
Whale: An Interpolation-based Algorithm for
Inter-procedural Verification

Aws Albarghouthi1, Arie Gurfinkel2, and Marsha Chechik1

1Department of Computer Science, University of Toronto, Canada
2Software Engineering Institute, Carnegie Mellon University, USA

Abstract. In software verification, Craig interpolation has proven to
be a powerful technique for computing and refining abstractions. In this
paper, we propose an interpolation-based software verification algorithm
for checking safety properties of (possibly recursive) sequential programs.
Our algorithm, called Whale, produces inter-procedural proofs of safety
by exploiting interpolation for guessing function summaries by general-
izing under-approximations (i.e., finite traces) of functions. We imple-
mented our algorithm in LLVM and applied it to verifying properties of
low-level code written for the pacemaker challenge. We show that our
prototype implementation outperforms existing state-of-the-art tools.

1 Introduction

In the software verification arena, software model checking has emerged as a
powerful technique both for proving programs correct and for finding bugs. Given
a program P and a safety property ϕ to be verified, e.g., an assertion in the code,
a model checker either finds an execution of P that refutes ϕ or computes an
invariant that proves that P is correct w.r.t. ϕ.

Traditionally [3], software model checkers rely on computing a finite ab-
straction of the program, e.g., a Boolean program, and using classical model
checking algorithms [8] to explore the abstract state space. Due to the over-
approximating nature of these abstractions, the found counterexamples may be
spurious. Counterexample-guided abstraction refinement (CEGAR) techniques [7]
help detect these and refine the abstraction to eliminate them. This loop con-
tinues until a real counterexample is found or a proof of correctness, in the form
of a program invariant, is computed.

More recently, a new class of software model checking algorithms has emerged.
They construct program invariants by generalizing from finite paths through the
control flow graph of the program. The most prominent of these are interpolation-
based algorithms [27, 26, 16], introduced by McMillan in [27] and inspired by
the success of Craig interpolants [9] for image-approximation in symbolic model
checking [25]. In general, interpolation-based software model checking techniques
extract interpolants from refutation proofs of infeasible program paths. The in-
terpolants form an inductive sequence of Hoare triples that prove safety of a
given program path, and potentially others.

Interpolation-based techniques avoid the expensive abstraction step of their
traditional CEGAR-based counterparts and, due to their reliance on examining



program paths for deriving invariants, are better suited for bug finding [26].
Yet, so far, interpolation-based techniques have been limited to intra-procedural
analysis [27], restricted to non-recursive programs with bounded loops [26], or
not modular in terms of generated proofs [16].

In this paper, we present Whale: an inter-procedural interpolation-based
software model checking algorithm that produces modular safety proofs of (re-
cursive) sequential programs. Our key insight is to use interpolation to compute
a function summary by generalizing from an under-approximation of a function,
thus avoiding the need to fully expand the function and resulting in modular
proofs of correctness. The use of interpolants allows us to produce concise sum-
maries that eliminate facts irrelevant to the property in question. We also show
how the power of SMT solvers can be exploited in our setting by encoding a
path condition over multiple (or all) inter-procedural paths of a program in a
single formula. We have implemented a prototype of Whale using the LLVM
compiler infrastructure [23] and verified properties of low-level C code written
for the pacemaker grand challenge.

The rest of this paper is organized as follows: In Sec. 2, we illustrate Whale
on an example. In Sec. 3, we present background and notation used in the rest of
the paper. In Sec. 4, we introduce inter-procedural reachability graphs. In Sec. 5,
we present the algorithm. In Sec. 6, we discuss our implementation and present
our experimental results. Finally, in Sec. 7 and Sec. 8, we discuss related work,
sketch future research directions, and conclude the paper.

2 Motivating Example

In this section, we use Whale to prove that mc91 in Fig. 1, a variant of the
famous McCarthy 91 function [24], always returns a value ≥ 91, i.e., mc91(p) ≥
91 for all values of p.

Whale works by iteratively constructing a forest of Abstract Reachability
Graphs (ARGs) (we call it an iARG) with one ARG for the main function, and
one ARG for each function call inside each ARG. Each ARG Ai is associated
with some function Fk, an expression Gi over the arguments of Fk, called the
guard, and an expression Si over the arguments and the return variables of Fk,
called the summary. Intuitively, Whale uses ARG Ai to show that function Fk
behaves according to Si, assuming the arguments satisfy Gi and assuming all
other functions behave according to their corresponding ARGs in the iARG. A
node v in an ARG Ai corresponds to a control location `v and is labeled by an
expression ev over program variables. Whale maintains the invariant that ev is
an over-approximation of the states reachable from the states in Gi, at the entry
point of Fk, along the path to v. It is always sound to let ev be true. We now
apply Whale to mc91 in Fig. 1, producing ARGs A (starting with A1), with G

and S as their guards and summaries, respectively.

Step 1. For each ARG in Fig. 1, the number inside a node v is the location `v
and the expression in braces is ev. For our property, mc91(p) ≥ 91, the guard
G1 is true, and the summary S1 is r ≥ 91. The single path of A1 is a potential



2

3

8

5

6

7

8a

{true}

{p > 100}

{r ≥ 91}

{r ≥ 91}

{p ≤ 100}

{true}

{p2 ≥ 91}

2

3

8

5

6

7

8a

{true}

{p > 100}

{r ≥ 91} {true}

{true}

{true}

{true}

[p	  <=	  100]

p1	  =	  p	  +	  11

p''	  =	  p2;
[p''	  >	  100];
r''	  =	  p''	  -‐	  10;
r	  =	  r''

2

3

8

{true}

{true}

{true}

[p	  >	  100]

r	  =	  p	  -‐	  10

p'	  =	  p1;
[p'	  >	  100];
r'	  =	  p'	  -‐	  10;
p2	  =	  r'

[p2	  >=	  91];

[r	  >=	  91];

1	  func	  mc91(p):r
2	  if	  (p	  >	  100)
3	  	  	  	  	  	  	  r	  =	  p	  -‐	  10;
4	  else
5	  	  	  	  	  	  	  p1	  =	  p	  +	  11;
6	  	  	  	  	  	  	  p2	  =	  mc91(p1);
7	  	  	  	  	  	  	  r	  =	  mc91(p2);
8	  return	  r;

A1, A2, A3 A�1 A��1

Fig. 1. Applying Whale to mc91.

counterexample: it reaches the return statement (line 8), and node 8 is labeled
true (which does not imply the summary r ≥ 91). To check for feasibility of
the computed counterexample, Whale checks satisfiability of the corresponding
path formula π = true∧(p > 100)∧(r = p−10)∧(r < 91) obtained by conjoining
the guard, all of the conditions and assignments on the path, and the negation of
the summary. Here, π is unsatisfiable. Hence, the counterexample is infeasible,
and the ARG labeling can be strengthened to exclude it.

Step 2. Like [27], Whale uses interpolants to strengthen the labels. For a pair
of formulas (A,B) s.t. A ∧ B is unsatisfiable, an interpolant Â is a formula in
the common vocabulary of A and B s.t. A ⇒ Â and Â ⇒ ¬B. Intuitively, Â
is a weakening of A that is inconsistent with B. Each node v in the infeasible
counterexample is labeled by an interpolant obtained by letting A be the part
of the path formula for the path from root to v, and B be the rest of the path
formula. The new labeling is shown in Fig. 1 in ARG A′1.

Step 3. Next, the second path through mc91 is added to A′1 and has to be checked
for feasibility. This path has two recursive calls that need to be represented in
the path formula. For each call statement, Whale creates a new justifying ARG,
in order to keep track of the under-approximation of the callee used in the proof
of the caller and to construct the proof that the callee behaves according to a
given specification.

Let A2 and A3 be the ARGs justifying the first and the second calls, respec-
tively. For simplicity of presentation, assume that A2 and A3 have been unrolled
and are identical to A1 in Fig. 1. The path formula π for the path 2, 5, . . . ,
8a is constructed by under-approximating the callees by inlining them with the
justifying ARGs (shown by bold labels on the grey call edges in A′1). Specifically,
π = true ∧ (p ≤ 100) ∧ (p1 = p + 11) ∧ U1 ∧ U2 ∧ (r < 91), where U1 and U2

represent the under-approximations of the called functions on edges (6,7) and
(7,8), respectively. This path formula is unsatisfiable and thus the counterex-
ample is infeasible. Again, interpolants are used to strengthen node labels, as
shown in ARG A′′1 . Furthermore, the interpolants are also used to generalize the



under-approximations of the callees by taking the interpolant of the pair (A,B),
where A is the path formula of the under-approximation and B is the rest of the
path formula. The resulting interpolant Â is a specification of the callee that is
weaker than its under-approximation, but strong enough to exclude the infeasi-
ble counterexample. For example, to generalize the under-approximation U1, we
set A to U1 and B to true ∧ (p ≤ 100) ∧ (p1 = p + 11) ∧ U2 ∧ (r < 91). The
resulting generalizations, which happen to be r ≥ 91 for both calls, are shown
on the call edges in ARG A′′1 with variables renamed to suit the call context.

Step 4. At this point, all intra-procedural paths of mc91 have been examined.
Hence, A′′1 is a proof that the body of mc91 returns r ≥ 91 assuming that the first
call returns r ≥ 91 and that the second one returns r ≥ 91 whenever p ≥ 91.
To discharge the assumptions, Whale sets guards and summaries for the ARGs
A2 and A3 as follows: G2 = true, S2 = r ≥ 91, G3 = p ≥ 91 and S3 = r ≥ 91,
and can continue to unroll them following steps 1-3 above. However, in this
example, the assumptions on recursive calls to mc91 are weaker than what was
established about the body of mc91. Thus, we conclude that the ARGs A2 and
A3 are covered by A′′1 and do not need to be expanded further, finishing the
analysis. Intuitively, the termination condition is based on the Hoare proof rule
for recursive functions [19] (see Sec. 3).

In practice, Whale only keeps track of guards, summaries, and labels at
entry and exit nodes. Other labels can be derived from those when needed.

To summarize, Whale explores the program by unwinding its control flow
graph. Each time a possible counterexample is found, it is checked for feasibility
and, if needed, the labels are strengthened using interpolants. If the counterex-
ample is inter-procedural, then an under-approximation of the callee is used for
the feasibility check, and interpolants are used to guess a summary of the called
function. Whale attempts to verify the summary in a similar manner, but if
the verification is unsuccessful, it generates a counterexample which is used to
refine the under-approximation used by the caller and to guess a new summary.

3 Preliminaries

In this section, we present the notation used in the rest of the paper.

Program Syntax. We divide program statements into simple statements and
function calls. A simple statement is either an assignment statement x = exp or a
conditional statement assume(Q), where x is a program variable, and exp and Q
are an expression and a Boolean expression over program variables, respectively.
We write JT K for the standard semantics of a simple statement T .

Functions are declared as func foo (p1, . . . , pn) : r1, . . . , rk Bfoo, defining
a function with name foo, n parameters P = {p1, . . . , pn}, k return variables
R = {r1, . . . , rk}, and body Bfoo. We assume that a function never modifies its
parameters. The return value of a function is the valuation of all return variables
at the time when the execution reaches the exit location. Functions are called
using syntax b1, . . . , bk = foo (a1, . . . , an), interpreted as a call to foo, passing
values of local variables a1, . . . , an as parameters p1, . . . , pn, respectively, and



P ′ ⇒ P {P}T{Q} Q⇒ Q′

{P ′}T{Q′}

(P ′ ∧ p = a)⇒ P {P}BF {Q} (Q ∧ p, r = a, b)⇒ Q′

{P ′}b = F (a){Q′}

{P}b = F (a){Q} ` {P}BF {Q}

{P}b = F (a){Q}

Fig. 2. Three Rules of Hoare Logic.

storing the values of the return variables r1, . . . , rk in local variables b1, . . . , bk,
respectively. The variables {ai}ni=1 and {bi}ki=1 are assumed to be disjoint. More-
over, for all i, j ∈ [1, n], s.t. i 6= j, ai 6= aj . That is, there are no duplicate
elements in {ai}ni=1. The same holds for the set {bi}ki=1.

Program Model. A program P = (F1, F2, . . . , Fn) is a list of n functions. Each
function F = (L, ∆, en, ex,P,R,Var) is a tuple where L is a finite set of control
locations, ∆ is a finite set of actions, en, ex ∈ L are designated entry and exit
locations, respectively, and P, R and Var are sets of parameter, return and local
variables, respectively (we use no global variables). An action (`1, T, `2) ∈ ∆ is
a tuple where `1, `2 ∈ L and T is a program statement over Var ∪ P ∪ R. We
assume that the control flow graph (CFG) represented by (L, ∆) is a directed
acyclic graph (DAG) (and loops are modeled by tail-recursion). Execution starts
in the first function in the program. For a function F = (L, ∆, en, ex,P,R,Var),
we write L(F ) for L, ∆(F ) for ∆, etc. We write pi and ri to denote vectors of
parameter and return variables of Fi.

Floyd-Hoare Logic. A Hoare Triple [20] {P}T{Q} where T is a program
statement and P and Q are propositional formulas, indicates that if P is true of
program variables before executing T , and T terminates, then Q is true after T
completes. P and Q are called the pre- and the postcondition, respectively.

We make use of three proof rules shown in Fig. 2. The first is the rule of
consequence, indicating that a precondition of a statement can be strengthened
whereas its postcondition can be weakened. The second is the rule of function
instantiation where BF is a body of a function F with parameters p and returns
r. It explicates the conditions under which F can be called with actual parame-
ters a, returning b, and with P ′ and Q′ as pre- and postconditions, respectively.
For this rule, we assume that P is over the set of variables p and Q is over the
variables p and r. The third is the rule of recursion, indicating that a recursive
function F satisfies the pre-/postconditions (P , Q) if the body of F satisfies (P ,
Q) assuming that all recursive calls satisfy (P , Q). For two sets of triples X and
Y , X ` Y indicates that Y can be proven from X (i.e., X is weaker than Y ).
We also say ` X to mean that X is valid, i.e., that it follows from the axioms.

4 Inter-procedural Reachability Graphs

In this section, we introduce Abstract Reachability Graphs (ARGs) that extend
the notion of an Abstract Reachability Tree (ART) [17] to DAGs. At a high level,
an ARG represents an exploration of the state space of a function, while making
assumptions about the behavior of other functions it calls. We then define a
forest of ARGs, called an Inter-procedural Abstract Reachability Graph (iARG),
to represent exploration of the state space of a program with multiple functions.



Abstract Reachability Graphs (ARGs). Let F = (L, ∆, en, ex,P,R,Var)
be a function. A Reachability Graph (RG) of F is a tuple (V,E, ε, ν, τ) where

– (V,E, ε) is a DAG rooted at ε ∈ V ,
– ν : V → L is a node map, mapping nodes to control locations s.t. ν(ε) = en

and ν(v) = ex for every leaf node v,
– and τ : E → ∆ is an edge map, mapping edges to program actions s.t. for

every edge (u, v) ∈ E there exists (ν(u), τ(u, v), ν(v)) ∈ ∆.

We write V e = {v ∈ V | ν(v) = ex} for all leaves (exit nodes) in V . We call an
edge e, where τ(e) is a call statement, a call-edge. We assume that call edges are
ordered in some linearization of a topological order of (V,E).

An Abstract Reachability Graph (ARG) A of F is a tuple (U,ψ,G, S), where

– U is reachability graph of F ,
– ψ is a node labelling that labels the root and leaves of U with formulas over

program variables,
– G is a formula over P called a guard,
– and S is a formula over P ∪R called a summary.

For example, ARG A1 is given in Fig. 1 with a guard G1 = true, a summary
S1 = r ≤ 91, and with ψ shown in braces.

An ARG A is complete iff for every path in F there is a corresponding path
in A. Specifically, A is complete iff every node v ∈ V has a successor for every
action (ν(v), T, `) ∈ ∆, i.e., there exists an edge (v, w) ∈ E s.t. ν(w) = ` and
τ(v, w) = T . It is safe iff for every leaf v ∈ V , ψ(v)⇒ S. For example, in Fig. 2,
ARG A′′1 is safe and complete, ARG A′1 is complete but not safe, and other ARGs
are neither safe nor complete.

Inter-procedural ARGs. An Inter-procedural Abstract Reachabil-
ity Graph (iARG) A(P ) of a program P = (F1, . . . , Fn) is a tuple
(σ, {A1, . . . ,Ak}, RJ , RC), where

– σ : [1, k]→ [1, n] maps ARGs to corresponding functions, i.e., Ai is an ARG
of Fσ(i),

– {A1, . . . ,Ak} is a set of ARGs,
– RJ is an acyclic justification relation between ARGs s.t. ({A1, . . . ,Ak}, RJ )

is the justification tree of A(P ) rooted at A1,
– and RC is a covering relation between ARGs. Informally, if (Ai,Aj) ∈ RJ

then there is a call-edge in Ai that is justified (expanded) by Aj .
The justification tree corresponds to a partially unrolled call-graph. We write

Ai vJ Aj for the ancestor relation in the justification tree. Given two nodes
u, v ∈ Vi, an inter-procedural (u, v)-path in Ai is a (u, v)-path in Ai in which
every call-edge e is expanded, recursively, by a trace in an ARG Aj , where
(Ai,Aj) ∈ RJ . For convenience, we assume that σ(1) = 1, and use a subscript
to refer to components of an Ai in A(P ), e.g., ψi is the node labelling of Ai.

An ARG Ai is directly covered by Aj iff (Ai,Aj) ∈ RC . Ai is covered by Aj
iff Aj vJ Ai and Aj is directly covered by another ARG. Ai is covered iff it is



Require: Ai is uncovered and incomplete
1: func ExpandARG (ARG Ai) :
2: replace Ui with a supergraph U ′

i ,
where Ui is the unwinding of Ai

3: Reset(Ai)
Require: Ai 6vJ Aj , σ(i) = σ(j),

Ai and Aj are uncovered,
{Gj}BFσ(i){Sj} ` {Gi}BFσ(i){Si}

4: func CoverARG (ARGs Ai and Aj) :
5: RC ← RC \ {(Al,Ai) | (Al,Ai) ∈ RC}
6: RC ← RC ∪ {(Ai,Aj)}
7: func Reset (ARG Ai) :
8: ∀v · ψi(v)← true
9: for all {Aj | ∃e ∈ Ei · J (e) = Aj} do

10: Gj ← true ; Sj ← true
11: Reset(Aj)
12: func Update (ARG Ai, g, s) :
13: Gi ← Gi ∧ g ; Si ← Si ∧ s
14: Reset(Ai)

Require: Ai is uncovered, ν(v) = ex(Fσ(i)), ψi(v) 6⇒ Si
15: func RefineARG (vertex v in Ai) :
16: cond← Gi ∧ iDAGCond(Ai, {v}) ∧ ¬Si
17: if cond is UNSAT then
18: g0, s0, g1, s1, . . . , sm, sm+1 ←STItp(cond)
19: ψi(v)← ψi(v) ∧ Si ; ψi(εi)← ψi(εi) ∧ g0
20: let e1, . . . , em be topologically ordered sequence

of all call-edges in Ai that can reach v
21: for all ek = (u,w) ∈ e1, . . . , em do
22: Update(J (ek),Guard(gk),Sum(sk))

23: else
24: if i = 1 then Terminate with “UNSAFE”
25: RC ← RC \ {(Al,Ai) | (Al,Ai) ∈ RC}
26: for all {Aj | (Aj ,Ai) ∈ RJ } do Reset(Aj)
Require: Ai is uncovered, safe, and complete
27: func UpdateGuard (ARG Ai) :
28: Gi ← ψ(εi)

Fig. 3. The Whale Algorithm. The function STItp is used to compute interpolants
and is defined later in this section.

covered by some Aj ; otherwise, it is uncovered. A covering relation RC is sound
iff for all (Ai,Aj) ∈ RC :

– Ai and Aj are mapped to the same function Fl, i.e., σ(i) = σ(j) = l;

– i 6= j and Ai is not an ancestor of Aj , i.e., Ai 6vJ Aj ;
– the specification of Aj is stronger than that of Ai, i.e., {Gj}r = Fl(p){Sj} `
{Gi}r = Fl(p){Si};

– and Aj is uncovered.

For example, for ARGs in Fig. 1, (A3, A
′′
1 ) ∈ RC , and A′′1 is uncovered. A3 is left

incomplete, since the validity of its guard and summary follow from the validity
of the guard and summary of A′′1 : {true}Bmc91{r ≥ 91} ` {p ≥ 91}Bmc91{r ≥ 91}
where (true, r ≥ 91) and (p ≥ 91, r ≥ 91) are the guard and summary pairs of
A′′1 and A3, respectively. An iARG A(P ) is safe iff A1 is safe. It is complete iff
every uncovered ARG Ai ∈ A(P ) is complete.

5 The Whale Algorithm

In this section, we provide a detailed exposition of Whale. We begin with an
overview of its basic building blocks.

Overview. Given a program P = (F1, . . . Fn) and a pair of formulas (G,S), our
goal is to decide whether ` {G}BF1

{S}. Whale starts with an iARG A(P ) =
(σ, {A1}, RJ , RC) where σ(1) = 1, and RJ and RC are empty relations. A1 has
one vertex v and ν(v) = en(F1). The guard G1 and summary S1 are set to G
and S, respectively. In addition to the iARG, Whale maintains a map J from
call-edges to ARGs and an invariant that (Ai,Aj) ∈ RJ iff there exists e ∈ Ei
s.t. J (e) = Aj .



Whale is an extension of Impact [27] to inter-procedural programs. Its
three main operations (shown in Fig. 3), ExpandARG, CoverARG, and Re-
fineARG, correspond to their counterparts of Impact. ExpandARG adds new
paths to explore; CoverARG ensures that there is no unnecessary exploration,
and RefineARG checks for presence of counterexamples and guesses guards
and summaries. All operations maintain soundness of RC . Whale terminates
either when RefineARG finds a counterexample, or when none of the opera-
tions are applicable. In the latter case, the iARG is complete. We show at the
end of this section that this also establishes the desired result: ` {G1}BF1

{S1}.
ExpandARG adds new paths to an ARG Ai if it is incomplete, by replacing

an RG Ui with a supergraph U ′i . Implicitly, new ARGs are created to justify
any new call edges, as needed, and are logged in the justification map J . A new
ARG Aj is initialized with a Gj = Sj = true and Vj = {v}, where v is an entry
node. The paths can be added one-at-a-time (as in Impact and in the example
in Sec. 2), all-at-once (by adding a complete CFG), or in other ways. Finally, all
affected labels are reset to true

CoverARG covers an ARG Ai by Aj . Its precondition maintains the sound-
ness of RC . Furthermore, we impose a total order, ≺, on ARGs s.t. Ai < Aj
implies Ai ≺ Aj , to ensure that CoverARG is not applicable indefinitely. Note
that once an ARG is covered, all ARGs it covers are uncovered (line 5).

RefineARG is the core of Whale. Given an exit node v of some unsafe ARG
Ai, it checks whether there exists an inter-procedural counterexample in A(P ),
i.e., an inter-procedural (εi, v)-path that satisfies the guard Gi and violates the
summary Si. This is done using iDAGCond to construct a condition cond that
is satisfiable iff there is a counterexample (line 16). If cond is SAT and i = 1, then
there is a counterexample to {G1}BF1

{S1}, and Whale terminates (line 24).
If cond is SAT and i 6= 1, the guard and the summary of Ai are invalidated, all
ARGs covered by Ai are uncovered, and all ARGs used to justify call edges of Ai
are reset (lines 25-26). If cond is UNSAT, then there is no counterexample in the
current iARG. However, since the iARG represents only a partial unrolling of the
program, this does not imply that the program is safe. In this case, RefineARG
uses interpolants to guess guards and summaries of functions called from Ai
(lines 17-22) which can be used to replace their under-approximations without
introducing new counterexamples.

The two primary distinctions between Whale and Impact are in construct-
ing a set of formulas to represent an ARG and in using interpolants to guess
function summaries from these formulas. We describe these below.

Inter-procedural DAG Condition. A DAG condition of an ARG A is a for-
mula ϕ s.t. every satisfying assignment to ϕ corresponds to an execution through
A, and vice versa. A naive way to construct it is to take a disjunction of all the
path conditions of the paths in the DAG. An inter-procedural DAG condition
of an ARG A in an iARG A(P ) (computed by the function iDAGCond) is a
formula ϕ whose every satisfying assignment corresponds to an inter-procedural
execution through Ai in A(P ) and vice versa.



We assume that Ai is in Static Single Assignment (SSA) form [10] (i.e., every
variable is assigned at most once on every path). iDAGCond uses the function
DAGCond to compute a DAG condition1:

DAGCond(Ai, X) , C ∧D, where

C = cεi ∧
∧
v∈V ′

i

{cv ⇒
∨
{cw | (v, w) ∈ Ei}}

D =
∧

(v,w)∈E′
i

{(cv ∧ cw)⇒ Jτi(v, w)K | τi(v, w) is simple}, (1)

ci are Boolean variables for nodes of Ai s.t. a variable cv corresponds to
node v, and V ′i ⊆ Vi and E′i ⊆ Ei are sets of nodes and edges, respectively,
that can reach a node in the set of exit nodes X. Intuitively, C and D en-
code all paths through Ai and the corresponding path condition, respectively.
DAGCond ignores call statements which (in SSA) corresponds to replacing calls
by non-deterministic assignments.

Example 1. Consider computing DAGCond(A′1, {8, 8a}) for the ARG A′1 in Fig. 1,
where c8 and c8a represent the two exit nodes, on the left and on the right, re-
spectively. Then, C = c2 ∧ (c2 ⇒ (c3 ∨ c5)) ∧ (c3 ⇒ c8) ∧ (c5 ⇒ c6) ∧ (c6 ⇒
c7)∧(c7 ⇒ c8a) and D = (c2∧c3 ⇒ p ≤ 100)∧(c3∧c8 ⇒ r = p−10)∧(c2∧c5 ⇒
p ≤ 100)∧(c5∧c6 ⇒ p1 = p+11). Any satisfying assignment to C∧D represents
an execution through 2,3,8 or 2,5,. . . ,8, where the call statements on edges (6,7)
and (7,8) set p2 and r non-deterministically.

The function iDAGCond(Ai, X) computes an inter-procedural DAG condition
for a given ARG and a set X of exit nodes of Ai by using DAGCond and
interpreting function calls. A naive encoding is to inline every call-edge e with
the justifying ARG J (e), but this results in a monolithic formula which hinders
interpolation in the next step of RefineARG. Instead, we define it as follows:

iDAGCond(Ai, X) , DAGCond(Ai, X) ∧
m∧
k=1

µk, where

µk , (cvk ∧ cwk)⇒ ((pσ(j), rσ(j) = a, b) ∧ iDAGCond(Aj , V ej )), (2)

m is the number of call-edges inAi, e = (vk, wk) is the kth call-edge2,Aj = J (e),
and τ(e) is b = Fσ(j)(a). Intuitively, µk is the under-approximation of the kth
call-edge e in Ai by the traces in the justifying ARG Aj = J (e). Note that
iDAGCond always terminates since the justification relation is acyclic.

Example 2. Following Example 1, iDAGCond(A′1, {8, 8a}) is (C ∧ D) ∧ µ1 ∧
µ2, where C ∧D are as previously defined, and µ1, µ2 represent constraints on
the edges (6, 7) and (7, 8). Here, µ1 = (c6 ∧ c7) ⇒ ((p′ = p1 ∧ p2 = r′) ∧
1 In practice, we use a more efficient encoding described in [14].
2 Recall, call-edges are ordered in some linearization of a topological order of RG Ui.



DAGCond(A2, {8})), i.e., if an execution goes through the edge (6,7), then it
has to go through the paths of A2 – the ARG justifying this edge. Using primed
variables avoids name clashes between the locals of the caller and the callee.

Lemma 1. Given an iARG A(P ), an ARG Ai ∈ A(P ), and a set of exit nodes
X, there exists a total onto map from satisfying assignments of iDAGCond(Ai, X)
to inter-procedural (εi, X)-executions in A(P ). 3

A corollary to Lemma 1 is that for any pair of formulas G and S, G ∧
iDAGCond(Ai, X) ∧ S is UNSAT iff there does not exist an execution in Ai
that starts at εi in a state satisfying G and ends in a state v ∈ X satisfying S.

Guessing Guards and Summaries. Our goal now is to show how under-
approximations of callees in formulas produced by iDAGCond can be general-
ized. First, we define a function

SpecCond(Ai, X, I) , DAGCond(Ai, X) ∧
m∧
k=1

µk,

where I = {(qk, tk)}mk=1 is a sequence of formulas over program variables, µk =
(cvk ∧ cwk) ⇒ ((pσ(j), rσ(j) = a, b) ∧ (qk ⇒ tk)), and the rest is as in the
definition of iDAGCond. SpecCond is similar to iDAGCond, except that
it takes a sequence of pairs of formulas (pre- and postconditions) that act as
specifications of the called functions on the call-edges {ek}mk=1 along the paths
to X in Ai. Every satisfying assignment of SpecCond(Ai, X, I) corresponds to
an execution through Ai ending in X, where each call-edge ek is interpreted as
assume(qk ⇒ tk).

Lemma 2. Given an iARG A(P ), an ARG Ai ∈ A(P ), a set of exit nodes X,
and a sequence of formulas I = {(qk, tk)}mk=1, there exists a total and onto map
from satisfying assignments of SpecCond(Ai, X, I) to (εi, X)-executions in Ai,
where each call-edge ek is interpreted as assume(qk ⇒ tk).

Given an UNSAT formula Φ = Gi ∧ iDAGCond(Ai, X)∧¬Si, the goal is to
find a sequence of pairs of formulas I = {(qk, tk)}k s.t.Gi∧SpecCond(Ai, X, I)∧
¬Si is UNSAT, and for every tk, iDAGCond(Aj , V ej )⇒ tk, where Aj = J (ek).
That is, we want to weaken the under-approximations of callees in Φ, while
keeping Φ UNSAT. For this, we use interpolants.

We require a stronger notion of interpolants than usual: Let Π = ϕ0 ∧ · · · ∧
ϕn+1 be UNSAT. A sequence of formulas g0, s0, . . . , gn−1, sn−1, gn is a state/-
transition interpolant sequence of Π, written STItp(Π), iff:

1. ϕ0 ⇒ g0,
2. ∀i ∈ [0, n] · ϕi+1 ⇒ si,
3. ∀i ∈ [0, n] · (gi ∧ si)⇒ gi+1,
4. and gn ∧ ϕn+1 is UNSAT.

3 Proofs are available at [1]



We call gi and si the state- and transition-interpolants, respectively. STItp(Π)
can be computed by a repeated application of current SMT-interpolation algo-
rithms [6] on the same resolution proof:

gi = Itp(

i∧
j=0

ϕj ,

n+1∧
j=i+1

ϕj , pf) si = Itp(ϕi,

i−1∧
j=0

ϕj ∧
n+1∧
j=i+1

ϕj , pf),

where pf is a fixed resolution proof and Itp(A,B, pf) is a Craig interpolant of
(A,B) from pf. The proof of correctness of the above computation is similar to
that of Theorem 6.6 of [6].

Recall that RefineARG (Fig. 3), on line 16, computes a formula cond =
Gi ∧ ϕ ∧

∧m
k=1 µk ∧ ¬Si using iDAGCond for ARG Ai and an exit node v,

where µk is an under-approximation representing the call-edge ek = (uk, wk). For
simplicity of presentation, let τ(ek) be bk = Fk(ak). Assume cond is UNSAT and
let g0, s0, . . . , sm, gm+1 be state/transition interpolants for cond. By definition,
each sk is an over-approximation of µk that keeps cond UNSAT. Similarly, g0 is
an over-approximation of Gi that keeps cond UNSAT, and gk, where k 6= 0, is
an over-approximation of the executions of Ai assuming that all call statements
on edges ek, . . . , em are non-deterministic. This is due to the fact that (Gi ∧ϕ∧
µ1 ∧ · · · ∧ µj−1) ⇒ gj . Note that g0, s0, . . . , sm, gm+1 are also state/transition
interpolants for the formula Gi ∧ ϕ ∧ (g1 ⇒ s1) ∧ · · · ∧ (gm ⇒ sm) ∧ ¬Si. The
goal (lines 18–22) is to use the sequence {(gk, sk)}mk=1 to compute a sequence
I = {(qk, tk)}mk=1 s.t. Gi∧SpecCond(Ai, {v}, I)∧¬Si is UNSAT. By definition
of an interpolant, sk is over the variables ak, bk, cuk , and cwk , whereas tk has
to be over pk and rk, to represent a summary of Fk. Similarly, gk is over ak, bk,
cuj , and cwj for all j ≥ k, whereas qk has to be over pk to represent a guard on
the calling contexts. This transformation is done using the following functions:

Sum(sk) , sk[cuk , cwk ← >][ak, bk ← pk, rk]

Guard(gk) , ∃Q · gk[cu ← (uk v u) | u ∈ Vi][ak ← pk],

where the notation ϕ[x ← y] stands for a formula ϕ with all occurrences of x
replaced by y, w v u means that a node u is reachable from w in Ai, and Q is
the set of all variables in gk except for ak.

Given a transition interpolant sk, Sum(sk) is an over-approximation of the
set of reachable states by the paths in J (uk, wk). Guard(gk) sets all (and only)
successor nodes of uk to true, thus restricting gk to executions reaching the
call-edge (uk, wk); furthermore, all variables except for the arguments ak are ex-
istentially quantified, effectively over-approximating the set of parameter values
with which the call on (uk, wk) is made.

Lemma 3. Given an ARG Ai ∈ A(P ), and a set of exit nodes X, let Φ = Gi ∧
iDAGCond(Ai, X)∧¬Si be UNSAT and let g0, s0, . . . , sm, gm+1 be STItp(Φ).
Then, Gi ∧ SpecCond(Ai, X, {(Guard(gk),Sum(sk))}mk=1) ∧ ¬Si is UNSAT.

Example 3. Let cond = true∧ϕ∧µ1 ∧µ2 ∧ (r < 91), where true is the guard of
A′1, ϕ is C ∧D from Example 1, µ1 and µ2 are as defined in Example 2, and (r <



91) is the negation of the summary of A′1. A possible sequence of state/transition
interpolants for cond is g0, s0, g1, s1, g2, s2, g3, where g1 = (r < 91 ⇒ (c6 ∧ c7 ∧
c8a)), s1 = ((c6 ∧ c7) ⇒ p2 ≥ 91), g2 = (r < 91 ⇒ (c7 ∧ c8a ∧ p2 ≥ 91)), and
s2 = ((c7 ∧ c8a)⇒ r ≥ 91). Hence, Guard(g1) = ∃r · r < 91 (since all cu, where
node u is reachable from node 6, are set to true), Sum(s1) = r ≥ 91 (since r is
the return variable of mc91), Guard(g2) = p ≥ 91, and Sum(s2) = r ≥ 91.

RefineARG uses (Guard(gk),Sum(sk)) of each edge ek to strengthen the
guard and summary of its justifying ARG J (ek). While Guard(gk) may have ex-
istential quantifiers, it is not a problem for iDAGCond since existentials can be
skolemized. However, its may be a problem for deciding the precondition of Cov-
erArg. In practice, we eliminate existentials using interpolants by observing
that for a complete ARG Ai, ψi(εi) is a quantifier-free safe over-approximation
of the guard. Once an ARG Ai is complete, UpdateGuard in Fig. 3 is used
to update Gi with its quantifier-free over-approximation. Hence, an expensive
quantifier elimination step is avoided.

Soundness and Completeness. By Lemma 1 and Lemma 2, Whale main-
tains an invariant that every complete, safe and uncovered ARG Ai means that
its corresponding function satisfies its guard and summary assuming that all
other functions satisfy the corresponding guards and summaries of all ARGs in
the current iARG. Formally, let Y and Z be two sets of triples defined as follows:

Y , {{Gj} b = Fσ(j) (a){Sj} | Aj ∈ A(P ) is uncovered or directly covered}
Z , {{Gi}BFσ(i) {Si} | Ai ∈ A(P ) is safe, complete, and uncovered}

Whale maintains the invariant Y ` Z. Furthermore, if the algorithm termi-
nates, every uncovered ARG is safe and complete, and every directly covered
ARG is justified by an uncovered one. This satisfies the premise of Hoare’s (gen-
eralized) proof rule for mutual recursion and establishes soundness of Whale.

Whale is complete for Boolean programs, under the restriction that the
three main operations are scheduled fairly (specifically, CoverARG is applied
infinitely often). The key is that Whale only uses interpolants over program
variables in a current scope. For Boolean programs, this bounds the number of
available interpolants. Therefore, all incomplete ARGs are eventually covered.

Theorem 1. Whale is sound. Under fair scheduling, it is also complete for
Boolean programs.

6 Implementation and Evaluation

We have built a prototype implementation of Whale using the LLVM compiler
infrastructure [23] as a front-end. For satisfiability checking and interpolant gen-
eration, we use the MathSAT4 SMT solver [5]. The implementation and exam-
ples reported here are available at [1].

Our implementation of Whale is a particular heuristic determinization of
the three operations described in Sec. 5: A FIFO queue is used to schedule the
processing of ARGs. Initially, the queue contains only the main ARG A1. When



Whale Wolverine 0.5 Blast 2.5

Program #ARGs #Refine Time Time Time (B1) Time (B2) #Preds (B1) #Preds (B2)

ddd1.c 5 3 0.43 4.01 4.64 1.71 15 8

ddd2.c 5 3 0.59 5.71 5.29 2.65 16 10

ddd3.c 6 5 20.19 30.56 48 20.32 25 16

ddd1err.c 5 1 0.16 3.82 0.42 1.00 25 8

ddd2err.c 5 1 0.28 5.72 0.44 0.96 5 8

ddd3err.c 5 11 126.4 17.25 TO 43.11 TO 37

ddd4err.c 6 1 5.73 1.76 24.51 CR 19 CR

Fig. 4. A comparison between Whale, Blast, and Wolverine. Time is in seconds.

an ARG is picked up from the queue, we first try to cover it with another ARG,
using CoverARG. In case it is still uncovered, we apply UpdateARG and
RefineARG until they are no longer applicable, or until RefineARG returns
a counterexample. Every ARG created by UpdateARG or modified by Reset
is added to the processing queue. Furthermore, we use several optimizations
not reported here. In particular, we merge ARGs of same the function. The
figures reported in this section are for the number of combined ARGs and do
not represent the number of function calls considered by the analysis.

Our goal in evaluating Whale is two-fold: (1) to compare effectiveness of
our interpolation-based approach against traditional predicate abstraction tech-
niques, and (2) to compare our inter-procedural analysis against intra-procedural
interpolation-based algorithms. For (1), we compared Whale with Blast [4].
For (2), we compared Whale with Wolverine [22], a recent software model
checker that implements Impact algorithm [27] (it inlines functions and, thus,
does not handle recursion).

For both evaluations, we used non-recursive low-level C programs written for
the pacemaker grand challenge4. Pacemakers are devices implanted in a human’s
body to monitor heart rate and send electrical signals (paces) to the heart when
required. We wrote test harnesses to simulate the pacemaker’s interaction with
the heart on one of the most complex pacemaker operation modes (DDD). The
major actions of a pacemaker are sensing and pacing. Periodically, a pacemaker
suspends its sensing operation and then turns it back on. The properties we
checked involved verifying correct sequences of toggling sensing operations, e.g.,
that sensing is not suspended for more than two time steps, where we measured
time steps by the number of interrupts the pacemaker receives.

Fig. 4 summarizes the results of our experiments. Blast was run in two
configurations, B1 and B25. Wolverine was run in its default (optimal) con-
figuration. For Whale, we show the number of ARGs created and the number
of calls to RefineARG for each program. For Blast, we show the number of
predicates needed to prove or refute the property in question. ‘CR’ and ‘TO’
denote a crash and an execution taking longer than 180s, respectively. The pro-

4 Detailed information on the pacemaker challenge is available at http://www.cas.

mcmaster.ca/wiki/index.php/Pacemaker.
5 B1 is -dfs -craig 2 -predH 0 and B2 is -msvc -nofp -dfs -tproj -cldepth 1

-predH 6 -scope -nolattice.



grams named dddi.c are safe; dddierr.c have errors. While all programs are
small (∼300 LOC), their control structure is relatively complex.

For example, Fig. 4 shows that Whale created five ARGs while processing
ddd3.c, called RefineARG three times and proved the program’s correctness in
0.59 seconds. Blast’s configuration B1 tool 5.29 seconds and used 16 predicates,
whereas B2 took 2.65 seconds and used 10 predicates. Wolverine’s performance
was comparable to B1, verifying the program in 5.71 seconds.

For most properties and programs, we observe that Whale outperforms
Wolverine and Blast (in both configurations). Note that neither of the used
Blast configurations could handle the entire set of programs without crashing
or timing out. ddd3err.c contains a deep error, and to find it, Whale spends a
considerable amount of time in SMT solver calls, refining and finding counterex-
amples to a summary, until the under-approximation leading to the error state
is found. For this particular example, we believe Wolverine’s dominance is an
artifact of its search strategy. In the future, we want to experiment with heuris-
tics for picking initial under-approximations and heuristics for refining them, in
order to achieve faster convergence.

7 Related Work

The use of interpolants in verification was introduced in [25] in the context of
SAT-based bounded model checking (BMC). There, McMillan used interpola-
tion to over-approximate the set of states reachable at depth k in the model,
using refutation proofs of length k BMC queries. The process continues until a
counterexample is found or a fixed point is reached. At a high level, our sum-
marization technique is similar, as we use interpolants to over-approximate the
reachable states of a function by taking finite paths through it. In the context
of predicate abstraction, interpolation was used as a method for deriving predi-
cates from spurious counter-examples [18]. Interpolation was also used in [21] to
approximate a program’s transition relation, leading to more efficient but less
precise predicate abstraction queries.

As described earlier, Whale avoids the expensive step of computing abstrac-
tions, necessary in CEGAR-based software model checking tools (e.g., Blast [17],
Slam [2], and Yasm [15]). For inter-procedural verification, approaches like
Slam implement a BDD-based Sharir-Pnueli-style analysis [28] for Boolean pro-
grams. It would be interesting to compare it with our SMT-based approach.

McMillan [27] proposes an intra-procedural interpolation-based software model
checking algorithm, Impact, that computes interpolants from infeasible paths to
an error location. Whale can be viewed as an extension of Impact to the inter-
procedural case. In fact, our notion of ARG covering is analogous to McMillan’s
vertex covering lifted to the ARG level. While Impact unrolls loops until all ver-
tices are covered or fully expanded (thus, an invariant is found), Whale unrolls
recursive calls until all ARGs are covered or fully expanded (completed). One
advantage of Whale is that it encodes all intra-procedural paths by a single
SMT formula. Effectively, this results in delegating intra-procedural covering to
the SMT solver.



In [26], interpolants are used as blocking conditions on infeasible symbolic
execution paths and as means of computing function summaries. This approach
differs from Whale in that the exploration is not property-driven and thus is
more suited for bug finding than verification. Also, handling unbounded loops
and recursion requires manual addition of auxiliary variables.

Heizmann et al. [16] propose a procedure that views a program as a nested
word automaton. Interpolants or predicate abstraction [12] are used to generalize
infeasible paths to error and remove them from the program’s automaton until
no errors are reachable. In contrast to Whale, this approach does not produce
modular proofs and does not compute function summaries.

Synergy [13] and its inter-procedural successor Smash [11] start with an
approximate partitioning of reachable states of a given program. Partition re-
finement is guided by the weakest precondition computations over infeasible
program paths. The main differences between Whale and [13, 11] are: (a) in-
terpolants focus on relevant facts and can force faster convergence than weakest
preconditions [18, 26]; (b) our use of interpolants does not require an expen-
sive quantifier elimination step employed by Smash to produce summaries; (c)
Smash [11] does not handle recursion – in fact, our ARG covering technique can
be easily adapted to the notion of queries used in [11] to extend it to recursive
programs; and finally, (d) Synergy and Smash use concrete test cases to guide
their choice of program paths to explore. Compared to Whale, this makes them
better suited for bug finding.

8 Conclusion and Future Work

In this paper, we presented Whale, an interpolation-based algorithm for inter-
procedural verification. Whale handles (recursive) sequential programs and pro-
duces modular safety proofs. Our key insight is the use of Craig interpolants
to compute function summaries from under-approximations of functions. We
showed that performance of Whale is comparable, and often better, than state-
of-the-art software model checkers from the literature.

This work opens many avenues for future research, both in terms of optimiza-
tions and extensions to other program models. For example, due to the range of
interpolants that can be generated for a formula, we would like to experiment
with different interpolation algorithms to test their effectiveness in this domain.
We are also interested in extending Whale to handle concurrent programs.

References

1. Whale Homepage, http://www.cs.toronto.edu/~aws/whale
2. Ball, T., Podelski, A., Rajamani, S.: “Boolean and Cartesian Abstraction for Model

Checking C Programs”. In: Proc. of TACAS’01. vol. 2031, pp. 268–283 (2001)
3. Ball, T., Rajamani, S.: “The SLAM Toolkit”. In: Proc. of CAV’01. LNCS, vol.

2102, pp. 260–264 (2001)
4. Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: “The Software Model

Checker Blast”. STTT 9(5-6), 505–525 (2007)
5. Bruttomesso, R., Cimatti, A., Franzén, A., Griggio, A., Sebastiani, R.: “The Math-

SAT 4 SMT Solver”. In: Proc. of CAV’08. pp. 299–303 (2008)



6. Cimatti, A., Griggio, A., Sebastiani, R.: “Efficient Generation of Craig Interpolants
in Satisfiability Modulo Theories”. ACM Trans. Comput. Log. 12(1), 7 (2010)

7. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: “Counterexample-Guided Ab-
straction Refinement”. In: Proc. of CAV’00. LNCS, vol. 1855, pp. 154–169 (2000)

8. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press (1999)
9. Craig, W.: “Three Uses of the Herbrand-Gentzen Theorem in Relating Model The-

ory and Proof Theory”. The Journal of Symbolic Logic 22(3), 269–285 (1957)
10. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: “Efficiently

Computing Static Single Assignment Form and the Control Dependence Graph”.
ACM TOPLAS 13(4), 451–490 (1991)

11. Godefroid, P., Nori, A., Rajamani, S., Tetali, S.: “Compositional May-Must Pro-
gram Analysis: Unleashing the Power of Alternation”. In: Proc. of POPL’10. pp.
43–56 (2010)

12. Graf, S., Säıdi, H.: “Construction of Abstract State Graphs with PVS”. In: Proc.
of CAV’97. vol. 1254, pp. 72–83 (1997)

13. Gulavani, B., Henzinger, T., Kannan, Y., Nori, A., Rajamani, S.: “SYNERGY: a
New Algorithm for Property Checking”. In: Proc. of FSE’06. pp. 117–127 (2006)

14. Gurfinkel, A., Chaki, S., Sapra, S.: “Efficient Predicate Abstraction of Program
Summaries”. In: Proc. of NFM’11. LNCS, vol. 6617, pp. 131–145 (2011)

15. Gurfinkel, A., Wei, O., Chechik, M.: “Yasm: A Software Model-Checker for Verifi-
cation and Refutation”. In: Proc. of CAV’06. LNCS, vol. 4144, pp. 170–174 (2006)

16. Heizmann, M., Hoenicke, J., Podelski, A.: “Nested Interpolants”. In: Proc. of
POPL’10. pp. 471–482 (2010)

17. Henzinger, T., Jhala, R., Majumdar, R., Sutre, G.: “Lazy Abstraction”. In: Proc.
of POPL’02. pp. 58–70 (2002)

18. Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: “Abstractions from
Proofs”. In: Proc. of POPL’04. pp. 232–244 (2004)

19. Hoare, C.: “Procedures and Parameters: An Axiomatic Approach”. In: Proc. of
Symp. on Semantics of Algorithmic Languages. vol. 188, pp. 102–116 (1971)

20. Hoare, C.: “An Axiomatic Basis for Computer Programming”. Comm. ACM
12(10), 576–580 (1969)

21. Jhala, R., McMillan, K.: “Interpoland-Based Transition Relation Approximation”.
In: Proc. of CAV’05. LNCS, vol. 3576, pp. 39–51 (2005)

22. Kroening, D., Weissenbacher, G.: “Interpolation-Based Software Verification with
Wolverine”. In: Proc. of CAV’11. LNCS, vol. 6806, pp. 573–578 (2011)

23. Lattner, C., Adve, V.: “LLVM: A Compilation Framework for Lifelong Program
Analysis & Transformation”. In: Proc. of CGP’04 (Mar 2004)

24. Manna, Z., McCarthy, J.: “Properties of Programs and Partial Function Logic”. J.
of Machine Intelligence 5 (1970)

25. McMillan, K.L.: “Interpolation and SAT-Based Model Checking”. In: Proc. of
CAV’03. LNCS, vol. 2725, pp. 1–13 (2003)

26. McMillan, K.: “Lazy Annotation for Program Testing and Verification”. In: Proc.
of CAV’10. LNCS, vol. 6174, pp. 104–118 (2010)

27. McMillan, K.L.: “Lazy Abstraction with Interpolants”. In: Proc. of CAV’06. LNCS,
vol. 4144, pp. 123–136 (2006)

28. Sharir, M., Pnueli, A.: Program Flow Analysis: Theory and Applications, chap.
“Two Approaches to Interprocedural Data Flow Analysis”, pp. 189–233. Prentice-
Hall (1981)


