + ΣP2 where the elements of ΣP2 are “primed”
to avoid name clashes

ΦR contains sentences:
∀x : Operation · CCOps(x) ⇐⇒ CO′(x) ∨ SCS′(x)
∀x : Association · EDinEC(x) ⇐⇒ false(x)
∀x : Association · EDinSC(x) ⇐⇒ false(x)
∀x : Class · ED(x) ⇐⇒ EC′(x)
for all remaining elements e of type T ,
∀x : T · e(x) ⇐⇒ e′(x)

for all remaining relation instances r(T1, T2),
∀x1 : T1, x2 : T2 · r(x1, x2) ⇐⇒ r′(x1, x2)

Fig. 8. The FOL encoding of mapping R in Figure 2.

Fig. 9. The rule defining transformation GetSet.

independent transformation ReduceAbs discussed in the Sec-
tion I and shown in Figure 3. The second is GetSet shown
in Figure 9. GetSet is a simple detail-adding refinement
transformation for class diagrams that we “lift” so that it can
be applied to MAVO class diagrams. Our objective here is
to examine the common situation where partiality-reducing
refinements are interleaved with detail-adding ones. In both
cases, the transformation is obtained by applying the corre-
sponding rule repeatedly until it can no longer be applied. This
process terminates for each rule, although we do not provide
proofs of termination here.

In both cases, our objective is to show that the transforma-
tion F is a refining transformation, i.e., that for all models P ,
F (P) is a valid partiality reducing refinement of P according
to the methodology in Figure 7. Since our methodology
requires a mapping, F must produce one between F (P) and
P . To define this mapping, we assume that all parts of a
model external to a given rule application remain unchanged
by the rule, i.e., that there is an identity mapping between these
external elements. The mapping between the parts internal to
a rule application is described for each rule separately.

ReduceAbs. Figure 11(a) illustrates the effect of ReduceAbs
by applying it to the model P1 in Figure 2. To simplify the
verification problem, we exploit the fact that partial model
refinement is transitive. Thus, if we can show that any single
application of the rule is always a refinement, then multiple
applications of the rule must be so as well.

Let P ′ be the result of one application of the rule to some
element E of an input model P . We now apply each step of
the methodology.

1) FO(P) and FO(P ′) have the same signature (with the
MAVO predicates in the latter renamed with primes) and differ
only in that the latter has an additional MAVO constraint
UniqueE′ .

2) By Proposition 1, if bs(P ′) is well-formed then it has a
concretization and so ΦP ′ is satisfiable. Furthermore, bs(P ′)

ReduceAbs

Fig. 10. An example of ReduceAbs producing an inconsistent model.

is well-formed iff bs(P) is well-formed since ReduceAbs does
affect the base model. Thus, in the restricted case that the base
model of the input model is well-formed, we can guarantee
that ReduceAbs produces a consistent result. However, our
example in Figure 11(a) is not an instance of this case –
as discussed in Section II, bs(P) is not well-formed – and
yet both P and P ′ are still consistent. Furthermore, there are
cases where P is consistent and applying ReduceAbs produces
an inconsistent model P ′, as illustrated in Figure 10. Here,
although its base model is not well-formed, the input model
has concretizations (e.g., the S-annotated RemoteStart can be
split over two classes) but the resulting model is not consistent.
Thus, in general, ReduceAbs cannot be guaranteed to produce
a consistent result for consistent inputs.

3) The rule maps element E to class E′ as equivalence.
Thus, ΦR consists of equivalences for all elements of P and
so R(ΦP) just changes MAVO predicate names to their primed
versions.

4) ΦP ′ ⇒ R(ΦP) holds because

Φ′P = R(ΦP) ∪ {UniqueE′}

From this analysis, we conclude that ReduceAbs is not a
partiality-refining transformation for all input models. It is
refining for inputs with well-formed base models and for
some, but not all, inputs with non-well-formed base models as
well. The particular criterion determining which inputs with
non-well-formed are acceptable is dependent on the well-
formedness rules of the language. We leave the process of
constructing such a criterion for future work.

GetSet. As discussed in Section II, the MAVO partiality
mechanisms are used to express uncertainty about the syntactic
structure of the model. In a development process, we expect
partiality reducing refinements to be interleaved with seman-
tically oriented detail adding refinement transformations. In
this example, we observe the effect of such detail adding
refinements on the partiality within a model. GetSet is a class
diagram transformation that adds getter and setter methods
to each class for each attribute. This type of transformation is
common in model-driven engineering since it reduces modeler
effort by automatically filling in ‘boiler plate’ information and
enforces standards that reflect best practices.

We lift the GetSet class diagram transformation to partial
models by interpreting the rule so that its left hand side
matches only those parts of the MAVO class diagram that
have no annotations. Figure 11(b) illustrates the application
of GetSet to the model P1 in Figure 2. Note that our
interpretation of the rule prevented its application to the
attribute isEngineEnabled because of the V-annotated class
EngineDisabler.

Since the purpose of GetSet is to add detail rather than
reduce uncertainty, we want to prove that this naive trans-
formation preserves partiality, i.e., that the input model and
result model are both partiality refinements of each other.
However, since GetSet adds information to a model, we can
immediately see that it does not yield a consistent model if
the input is marked as “complete” and so it is not a valid
refinement in general. Thus, we do our verification analysis
on models marked as “incomplete”, i.e., annotated with INC .
As with ReduceAbs, we simplify the verification problem by
exploiting the transitivity of refinement and analyze a single
rule application.

In applying the refinement methodology, let P ′ be the result
of one application of the rule to some attribute A of some class
C in an incomplete input model P .

1) FO(P ′) has the signature of FO(P ′) renamed with
primes and extended with the following MAVO predicates:
two unary predicates for the new operations getA and
setA, and two binary predicates for the relation instances
ownedOperation(C′, getA) and ownedOperation(C′, setA).
FO(P ′) has the same MAVO constraints as FO(P) extended
with Exists, Unique and Distinct constraints for these new
predicates. Let Φ′ be this set of additional constraints. Note
that since we are assuming incomplete models, there is no
Complete constraint in either P or P ′.

2) If ΦP is satisfiable then ΦP ′ is satisfiable. We show this
by exploiting the fact that GetSet is a lifted class diagram
transformation and use it to construct a concretization of P ′

from a concretization of P . Since ΦP is satisfiable, let M be
a class diagram that is a concretization of P and that does
not contain operations getA and setA. Now, since A and
C are not annotated (by assumption), they must occur in M
and so we can compute a class diagram M ′ that is the result
of applying the rule at A and C in M . M ′ differs from M
only in that it contains the additional operations getA and
setA and relation instances ownedOperation(C, getA) and
ownedOperation(C, setA). Furthermore, M ′ clearly satisfies
the four new MAVO predicates and the MAVO constraints.
Thus, we must just show that M ′ does not violate any of the
well-formedness rules in ΦCD for class diagrams. This follows
from the fact that the only well-formedness rules that involve
an Operation or ownedOperation relationship instances are
the multiplicity constraints on ownedOperation, and these
hold in M ′. Therefore, we conclude that M ′ is a concretization
of P ′ and so ΦP ′ is satisfiable.

3) The rule maps A and C to A′ and C ′, respectively, as
equivalences. Thus, ΦR consists of equivalences for all atoms
of P and so R(ΦP) just changes MAVO predicate names to
their primed versions.

4) ΦP ′ ⇒ R(ΦP) holds because ΦP ′ = R(ΦP) ∪ Φ′.
Thus, we have shown that GetSet is a valid partiality reduc-

ing refinement for input partial models that are incomplete. To
complete the proof that it preserves partiality and P is also a
refinement of P ′, we need to show that every concretization
of P is also one of P ′. Yet it is not the case. Consider the
model M constructed in step (2) above. It is a concretization

a) ReduceAbs

b) GetSet

Fig. 11. The result of applying ReduceAbs (a) and GetSet (b) to the partial
class diagram P1 in Figure 2.

of P . To be a concretization of P ′, it needs to satisfy MAVO
constraints ExistsgetA but, by assumption, it is missing the
operation getA. Thus, M is a concretization of P but not of
P ′.

To summarize, we have shown that in general, GetSet is not
a partiality reducing refinement. However, when restricted to
incomplete input models, it is a partiality reducing refinement
although it does not preserve partiality.

B. Discussion

The above transformation examples are simple and seem
intuitively to be correct; yet our analyses showed that they
were not. The analyses also revealed some of the key chal-
lenges as well as some opportunities associated with applying
the manual methodology to these automatic transformations.
We summarize these below.

Exploiting the transitivity of refinement. Transformations
are often defined using a set of rules. In such cases, we
can exploit the transitivity of refinement to decompose the
verification problem by checking each rule independently.
Furthermore, we can decompose the effect of a particular
rule into a sequence of individual rule applications. This
approach yields a sufficient but not a necessary condition
for the transformation to be refining: it is possible to define
transformations such that a single rule application is not a
refinement but the final result, after all rule applications are
made, is always a refinement due to the combined action of
rules.

Exploiting locality. In the above examples, we only con-
sidered the verification of individual rule applications (at
an arbitrary site in the input model). Furthermore, we tried
to make our analysis as local as possible around the rule
application site. The ideal situation for analysis is when the
rule has the following property: if the rule itself is a correct
refinement (i.e., if we can prove that its right hand side of the

rule is a valid refinement of its left hand side), then any rule
application to a model produces a correct refinement of the
model. Unfortunately, this is seldom the case, even for simple
rules. For example, ReduceAbs does not have this property –
the rule is a valid refinement but, as illustrated in Figure 10,
not all of its applications are. However, if we restrict the
locality property to just the implication proof obligation (step
(4) in the methodology), the situation improves. The restricted
locality property is: if the implication holds in the rule then
it holds between models when the rule is applied. This is the
case for both ReduceAbs and GetSet because the effect of the
rule application is to increase the set of MAVO sentences, and
hence, it must be more constraining. One investigation we
leave for future work is to determine whether this restricted
locality property holds for any MAVO refining transformation
rule.

Addressing satisfiability. From the examples it appears that
the satisfiability proof obligation (step (2)) seems like the
more difficult one to ensure. This is because, unlike the
implication proof obligation (step (4)), it depends on the well-
formedness rules of the modeling language (in this case, class
diagrams) and these can be arbitrarily complex. However, we
have observed some special cases that simplify the problem:
• Showing that ΦP ′ is satisfiable only requires us to find

a single concretization of P ′ for each consistent input
model P . The analysis of GetSet follows this strategy
by showing how to construct a concretization of P ′

from any concretization of P for a consistent input P .
This construction was possible because GetSet is a lifted
version of a transformation of concrete models. Thus, we
can use this approach to satisfiability whenever we are
dealing with lifted concrete transformations.

• If we can ensure that the transformation preserves well-
formedness of base models, then the result of the trans-
formation is a consistent partial model (by Proposition 1)
when the input model has a well-formed base model.
This is the case for both ReduceAbs and GetSet. Thus,
the satisfiability proof obligation can be met for a broad
class of input models.

We intend to use the above observations in a future develop-
ment of a methodology to address verification of partial model
transformations.

VI. TOOL SUPPORT

We developed a prototype tool designed to automate the
methodology for verifying manual MAVO refinements as de-
scribed in Figure 7. The prototype uses TXL [1] for translation
of eCore models into first-order encodings, and the Alloy An-
alyzer [2] for generating the encodings and checking the proof
obligations. The implementation of each step is accomplished
as follows:

1) The first-order encodings in Alloy are generated by
translating the input eCore models via a TXL program. The
input eCore models consist of a partial model P, a candidate
refinement P’, and a refinement mapping R between P and P’.

Three Alloy predicates, P, P′ and R, are generated correspond-
ing to the FO constraints ΦP , ΦP ′ and ΦR, respectively.

2) The first proof obligation, satisfiability of ΦP ′ , is
checked by the Alloy Analyzer by running the Alloy predicate
(P′ and R). R must be included in this check because in
the Alloy implementation both models and the mapping are
encoded as part of the same theory. If Alloy finds an instance
of the predicate, then the proof obligation is met. If no instance
is found, all we can say with certainty is that the proof
obligation fails within the given scope.

3) The Alloy code of the mapping is generated at the same
time as the code for the models in step (1).

4) The second proof obligation, that ΦP ′ ⇒ R(ΦP), is
checked by running the predicate ((P′ and R) and not P). If
Alloy is able to find an instance for this predicate then the
proof obligation fails. If no instance is found then all we can
say with certainty is that the proof obligation is met within
the given scope.

Note that an Alloy experiment does not constitute a proof
that one model is a refinement of another – both steps (2)
and (4) include an analysis outcome “only sure up to a given
scope”. Thus, selecting the scope becomes an important task.
The default scope set by the tool is equal to the total number of
distinct signatures of the translated model. While many models
will not require a scope this large, some will. For example, in a
model with element annotated with a V partiality, a refinement
of the model may merge this element with every other element
of the same type. Thus this refinement would require as many
instances of this element as there are total elements in the
model.

The model P1 in Figure 2 has 16 elements that must be
encoded in Alloy – each class, operation, and attribute is
encoded as an Alloy signature, and each association requires
three signatures: one for the association and one for each
endpoint.

We used Alloy to show that P2 in Figure 2 is a valid
refinement of P1. We also used Alloy to prove that applying
the transformations ReduceAbs and GetSet to P1, as depicted
in Figure 11, also yield valid refinements. We ran our ex-
periments on a laptop with an Intel Core i7 processor and
8 GB of RAM using Alloy 4.2. The run times of the various
experiments with the various scopes are summarized in Table I.
The first column indicates the proof obligation tested with the
scope indicated in the second column. The third column is the
total time required by Alloy to generate and solve the CNF
formula for the predicate using SAT4J. The largest scope size
that could be checked before the solver ran out of memory in
our experiments was about 32.

Although our experiments with the prototype are prelimi-
nary, the results indicate that the proof obligations for these
small models can be checked in a matter of seconds for a
moderately-sized scope. As the size of the scope increases,
the time increases exponentially, as expected.

Our next step is to do in-depth scalability testing varying
both model sizes and the degree of partiality in the models
(since this affects the number of concretizations). In addition,

Predicate Checked Scope Time (ms)
Figure 11(a), proof obl. 1 16 13 542
Figure 11(a), proof obl. 2 16 4 695
Figure 2, proof obl. 1 16 5 171
Figure 2, proof obl. 2 16 2 817
Figure 11(b), proof obl. 1 16 5 611
Figure 11(b), proof obl. 2 16 3 824
Figure 11(b), proof obl. 2 25 71 698
Figure 11(b), proof obl. 2 30 294 302

TABLE I
THE REFINEMENT EXPERIMENTS.

although the current prototype is focused on verifying manual
refinements, we are interested in adapting it to help with the
verification of refining transformations.

VII. RELATED WORK

In this section, we briefly discuss other work related to the
verification of partiality refinement.

Partial behavioural modeling formalisms such as Modal
Transition Systems (MTSs) [4] allow introduction of uncer-
tainty about transitions on a given event, whereas Disjunctive
Modal Transition Systems (DMTSs) [5] add a constraint that
the refinement should include at least one of the possible
transitions. Concretizations of these models are Labelled Tran-
sition Systems (LTSs). MTSs and DMTSs can be thought of as
the application of the M annotation in our framework to LTS
models. The MTS and DMTS refinement mechanism allows
resulting LTS models to have an arbitrary number of states.
This is different from the treatment provided in this paper,
where we concentrated only on syntactic rather than semantic
partiality and thus state duplication was not applicable.

Another approach to partiality is the work of Herrmann [3]
which studied the value of being able to express vagueness
within design models. His modeling language SeeMe has
notational mechanisms similar to the INC and M annotations;
however, there is no formal foundation for these mechanisms
and no well-defined notion of refinement.

VIII. CONCLUSION AND FUTURE WORK

Partial modeling is an approach for expressing a modeler’s
uncertainty about a model. Partial model refinement expresses
the reduction of uncertainty as model development proceeds.
Such refinements can happen manually, or as is often the
case with model-driven development, using refining model
transformations. In previous work, we have defined various
language-independent partial modeling mechanisms, together
called MAVO, as model annotations with formal semantics [7].
In this paper, we considered the issue of formally verifying
MAVO partial model refinements and made several advances in
this area. Specifically, we defined a methodology for formally
verifying manual MAVO refinements. We then applied that
methodology to examples of refining transformations and
observed some patterns. We intend to use them in the future
as we tailor the manual methodology to verifying refining
transformations. Finally, we implemented a prototype Alloy-
based tool to help automate the methodology and reported on
the results of applying it to the examples in the paper.

As discussed above, the primary follow-on work is de-
velopment of a methodology for verifying refining partial
model tranformations, but other directions of investigation
seem fruitful as well. In this paper, we focused on studying
partiality reducing transformations; however, there are many
other types of transformations that could be applied to partial
models. In particular, since any modeling language can be
extended to its MAVO partial model version, it is natural
to consider how to “lift” transformations of the modeling
language to transformations between the MAVO versions of
it. We illustrated this with GetSet example. Our method
of lifting was naive because it didn’t attempt to take into
account the intent of the transformation and use it to make
the partial version meaningful. For example, if an attribute is
M-annotated, indicating that it may or may not be present, we
should M-annotate the new getter and setter operations and
also add a constraint ensuring that their existence depends on
the existence of the attribute; thus, refinements of partiality on
the attribute force corresponding refinements on the partiality
of the getter and setter operations. We are currently developing
a theory of how to lift such transformations in a sound and
complete way.

Finally, our use of FOL as the means to formalize meta-
models and partial models gives our work a strong algebraic
specification flavor and allows us to adapt existing work in
this area to partial models. In this paper, we have explored the
most basic aspect of this: defining partial model refinement as
a special kind of specification refinement [8]. In the future,
we hope to adapt other aspects of algebraic specification to
partial models, e.g., specification composition and structured
specifications, parameterized specifications, transformations
between different specification languages, etc.

REFERENCES

[1] J. Cordy. The TXL Source Transformation Language. Sci. Comput.
Program., 61(3):190–210, 2006.

[2] D. Jackson. Alloy Analyzer Website, 2012.
[3] T. Herrmann. Handbook of Research on Socio-Technical Design and

Social Networking Systems, chapter Systems Design with the Socio-
Technical Walkthrough, pages 336–351. 2009.

[4] K. G. Larsen and B. Thomsen. A Modal Process Logic. In Proc. of
LICS’88, pages 203–210, 1988.

[5] P. Larsen. The Expressive Power of Implicit Specifications. In Proc. of
ICALP’91, volume 510 of LNCS, pages 204–216, 1991.

[6] T. Maibaum. Conservative Extensions, Interpretations between Theories
and All That! In Proc. of TAPSOFT’97, pages 40–66. Springer, 1997.

[7] R. Salay, M. Famelis, and M. Chechik. Language Independent Refinement
Using Partial Modeling. In Proc. of FASE’12, March 2012. To appear.

[8] D. Sannella and A. Tarlecki. Essential Concepts of Algebraic Specifi-
cation and Program Development. Formal Asp. Comput., 9(3):229–269,
1997.

