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Constructing comprehensive operational models of intended system behaviour is a complex and
costly task, which can be mitigated by the construction of partial behaviour models, providing
early feedback and subsequently elaborating them iteratively. However, how should partial be-
haviour models with different viewpoints covering different aspects of behaviour be composed?
How should partial models of component instances of the same type be put together? In this
paper, we propose model merging of Modal Transition Systems (MTSs) as a solution to these
questions. MTS models are a natural extension of Labelled Transition Systems that support
explicit modelling of what is currently unknown about system behaviour. We formally define
model merging based on weak alphabet refinement, which guarantees property preservation, and
show that merging consistent models is a process that should result in a minimal common weak
alphabet refinement (MCR). In this paper, we provide theoretical results and algorithms that
support such a process. Finally, because in practice MTS merging is likely to be combined with
other operations over MTSs such as parallel composition, we also study the algebraic properties
of merging and apply these, together with the algorithms that support MTS merging, in a case
study.

Categories and Subject Descriptors: D.Zdffware Engineering]: Requirements/Specifications; F.4N §th-
ematical Logic and Formal Languages]: Mathematical Logic—Femporal Logic

General Terms: Design

Additional Key Words and Phrases: MTS, Merge, Partial Behaviour Models.

1. INTRODUCTION

Behaviour modelling and analysis has been shown to be ssfat@s uncovering subtle
design errors [Clarke and Wing, 1996]. However, the adoptibsuch technologies by
practitioners has been slow. Partly, this is due to the diffjcof constructing behaviour
models — this task requires considerable expertise in ringelotations that developers
often lack.

Automated synthesis techniques have been studied to a@btigtruction and elabora-
tion of behaviour models. In particular, synthesis fromnsge-based specifications such
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as message sequence charts [ITU-T, 1993] and goal modeld frasweerde, 2004] are
increasingly popular (e.g. [Uchitel et al., 2005; Duponalket 2008]). Such specifications
tend to be of a partial nature, and the automated construofibehaviour models is ex-
pected to support elicitation of scenarios and goals indméaxt of an elicit-model-validate
cycle.

We have shown that classical, two valued, behaviour models as labelled transition
systems (LTSs) [Keller, 1976] are inadequate to suppott gecative elaboration as they
cannot capture the partial information provided by hetermpus specifications that con-
tain both existential and universal statements of systemaveur [Uchitel et al., 2009].

When supporting the incremental elaboration of partialc8pations of system be-
haviour, a more appropriate type of model to synthesizeésmwhich currently unknown
aspects of behaviour can be explicitly modelled [Uchitedlet2009]. These models can
distinguish between positive, negative, and unknown bielas. positive behaviour refers
to the behaviour that the system is expected to exhibit, theghehaviour refers to the
behaviour that the system is expected to never exhibit, akdawn behaviour could be-
come positive or negative, but the choice has not yet beere mBdhaviour models that
distinguish between these kinds of behaviour are refewweskpartial behaviour mod-
els A number of such modeling formalisms exist, e.g., Part@bélled Transition Sys-
tems (PLTSs) [Uchitel et al., 2003a], multi-valued statechiaes [Diaz-Redondo et al.,
2002], Mixed Transition Systems [Dams, 1996], multi-valu&ipke structures [Fitting,
1991; Bruns and Godefroid, 1999; Chechik et al., 2003]), ldiodal Transition Systems
(MTSs) [Larsen and Thomsen, 1988], and promising resulthein use to support incre-
mental modelling and viewpoint analysis has been reported.

In this paper, we concentrate on using MTSs for which syndgheshniques for various
specification language styles, such as Message Sequenids @mé Sequence Diagrams,
Use Cases and Goal Models, have been developed [Sibay20@8;, Uchitel et al., 2009].

The semantics of a partial behaviour model can be thoughs @ set of traditional
behaviour models. For instance, MTS semantics can be gimemms of sets of LTSs that
provide all of the behaviour required by the MTS, do not pdevany of the behaviour
prohibited by the MTS, and make different decisions on wéetir not to provide the
MTS’s unknown behaviour.

The notions of strong and weak refinement [Larsen et al., [I8&8een MTSs capture
this intuition formally and provide an elegant way of debirg the process of behaviour
model elaboration as one in which behaviour informatiorcigured and introduced into
the behaviour model incrementally, gradually refining a&giMTS until it characterizes a
single LTS.

LTSs can be thought of as partial models if a notion of refinereuch agrace inclu-
sionandsimulation[Milner, 1989], is adopted. For instance, if we interpret ttehavior
explicitly described in an LTS as required and all other béhaas “yet to be determined”,
an LTS that simulates another can be interpreted as a pandidé! in which some of the
“yet to be determined” behaviour has been identified as redquiThis interpretation of
LTSs can be thought of as providing@wver boundto the final, complete, description of
the system behavior, since the latter must provide at lbasetquired behavior, while per-
haps implementing additional behavior. This view is takgrapproaches that construct
LTS models from scenario-based specifications, e.g., [ileuet al., 1999].

An alternative interpretation of LTSs is to consider theligty described behaviour
as possible, but not yet confirmed, while the behaviour netidleed as forbidden. As
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more information becomes available, the possible behawdan be pruned by making it
prohibited. This interpretation considers the describeltblvior as ampper boundf the
behaviour of the final system. This view is taken by approathat synthesize LTSs from
safety properties (e.g., [Letier et al., 2008]), where Ymtisesized model describes all of
the behaviour that does not violate known properties.

However, partial behaviour models such as MTSs can desbadbiean upper and a
lower bound to the intended system behaviour, allowing botimds to be refined simulta-
neously. As more information becomes available, unknowmatassified behaviour gets
changed into either required or prohibited behaviour. M@&wne equipped with two sets
of transitions: required, which provide a lower bound totegs behavior, and possible,
which provide an upper bound.

A particularly useful notion in the context of software aratjuirements engineering
is that of merge[Larsen and Thomsen, 1988; Uchitel and Chechik, 2004]. Megrof
operational behaviour models is similar to conjunction e€tldrative descriptions. The
LTSs described by a merge are those that provide all the netjbiehaviour and that do
not provide any of the prohibited behaviour of the MTSs baimgrged. In other words,
merging attempts to build a new MTS that represents thesattion of the sets of LTSs
described by models being merged.

MTSs have been studied extensively, and a number of thealeésults and practical
algorithms to support reasoning and elaboration of pasghlaviour models expressed in
this formalism have been published [Huth et al., 2001; Lagsed Thomsen, 1988; Larsen
etal.,, 1996; Larsen et al., 1995; Fischbein and Uchitel320@hitel et al., 2007; Uchitel
et al., 2009]. However, these studies make the strong asgamtpat alphabets of these
models are the same. Hence, existing MTS semargtosng andweak[Larsen et al.,
1996], require MTSs to have the same alphabet.

For partial models to support the elaboration of behavioadefs in practice, an as-
sumption that requires fixing the scope, i.e., the set ofegleobservable actions, of all
modelsa priori is too strong. The semantics of partial behaviour modelsla@aotion of
refinement associated with it should allow for extendingalpdhabet of partial models as
they are elaborated. In particular, a semantics that affonalphabet refinement supports
merging various partial behaviour models with differemghalbets and hence of diverse
scopes.

In this paper, we present a study of Modal Transition Systentler a new semantics,
called weak alphabet semanticahich supports alphabet refinement. We also present
results and algorithms that support the elaboration ofgddrthaviour models. The paper
makes a number of contributions.

Thefirst contributionof this paper is a novel refinement notion callwdak alphabet
refinement Not only does it capture the elaboration process in whidhab®ur is incre-
mentally identified as required or prohibited, as in strond weak semantics, but it also
enables augmenting the scope of the description as noeshrel concepts are identified.
We further show that this refinement preserves propertigesged in fluent linear tempo-
ral logic (FLTL).

The second contributiomf this paper is a study of consistency under weak and weak
alphabet refinement. Two models are said tacbesistenif a common refinement ex-
ists. Consistency is a precondition for computing merge, miimal common refinement
cannot be built if there are no common refinements. We defimtéiamof a consistency re-
lation which is a complete characterization of consistdacTSs under weak refinement
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and a sulfficient condition for consistency under weak alphedfinement. This contribu-
tion extends the current state of the art: until now, comsisy has only been characterized
under strong semantics [Fischbein and Uchitel, 2008], asuffecient condition for it has
been provided under weak semantics [Larsen et al., 1996].

Thethird contributionof this paper is a set of automated methods for constructing c
mon refinements and merge. Given two models for which a cmsig relation exists,
we provide an operator that constructs their common refinérmed an algorithm that
builds their merge — the least common refinement, if it ex@ta set of minimal common
refinements, otherwise.

The fourth contributionof this paper is a study of the algebraic properties of merge
and parallel composition and their relationship with refiremt. We provide results that
are essential to support compositional construction ofesydehaviour models. Such
construction includes both merging partial behaviour ndéthe same componeand
parallel composition of partial behaviour modelsdifferent componentshich commu-
nicate to provide the system-level functionality. We exéfpphe utility of some of the
algebraic properties, theoretical results and algorithresented in the paper by applying
them to support behaviour model elaboration within a Minempwase study.

The rest of the paper is organized as follows. In Section 3giwe preliminary defi-
nitions used throughout the paper, as well as introdiealued linear temporal logic of
fluents. Section 4 describes merging MTSs. In Section 5, wsent a discussion on
consistency. In Section 6, we give algorithms for constngccommon refinements and
merging MTSs. In Section 7, we present positive and negatiselts on algebraic prop-
erties for merging, while providing insights into the ingdtions that these results have on
engineering partial behaviour models. In Section 8, weflgrmmment on the tool sup-
port that we have developed for computing MTS refinement amgjmg. In Section 9, we
provide a case study that illustrates the utility of our tie¢ical results. Finally, Section 10
presents a summary of our results, compares them with dedgeroaches, and discusses
directions for future work. Proofs of selected theoremsgiren in the Appendix.

2. MOTIVATING EXAMPLE

In this section, we provide a small example which motivateswork presented in this
paper.

Consider a specification of software controlling a bank ATNe specification may
consist of a number of use cases exemplifying how the ATM lsetaised and some prop-
erties it is expected to satisfy. An example use case is “vahgser has successfully logged
in, i.e., inserted a valid card and keyed in a valid passwitngl user must be offered the
following choices: withdraw cash, balance slip or log odti.addition, some ATMs may
provide an optional feature of topping up a pay-as-you-gbitaghone. A possible safety
property of an ATM is to prohibit withdrawals, balances ang@-tps if the user is not
logged in.

An operational model, in the form of an MTS that captures theve use-case and
property, is depicted in model in Figure 1. Here, the initial state of the model is labelled
0, transitions with labels ending with a question mark repnégpossible but not required
behaviour, while the rest of the transitions representiredbehaviour. If the system has
provisions for logging in the user and the login is succdstifie user (in stat@) must be
given a choice to withdraw cash, obtain a balance or exit. tdheup feature is optional.

For resubmission to ACM Transactions on Software Engingeaind Methodology, 2010.



Weak Alphabet Merging of Partial Behaviour Models : 5

No other behaviour is allowed, i.e., cash withdrawal, togpip or exiting are not allowed
in states) or 1.

Another important property of an ATM is that a user must bevedld to attempt login at
least once and is not allowed to attempt to login aftefailed attempts. The modé& in
Figure 1 depicts an MTS withV = 2. Note that the property does not prescribe the number
of failed attempts after which the ATM must retain the careh¢e, modeB allows a card
to be retained after one or two failed logins but forbids adtbgin attempt by retaining
the bank card. For the user to attempt a login once more, skenexover her card from
her bank branch.

ATM models do not have to be manually produced by an engiftamight be more de-
sirable to generate them automatically from specificatequessed in message sequence
charts [ITU-T, 1993], use-case diagrams [Jacobson, 20@$auctured declarative spec-
ifications such as [Dwyer et al., 1998]. MTS synthesis teghes have been studied [Uchi-
tel et al., 2007; Uchitel et al., 2009] but are beyond the saafithis paper. The advantage
of a synthesis approach is that it allows specifying diffiti@spects of a system using dif-
ferent languages which depend on the nature of propertieg bgpressed and preferences
of the modeller. In addition, each synthesized operatior@el can be used to validate a
specific aspect of the system-to-be.

Having validated modelg ands, it would be desirable to compose them to understand
the implications of building a system that conforms to theuisements expressed lroth
models. ModeC in Figure 1 precisely captures the behaviour prescribedhége models;
it merges the required and forbidden behaviour of both modébw can such a model be
constructed automatically? What are its properties? Howwaguarantee that it preserves
semantics of models being composed? How to treat modelsdiffdrent languages? In
this paper, we answer these questions.

Furthermore, if a model of the assumptions made on the usavimir (modelD in
Figure 1) were provided, how can we reason about the emengbatiour of the user and
the partially described ATM (modé€])? Are there ATM implementations conformingdo
which can produce deadlocking situations? Do non-deadigdknplementations preserve
the intended behaviour of the ATM? In this paper we studylfm@omposition of partial
behaviour models and present results that answer thestaqnses

3. BACKGROUND

In this section, we provide the necessary definitions, fixibeation, and introduce a new
3-valued variant of the linear temporal logic of fluents (F)far reasoning about MTSs.
Specifically, Section 3.1 discusses LTSs and their extertsidTSs, and Section 3.2 re-
views relations and operations on MTSs: strong and weakemefémt, hiding, and parallel
composition. Finally, Section 3.3 defingssalued FLTL and provides refinement preser-
vation and model checking results.

3.1 Transition Systems

We begin with the familiar concept of labelled transitiorstgms (LTSs) [Keller, 1976],
which are widely used for modelling and analyzing the betwawof concurrent and dis-
tributed systems. An LTS is a state transition system wiraresitions are labelled with
actions. The set of actions of an LTS is calleddtsnmunicating alphabeind constitutes
the interactions that the modelled system can have witlits@ment. In addition, LTSs
can have transitions labelled with representing actions that are not observable by the
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fail?

login? fail? fail?

login? _success? balance,
topup?, .
fail? withdraw success retainCard
exit \_/@
A B: recoverCard

balance,
topup?,
withdraw

success? fail

recoverCard? success

balance,
topup,
withdraw

login success

recoverCard

retainCard exit

C: D:
Fig. 1. MTS and LTS models for an ATM.

environment. Modelg and F in Figure 3 are example LTSs. Recall that states labelled
by 0 represent initial states. Transitions labelled with se¢sadbreviations for an individ-
ual transition on every action in the set, and the foltsM, andM are used for naming
specific transition systems.

In the following definitions, we us&tatesto denote the universal set of statést —
the universal set of observable action labels; the non-observable action andt, =
Act U {r}.

DerINITION 3.1. (Labelled Transition System)Labelled Transition Systeith TS) is
atupleL = (S, A, A, so), whereS C States is a finite set of states] C Act, is a set of
actions (labels)A C (S x A x S) is a transition relation between states, ande S is
the initial state.

DEFINITION 3.2. L = (S, A, A, sp) be an LTS. Theommunicating alphabeif L
(denotedh L) is A\ {7}.

Modal Transition Systems (MTSs) [Larsen and Thomsen, 1888} explicit mod-
elling of what isnot known about the behaviour of a system. They extend LTSs with
an additional set of transitions that model the interactiatth the environment that the
system cannot be guaranteed to provide, but equally carmpiéranteed to prohibit.

DerINITION 3.3. (Modal Transition SystemA Modal Transition SystenfMTS) M
is a structure(S, A, A", AP s0), whereA™ C AP, (S, A, A", sp) is an LTS represent-
ing requiredtransitions of the system arn@, A, A?, sy) is an LTS representingossible
transitions of the system.

We usep to denote the universe of all MTSs.
Figures 1 and 3 shows a graphical representation of MTSartbdel ATMs. For ex-
ample,G models those ATMs in which the top-up feature may or may nopiasent.
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Transitions labelled with a question mark are thos&\ A”. LTSs are a special type of
MTSs in which the sets of possible and required transitiasaide; thus, model§ and
F can be considered as LTSs or MTSs.

DEeFINITION 3.4. (MTS Transitionsfsiven an MTSV = (S, A, A", A?, sy) and an
action/ € A, we say that

—M has arequiredtransition on¢ (denoted\/ LN M) iff (so, ¢, s) € A" and M’ =
(S, A, A", AP 5).

—M has apossibletransition on? (denoted\V/ —L))p M) iff (so, ¢, s;) € AP and M’ =
(S, A, A", AP s().

—We writeM im to meard M’ - M im M', wherey € {r,p}.

4
—M prohibits¢ (denotedM +/—) iff M does not have a possible transition éni.e.,
Vsy € S - (s0, 4, 84) & AP.

For example, in MTSj in Figure 3, there is a required transition between statesd) a
login

1 (Gy —, G1 and also a possible transition between these st;ﬂel(’sg—ifp G, since
A" C AP), a possible but not required self-loop in statej3 mp Gs) and no transition

topup

ontopup from state 0G, /).

DEFINITION 3.5. (Initial State)For an MTSM = (S, A, A", AP sy) and a staten €
S, we denote changing the initial state f from sg to n as M,,.

DEFINITION 3.6. LetM = (S, A, A", AP, sy) be an MTS. Theommunicating alpha-
betof M (denotechM) is A\ {7}.

Allowing MTSs to have different communicating alphabetalaes us to provide descrip-
tions with different scopes. For instance, the commumnigagiphabets ofd and 3 differ,
allowing for more compact descriptions. For example, ther uperations provided by
an ATM once a user is logged in, id, can be described independently, and thus more
compactly, of the procedure for recovering cards that haenbetained due to too many
successive failed login attempts, in modkl

Our treatment of alphabets is in line with the process alyslemantics such as FSP
(Finite State Processes) [Magee and Kramer, 1999]. Untagxdsotherwise, we assume
that the communicating alphabet of an MTS coincides withsiteof observable actions
for which the MTS has a transition. However, this is not neaay the case: an MTS may
not include transitions labelled with an action from its ¢ommicating alphabet, meaning
that this action is prohibited from occurring in all states.

Finally, we define the shared alphabet of two MTSs.

DEFINITION 3.7. (Shared AlphabeY)e call the setvM N aN thesharedalphabet of
MTSsM and N, and(aM \ aN) U (aN \ aM) thenon-share@lphabet ofA and N.

3.2 Relations and Operations on MTSs

Refinementan be seen as being a “more defined than” relation betweepavtial mod-
els. Intuitively, refinement in MTSs is about convertingisaions which are possible but
not required into required transitions or removing therogdther: an MTSV refines an
MTS M if N preserves all of the required and all of the prohibited bahag of M.
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Alternatively, N refinesM if N can simulate the required behaviourf, and M can
simulate the possible behaviour®dt Refinement captures the notion of elaborating a par-
tial description by iteratively adding more informationcaib the required and prohibited
behaviour of the system to be.

Larsen [Larsen et al., 1996] introduced notions of strordjwaeak refinement for MTSs.
We reproduce these definitions below, making explicit thaytonly apply to MTSs with
identical communicating alphabets.

DEFINITION 3.8. (Strong Refinemenbet M and N be MTSs such thatM = aN.
N is arefinementof M, written M =< N, iff (M, N) is contained in somstrong re-
finement relationk C o x ¢, for which the following holds for alf € Act, and for all
(M',N") € R:

1. YM" - (M’ =%, M” = IN".N' -5, N” A (M",N") € R)
2. YN” . (N' =5, N = 3aM”"-M' —5, M" A (M",N") € R)

The above definition is given in terms of possible and reaguiransitions and the set of
possible transitions is a superset of the required onescéjéd <, N if the required
behaviour ofM is required inN and any behaviour which is possible M is possible in
M. Thatis, N can “convert” possible but not required behaviouridfinto required or
prohibited behaviour but may not introduce “new” such béman

The MTSC in Figure 1 is refined by the LT§ of Figure 3 C < G). The additional
information ingG is that the ATM cannot retain a card after a first attempt andtrallow
a second attempt at logging in. Intuitively, some possitdeditions have been dropped
(those that model whether the ATM retains a card after additst attempt at logging in)
and some required transitions have been added (thosedrétatetaining cards after two
failed logins). The refinement relation between these nwidel

R = {(Co,G0), (Cs,G1), (C2,G2), (C1,G4), (C4,G3), (C5,G5), (C3,G6) }-
When two models refine each other, we say that theyquoévalent

DEFINITION 3.9. (Equivalencelet M and N be MTSs.M is strongly equivalento
N (denotedVf =, N)ifandonlyif M < N andN < M.

When restricted to LTSs, strong equivalence is bisimufefMilner, 1989].

Although (strong) refinement captures the notion of modahetation, it requires the
alphabets of the processes being compared to be the sanractite, model elaboration
can lead to augmenting the alphabet of the system model toide®ehaviour aspects that
previously had not been taken into account. To capture #psa of model elaboration,
we use two concepts: hiding and weak refinement.

Hiding is an operation that makes a set of actions of a model unddislerto its envi-
ronment by reducing the alphabet of the model and replacamgitions labelled with an
action in the hiding set by, as shown below.

DerFINITION 3.10. (Hiding)Let M = (S, A, A", AP, sy) be an MTS and{ C Act be
a set of actionsM with the actions ofX hidden, denoted/\ X, is an MTS(S, A\ X, A",
A s0), whereA”™ and A?" are the smallest relations that satisfy the rules below,rehe
l e Act,.
M55 M
(M\X)—T5, (M'\X)

M5 M

ot D 07U

teX, ve{r,p}
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For a setY C Act, we useM @Y to denoteM \ (Act\Y).

DEFINITION 3.11. (Notation for Transitiond)etw = l4, ..., I; be a word ovetAct*
and letM be an MTS. We use the following notation assunfiggAct.

—Fory € {r,p}, M %, M’ denotes\s &5 ... L Ar,

—Fory € {r,p}, M im M’ denotes either thal/ im M’ orthat M = M’ and
{=rT.

—Fory € {r,p}, M ==, M’ denotes\I (—+.,)*(—)(—=+,)* M’. Similarly, M ==,

M’ denotes\ (-5, )* (=5 ) (<5, )* M.

—Fory € {r,p}, we extend=>-,, to words the same way as we do ..

—For~ € {r, p}, we writes im s’ to denotel im My (and similarly, for=,).
For example, for consider moddl in Figure 1 and definel’ = A\ {success}. For A’,
Ay l°gin—f>ailp A’y and A’ i>p A’o. In addition, A’ 1°;éifp A, A i>p A'a,
Ay 5 A, and thusdy 2E2 Ay and A/, 255, A,

DEFINITION 3.12. (Tracesforan MTSM = (S, A, A", AP, sy), atracer = {y,(1,. . .
wherel; € Act is arequired tracen M iff there exists an\/’ such thathd ==, M.
Similarly, 7 is apossible tracén M iff there exists an\l’ such thatM ==, M'.

DerINITION 3.13. (Infinite Traces)Ve denote the set of infinite required and pos-
sible traces of an MTS// by REQTR(M) and POSTR(M) respectively. For an LTS
L= (S,A, A, sp), we denote bfR(L) the set of (infinite) required traces of its embedding
intoan MTSM = (S, A, A, A, sp), so thatTR(L) = REQTR(M).

We use infinite traces to give semantics to FLTL propertieSantion 3.3 below.

In order to compare models that have unobservable actiossjly generated through
hiding, we need an alternative notion of refinement, calledk refinementvhich ignores
differences related te-transitions. Weak equivalence of MTSs can be defined inahees
manner as strong equivalence.

DEFINITION 3.14. (Weak Refinemenbet MTSsN and M such thataM = aN be
given. N is aweak refinemenof M, written M <,, N, iff (M, N) is contained in some
weak refinement relatiok C ¢ x g, for which the following holds for all € Act, and
forall (M’',N') € R:

1. VM - (M’ =5, M” = IN" . N' =%, N"” A (M",N") € R)

2. YN” . (N' =5, N = 3IM".M' =5, M" A (M",N") € R)

Consider again the MT8 shown in Figure 1. It captures the requirements of models
andB (as claimed in Section 2) because it weakly refines (with @gpriate hiding) these
models.

If actions in setX = {retainCard, recoverCard} are hidden irC, thenC’ = C \ X
weakly refinesd (A =, C’) via the relation

R = {(AO’Cé)’ (Alvcé)v (./41,61), (AQvCA/L)v (AO’CQ)’ (AOvCé)a (AO,CQ)}
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Fig. 2. Weak Refinements between ATM models for alphabet¥ (#p) Z; (c) Y U Z.

The weak refinement relation betwe@h= C \ {balance, withdraw, topup, exit} and
Bis

R = {(80703)’ (Blvcg)v (627Cg)7 (833(/’3)5 (B4vcél)7 (853(/’1/)5 (60704/1/)}

Figure 2 depicts weak refinements that hold between modstusted above. Fig-
ure 2(a) relates models with the alphabet

Y = {login, success, fail, exit,balance, topup, withdraw}.
Figure 2(b) relates models with alphabets restricted to
7Z = {login, success, fail, retainCard, recoverCard},

and Figure 2(c) relates models with the alphabetZ. Nodes with multiple labels indicate
models that are weakly equivalent.

LTSs that refine an MT3/ are complete descriptions of the system behaviour and thus
are calledmplementation®f M. The semantics of an MT3/ can be thought of as a
model that represents the set of LTSs that implement it.

DerINITION 3.15. (Implementation and Implementation RelatiAn)LTSL is anim-
plementatiorof an MTSM if and only if L is a refinement of/ (M < L). We denote the
set of implementations 8ff asZ(M ) and refer to the refinement relation between an MTS
M and an LTSL € Z(M) as animplementation relation

The LTSsE\{balance, withdraw, topup, exit} andF\{balance, withdraw, topup,
exit} are both weak implementations Bf However,55 also admits weak implementa-
tions that model ATMs which retain cards after the first faidédtempt to login.

An implementation isleadlock freef all states have outgoing transitions. We refer to
the set of deadlock-free implementationd\éfasZ., (M ). Deadlock-free implementations
are also parameterized by their refinement type (e.g.,g@od weak).

DerINITION 3.16. (Deadlock-free ImplementatioAh LTSL = (Sr, A, AL, sor) IS
a deadlock-freemplementation of an MT8&/ if and only if M/ < L and for alls € Sg,
there exists, € A ands’ € S, suchthatl, - L.

In the remainder of this paper, we assun@akinterpretations of the notions of (deadlock-
free) implementations and equivalence, unless statedvaite

We say that an MTS ideterministidf it has nor transitions and there is no state that has
two outgoing possible transitions on the same label, arat tefthe set of all deterministic
implementations of an MT$/ asZ?[M].
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balance,withdraw balance,topup,withdraw

recoverCard e retainCard recoverCard e retainCard

balance,topup?,withdraw

recoverCard?

success

retainCard
balance,

topup?,
withdraw

G: Cl|D:
balance,
topup

success?
Fig. 3. Additional MTS and LTS models for an ATM. ModefsandD are shown in Figure 1.

DEFINITION 3.17. (Determinismhet M = (S, A, A", AP, sy) be an MTSM is de-
terministiciff - ¢ A and

Vs,s',s" €8 (s —€>p s'e AP As —€>p "€ AP) = (s =§").

Larsen and Thomsen [Larsen and Thomsen, 1988] define agda@thposition operator
over MTSs, intended to describe how models of two differgatems work together:

DEFINITION 3.18. (Parallel Compositio)et M = (Sar, An, Al AL, soar) and
N = (Sn, An, A%y, AL, son) be MTSsParallel compositiof)|) is a symmetric operator
such thatM||N is the MTS(S]W X Sy, Ay U AN, AT, AP, (80]\4, SON)), whereA” and

AP are the smallest relations that satisfy the rules below,reliec Act.:
M- M

M—5, M M-, M N—5%, N’

7 ¢ aN 7 LT —— ————{ZaN
M||N—,M'||N M|N—p M'||N’ M|N—,M'|N
[ ’ ‘ , ¢ , 0 ,
M—,. M N —,.N M—, M, N —, N
R 7 LF£T PP 7 0
M||N—,.M'||N’ M|N—,M'||N’

When restricted to LTSs, the parallel composition operdgfined above becomes the
standard one (e.g., [Magee and Kramer, 1999]).

In the rules in Definition 3.18, “R” stands for “required”,"Btands for “possible”, and
“D” stands for “don’tcare”. In particular, rule RR captutthe case when there is a required
transition in both models, PR — when there is a possible buteguired transition in one
model and a required transition in the other, and RD — wherettsea required transition
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in one model on a non-shared action (i.e., on an action ther sifstem is not concerned
with).

ModelC||D in Figure 3 depicts the parallel composition of modekof the ATM) and
D (of the user). The resulting MTS has a deadlock since compake user model with an
implementation of that prohibits more than a single failed login, can exhtiéfollowing
scenario: the user, after failing the login, tries to logiyaim (see state 2) and yet the ATM
does not allow it, instead attempting to retain the card e 5). The two systems cannot
synchronize, thus resulting in a deadlock.

We now recall some properties of parallel composition of MINSte that it does not
preserve refinement. For instan€§D is not a refinement af.

PROPERTY 3.1. Parallel composition satisfies the following propertiesiftél and Larsen,
1989]:

1. (Commutativity) M| N = N|M.

2. (Associativity) (M||N)||P = MJ|(N|P).

3. (Strong Monotonicity) M <, N = M| P <s N|P.
4. (Weak Monotonicity) M <, N = M]|P <, N|P.

3.3 3-valued FLTL

In this paper, we describe properties using Fluent Lineampla@al Logic (FLTL) [Gian-
nakopoulou and Magee, 2003]. Linear temporal logics (LTR)yjeli, 1977] are widely
used to describe behaviour requirements [GiannakopouiduMagee, 2003; van Lam-
sweerde and Letier, 2000; Kazhamiakin et al., 2004]. Thevatdn for choosing an LTL
of fluents is that it provides a uniform framework for spewifyand model-checking state-
based temporal properties in event-based models [Giapoakou and Magee, 2003]. An
LTL formula checked against an LTS model requires inteifpggiropositions as the occur-
rence of events in the LTS model. Some properties can berrathgersome to express as
sequences of events, while describing them in terms ofssia@mpler. Fluents provide a
way of defining abstract states that can be checked on an hTislsection, we review the
3-valued Kleene logic [Kleene, 1952], 3-valued variant bfdat Linear Temporal Logic
(FLTL) [Uchitel et al., 2009], and results for the propertgpervation of refinement.

3.3.1 3-Valued Logic.The truth valueg (true), f (falsg, and L (maybe unknown)
form the Kleene logic, which we refer to 8s These truth values can have two orderings,
C (truth), which satisfief C | C t, andCiy (information), which satisfied Cip t
and_L Ciy f (i.e., maybegives the least amount of information). With respect to théht
ordering, the values andf behave classically fox (and),V (or), and— (negation). The
following identities hold for.L:

IAant=1 1IAaf=f Lvt=t Lvf=1 -L=.1.

3.3.2 FluentLTL. FLTL [Giannakopoulou and Magee, 2003] is a linear-time terap
logic for reasoning about fluents. fuent Flis defined by an initial valutnitially g and a
pair of setsl (the set of initiating actions) aritk, (the set of terminating actions).

Fl = (Ir, Tri)nitiany , Wherelr, Te € Actandlp N7 = () andInitially ¢ is true or false

When omitted, the initial value of a fluent is assumed tddige. Every actiona € Act
induces a fluent, namely,means(a, Act\ {a}).
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m = Fl é7r0}:F|

TEop 2t

TEeVY 2 (mEe)V(TEY)

TEeAY 2 (mEQ)A(TEYD)

TEXe 2k

TtEeUY £ Fi>0- 7 =yYAVOLj<i-ml =g
TEeWY 2 7= (pUy)vOp

= Op £ rEtUgp

m = Op éw':ﬁOﬁgp

Fig. 4. Semantics of the satisfaction operator.

Given a set of fluent®, an FLTL formula is defined inductively using the standard
boolean connectives and temporal opera¥i®ext), U (strong until), W (weak until),o
(eventually), andd (always), as follows:

pu=Fl| ooV | oAy | Xe | Uy | oW | O | Op,

whereF| € ®.

Let IT be the set of infinite traces ovAct For a tracer = ag,a1,... € I and: € N,
let 7* denote the part of starting at position. We say thatr’ satisfies a fluerfel, denoted
7' |= Fl, if and only if one of the following conditions holds:

- Initiallyg A (Vj e N-0<j<i=a; ¢ Tn)
-3jeN-(j<iha; €eI)) N(VEeN-j<k<i=a¢Tn)

In other words, a fluent holds at a time instarit and only if it holds initially or some
initiating action has occurred, but no terminating acti@s lyet occurred. The interval
over which a fluent holds islosedon the left andpenon the right, since actions have an
immediate effect on the value of fluents.

Given an infinite tracer, the satisfaction operat¢t is defined as shown in Figure 4.
This definition is standard [Giannakopoulou and Magee, P68 yields a 2-valued op-
erator.

In classical semantics, a formufac FLTL holds in a deadlock-free LT& (denoted
L = o) if it holds on every (infinite) trace produced by, The 3-valued semantics of
FLTL over an MTSM is given by the functiory - || that, for each formula € FLTL,
returns the truth value af in M, i.e.,t, f or L:

DEFINITION 3.19. @-valued Semantics of FLTL (“thorough”Yet ¢ be an FLTL
property andM be an MTS s.tZ..(M) # (. ¢ evaluates tdruein M iff it evaluates
totruein all deadlock-free implementations df. p evaluates tdalsein A iff it evaluates
to falsein all deadlock-free implementations df. ¢ evaluates tanaybein M iff it is true
in some deadlock-free implementations\éfand falsein others. Formally, the function
|- [|M: FLTL — 3 is defined as follows:

oM =t iff VLeZo(M)- L

lol|M =f iff VL € Zoo(M)- L~ ¢

lollM =1 iff 3L, L' € Zoo(M)- L= A L' ¢
Definition 3.19 is similar to the thorough semantics giverjibguns and Godefroid, 2000]
but restricted only to non-deadlocking implementationfieW)M is a deadlock-free LTS,
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the 3-valued semantics in Definition 3.19 reduces to the stanflaralued semantics of
FLTL given in Figure 4.

Refinement preserves &lle andfalseFLTL properties under thorough semantics, e.g.,
the value of FLTL properties in more refined models increaset the information order-
ing (can go fronmaybeto true or falsebut not the other way around).

THEOREM 3.1. (Preservation of FLTLUchitel et al., 2009] LetM and N be MTSs
such thatM <, N. Then¥y € FLTL - ||| M Cins [lol|N.

For instance, consider the propefty= O(LoggedQut = (—bal anceA—wi t hdr aw))
which states that withdrawals and balance requests mustnat when the user is logged
out. This property holds fox and, sinced <, G, for G as well. Furthermorep also
holds for all refinements af, namely, the LTSE and.F.

Given an MTSM with deadlock-free implementations, model-checkigagainst 3-
valued FLTL formulas w.r.t. Definition 3.19 is likely as exysive as the procedure de-
scribed in [Godefroid and Pitterman, 2009] (which is 2EX®E-complete in the size of
the formula and polynomial in the size of the model), usingalar approach.

In practice, thorough semantics is often approximatectogpositionabr inductive[Wei
et al., 2009] one defined as follows:

DEerFINITION 3.20. @-valued Semantics of FLTL (inductivelpet o be an FLTL prop-
erty andM be an MTS. The functigh- || : FLTL — 3 is defined as follows:

ol =t £ Vr e POSTR(M) -7 = ¢

oM =f £ (3r € REQTR(M) - 7 £ ¢) V
(V€ POSTR(M) - B~ ¢)

lell™ =L £ =(lel™ =t) A=(llel™ =)

1>l

A formula ¢ is true in M (denoted|p||™ = t or M |= o), if every infinite trace in
PoSTR(M) satisfiesp. A formulay is falsein M (denoted|¢||™ = f or M [ ¢) if
there is an infinite trace in RQYTR(M) that refutesp or if all infinite traces in BSTR(M)
refutep. Otherwise, a formula evaluates tanaybein M (denoted|p|| = 1).

Inductive semantics of FLTL approximates the thorough aee, if a property igrue
(false) under inductive semantics, it tsue (false) under thorough as well. Moreover,
all true properties under thorough semantics are &ise under inductive [Gurfinkel and
Chechik, 2005]. However, sonmaaybeproperties under inductive semantics are in fact
falseunder thorough:

THEOREM 3.2. Relationship between Inductive and Thorough Sen=ofiELTL Let
M be an MTS ang be an FLTL formula. Then,

IIsOIIJ;j =t & IIsOIIé;j =t
lell™ =f = |lplli =£

Inductive model-checking of an MTE which has deadlock-free implementations against
a 3-valued FLTL formula can be done using another standarcepiure, described, e.g.,
in [Uchitel et al., 2009]. The procedure is based on creatipgymistic and pessimistic
versions ofM, referred to asi/+ and M —, respectively, and checking them using a clas-
sical model-checker, such as LTSA [Magee and Kramer, 198fjitively, M T is an LTS
obtained fromM by converting all maybe transitions to required and thenoéng those
transitions which are not part of some infinite trace and talles that are not reachable
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Leastcommon  Common & Common refinements
refinement  refinements of Mand N
qu and N  of M and N

Minimal
common
refinements
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Fig. 5. Common refinements for consistent modelsand N: (a) M and N have a least common refinement;
(b) M and N have no least common refinement.

from the initial one. This procedure is linear in the sizelaf thodel and linear in the size
of the formula [Bruns and Godefroid, 1999].

The above algorithm allows us to maintain tm@notonicityproperty of the inductive
semantics of FLTL under refinement, i.e., as in Theorem 3.5 more refined model,
values for all properties increase w.r.t. the informatiotiesing when compared to a less
refined one.

THEOREM 3.3. (Monotonicity of Inductive Semantics of FLTIDet M and N be
MTSs such that/ <,, N. Then¥y € FLTL - [|o||™ Cins 1ol

In what follows, when we say “a property holds (fails) in a reidwe mean inductive
semantics of FLTL, unless explicitly mentioned otherwise.

4. MERGE

In this section, we introduce the notion of weak alphabefgimgrof modal transition sys-
tems. Section 4.1 argues for the notion of a common weak bfilafinement as the basis
for merge. In Section 4.2, we define merge of consistent nsaddbe the least common
(weak alphabet) refinement if it exists, and a minimal commefimement, otherwise.
Figure 5 provides an abstract summary of the concepts diedus this section. In this
figure, arrows depict weak alphabet refinements (i.e., ar &dgn P to @) indicates that
P is weak alphabet refined ly). For simplicity, we do not depict refinements that can be
inferred by transitive closure of the ones depicted.

4.1 Common Weak Alphabet Refinement

The intuition we wish to capture by merging is that of augnmenthe knowledge we have
of the behaviour of a system by taking what we know from the pactial descriptions
of the system. Clearly, the notion of refinement underliés itltuition as it captures the
“more defined than” relation between two partial models. ¢¢emerging two models of
the same system is about finding a common refinement for thesels i.e., finding a
model that is more defined than both.

Models to be merged may have different scopes and hencestiffelphabets. Existing
refinement relations for MTSs require models to have the sdptebet and consequently
do not serve our purpose. In this section, we introduce wéatkahet refinement and
discuss merging in this context.

Weak alphabet refinement allows comparing two models in vbite has an alphabet
that is a superset of the other. The refinement aims to cagteiiatuition of having more
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information but only with respect to the common alphabetottsiders all other actions
as out of scope for the comparison. Hence, weak alphabeenmaint amounts to weak
refinement in which actions in the extended alphabet areideresl unobservable.

DEFINITION 4.1. (Weak Alphabet Refinememin MTSN is aweak alphabet refine-
mentof an MTSM, written M <, N, if aM C aN andM <, NQaM.

Note that weak alphabet refinement is a generalization okwed strong refinements.
In other words, given two models with the same alphabet and-transitions, if one is
a strong refinement of the other, then it is also a weak alghafieement of the other.
Similarly, given two models with the same alphabet but wittnansitions, if one is a weak
refinement of the other, then it is also a weak alphabet reéim¢if the other.

Like weak and strong refinement, weak alphabet refinemesepres FLTL. This fol-
lows from Theorem 3.1.

COROLLARY 4.1. (Preservation of FLTL)et M/ and N be MTSs such that/ <, N.
Then ey € FLTL - [[@[|M Cing [|lol| V@M.

The notion of common refinement is effectively parametertznea particular refinement
definition, e.g., strong, weak, and weak alphabet. In aglditive can use strong common
refinement when models have the same vocabulary and do nat-tiaasitions, weak
common refinement when the models have the same vocabuladp luser-transitions,
and weak alphabet common refinement if the alphabets amereliff. However, in this
paper, we assume that common refinement refers to weak a&pbatmmon refinement,
unless otherwise specified.

DEFINITION 4.2. (Common RefinemenBiven a refinement notiors, we say that a
modal transition systen® is acommon refinemen(CR) of modal transition systemid
andN iff M < PandN < P.

We writeCR (M, N) to denote the set of common refinements of madedsid V.

For exampleg is a common refinement of andB. G specifies that the ATM must pro-
vide two opportunities for logging in, that at the secondefdiattempt the card is retained,
and that once the user is logged in, she can execute sevendtions. It leaves open
whether the ATM should provide a top-up featugerefines.A which describes operations
to be provided by the ATM to users and also refifashich sets the maximum number of
failed login attempts to two.

G illustrates how common refinements add required behavidlthough there is a
required transition for withdrawals in modg, this transition is not reachable (through
required transitions) from the initial state and thdsallows implementations in which
withdrawals are not possible. HowevBrguarantees that implementations will allow suc-
cesfull logins. Hence, a common refinementbofnd B, such agj, requires that imple-
mentations allow for withdrawals.

In Figure 6, we depict the alphabet refinement relations ¢kt between the ATM
models discussed previously.

4.2 Merge as a Minimal Common Refinement

Since§ is a common refinement ofl and 55, it preserves the required and prohibited
behaviour of both models. However, a behaviour which is iptesdut not required in
one model may become required or prohibited in the commonemient. For instance,
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Fig. 6. Weak alphabet refinement relation between ATM models

an unbounded number of consecutive failed logins is passibt not required itd but is
disallowed inG (since otherwise it would not be a refinemenibés well).

However,G does introduce constraints on the behaviour of ATMs thahatespecified
in either.A or B, such as requiring an ATM to allow up to two failed logins amshtlowing
it to retain bank cards after the first failed attempt.

Model C is also a common refinement gf and 3, but unlikeg, it does not introduce
additional constraints. Furthermocgis the least refined MTS that is a common refinement
of A andB, andg is a refinement of .

Least common refinements are of interest because they cenpopartial operational
descriptions of the same system without introducing aoliditi constraints on its behaviour.

DEerINITION 4.3. (Least Common Refineme@)jven a refinement notiors, an MTS
P is aleast common refinemefit CR) of modal transition systemld and N if P is a
common refinement dff and N, aP = aM U aN, and for any common refineme@tof
M andN, P < Q.

As before, when referring to the least common refinement, sgerae weak alphabet
refinement, unless stated otherwise.

Assume thatP, and P, are two LCRs ofM and N, by Definition 4.3 it follows that
P, <X P, andP, < P, thereforeP, = P,. This shows that least common refinements
are unigue up to observational equivalence, and hence wetogheleast common refine-
ment, denotedCR s, x for models)M andN.

An LCR of the original systems may not exist for two reasorisstFit is possible that
no common refinement exists. Second, a common refinementxisy®it there may be
no least one. We discuss these possibilities below.

Consider modeH in Figure 3 that specifies an ATM in which, in addition to th@+o
up feature being enabled, a withdrawal automatically ldgs user out (to prevent the
user from forgetting her card). This model is inconsisteitih\the previous ATM models
such asA or G which forbid logging in until an exit action has occurred.iditherefore
impossible to build an ATM that satisfies bathand model.

DEFINITION 4.4. (ConsistencyJwo MTSsM and N are consistentff there exists an
MTS P such thatP is a common refinement 8 and V.

Now refer to the models shown in Figure 7(a). Mod&land 7 do have common
refinements, e.gk’, £ andO, but no LCR. Intuitively, to findCCRz, 7, we must refin&€
into Z’ so that(Z’ \ {a,b}) has a required transition an Hence, we must transform the
possible but not required transition ein Z to a required transition, and also transform one
of the possible but not required transitionszaar b. If we transform all three transitions,
we obtain the modeD. However, if we choose not to transform the transition eithrea
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Fig. 7. (a) Example MTSs. (b) Weak alphabet refinement miatietween models of (a).

or onb, then we obtain the modelks and L, which are both refined by, but not equivalent
to 0. These common refinements are not comparable (neitherimanent of the other)
because of the different choices of which non-shared plesisili not required transition is
made required.

It is not possible to find common refinementsiodnd 7 which are less refined thda
and L. For exampleP is less refined than both but is not a refinementfofHence, we
refer toC and £ as theminimal common refinement$é Z and 7. Note that models\t
and\ are incorrect attempts at building minimal common refinet®iefiZ and.7. These
are not refinements @f because they can both transitofrom the initial state through (a
sequence of) required transitions, whergasnnot do so from its initial state.

DEFINITION 4.5. (Minimal Common Refinemen@iven a refinement notiors, an
MTS P is aminimal common refinemerfMCR) of MTSsM and N if P € CR(M, N),
andforallQ € CR(M,N)if @ =< P,thenP <X Q.

Again, when referring to minimal common refinement, we assuveak alphabet re-
finement, unless stated otherwise.

We write MCR(M, N) to denote the set of MCRs of modelg and N. By Defini-
tion 4.5 and Theorem 3.1, we have the following result.

COROLLARY 4.2. (Merge Preservatioet P = P’@aM with P’ € MCR(M, N),
Q = Q' @aN with Q" € MCR(M,N), sm, sn, sp, sg the initial states of\/, N, P,
and (@, such thatP and@ have deadlock-free implementations. Then:

Vo € FLTL- (sy € [¢]' = sp € [¢]%) A (sar € [6]F = sp € [¢]F) A
(sn € [¢]° = sg € [9]) A (sn € [¢9]F = sq € [4]°).

Thatis, alltrueandfalseFLTL properties ofMf andN are preserved in model 3CR (M, N),
when restricted to the appropriate alphabet, if the mergedeadlock-free implementa-
tions.

In conclusion, what should be the result of merging two cstesit modal transition sys-
tems,M andN? If LCR v exists, then this is the desired result of the merge. However
if M andN are consistent but their LCR does not exist, then the mergeegs should
result in one of the MCRs al/ and N. Model merging should support the modeller in
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Fig. 8. Example MTSs.

choosing the most appropriate MCR. In Section 6.2, we ptesealgorithm that supports
the merging process including the computation of multipl@R4, should they exist.

5. CONSISTENCY

In this section, we define consistency relations and disthessole of the largest such
relation. Consistency relations are used in Section 6 tmeéfio merge algorithms.

In order to merge two consistent models, it is necessarydenstand precisely which of
their behaviours can be integrated. In particular, a stetéeny common refinement of two
models is intuitively a combination of two consistent statene from each of the original
models. INM = (Su, Am, Al AL, som) andN = (Sn, An, A, AR, son), States
s € Sy andt € Sy are consistent if and only if there is a common refinement/of
and N, (recall thatM/, indicates changing the initial state of an MTi& to s). Therefore,
N;@aM should be able to simulate required behavioutAt with possible behaviour,
and vice-versa. Aconsistency relatiofs used to describe pairs of reachable consistent
states.

DerINITION 5.1. (Weak Consistency Relatioh)veak consistency relatida a binary
relation C' C p x p, such that the following conditions hold for &ll/, N) € C, provided
le Act,:

1. VM - (M -5, M’ = 3N’ (N ==, N' A (M',N") € C))
2. YN’ - (N -5, N = aM' - (M ==, M' A (M',N') € C))

The weak consistency relation requires that each modelinariate the required tran-
sitions of the other using possible transitions. That i8/itan go toM/’ on an observable

action? # 7 through a required transitiord( in M"), thenN can go toN’ on a pos-
sible transition {V :é>p N") such thatM’ and N’ are consistent. Howevel can do so

by performing zero or more transitions before and aftér On the other hand, i#/ can
move toM’ on ar transition,N can move taV’ in zero or morer moves.

DEFINITION 5.2. (Weak Alphabet Consistency Relatidmveak alphabet consistency
relationis a binary relationC' C g x g, such that the following conditions hold for all
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(M, N) € C, provided that’ € Act:

1L YM' - (M -5, M' A 0¢gaNU{r})=3N'- (N ==, N' A (M',N") € C)
2. VM- (M -5, M’ A € aNU{r}) =3u1,...,2, € (aN\aM)-

ANy, . Ny, N (N ) Ny - 25 N, =5, N A
Vi-1<i<n=(M,N;)eC) A (M',N")eC
3. Condition 1 defined foV.
4. Condition 2 defined foV.

The weak alphabet consistency relation is similar in spirthe weak consistency ver-
sion (see Definition 5.1): a behaviour required in one modestrbe possible in the other.
However, it has two important differences. First, it allosvee model to simulate a required
¢ action by performing not only’s before?, but also any other non-shared action. That

is, if M can go toM’ through a required transition on a shared aciqd/ in M)
(antecedent of condition 2 in Definition 5.1), thdh@a M can simulate’ using, if nec-
essary, a succession of possible transitions on actionis agt/. Second, it requires that
the states traversed by one model to simulate the otherrpestee consistency relation.

In other words, ifM in M, then all hops=-, starting fromNN' before the transition
on/ (i.e., from N to N,) must be consistent with/. This condition is similar to the one
required for branching semantics for MTSs [Fischbein ¢2&I06].

For example, consider the moddisandB in Figure 8. These models are related by
weak alphabet consistency:

Ca = {(Ao, Bo), (Ao, B1), (A1, B2), (A2, B3)}

The transitionAg —>, Ag is simulated byB with By ==, B,. That is,B first performs
an action that is not observable far and then simulates theaction. As we show below
(Theorem 5.1), existence of a consistency relation guaeantonsistency. Thus, since
modelB is a common weak alphabet refinement of itself and madehese models are
consistent.

Consider model® andR in Figure 8, wherexR = {a,c}. There is no weak alpha-
bet consistency relation between them: If there were ¢@g, R,) should be in it. As

Ro —, R1, © must match this behaviour wit@, :b>p 0, :b>p Qy ==, Q. The
definition of weak alphabet consistency requires interateditate); be related to state
Ro. ButQ; ==, Q; andR; prohibitsc. Hence, assuming a weak alphabet consistency
with (Qop, Ro) leads to a contradiction.

The above example illustrates the importance of requitiajintermediate states in the
simulation ofa by Qg be in the consistency relation. If this additional consiraiere not
included, it would be possible to mat@y, —=, R, with Q :“>p Q,, constructing the
consistency relation betwe& andQ. Yet, these models are inconsistent!

The following theorems show the relation between weak arakwéphabet consistency
relations and the notion of consistency.

THEOREM 5.1. (Weak Consistency Relation Characterizes Weak Censig) Two
MTSs areveakly consisteniff there is a weak consistency relation between them.

THEOREM 5.2. (Weak Alphabet Consistency Relation Entails Weak Algt Consis-
tency) Two MTSs araveakly alphabet consisteiftthere is a weak alphabet consistency
relation between them.

For resubmission to ACM Transactions on Software Engingeaind Methodology, 2010.



Weak Alphabet Merging of Partial Behaviour Models : 21
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Fig. 9. MTSs for showing that weak alphabet consistency doesnply existence of a weak alphabet consistency
relation between the models.

Note that the relationship in Theorem 5.2 (entailment) isikes than the one in The-
orem 5.1 (characterization). The converse of Theorem 5e3 dot hold. For example,
consider model€” andD in Figure 9. ModelE is their common weak alphabet refine-
ment, soC andD are weak alphabet consistent. However, there does notaxistak
alphabet consistency relation between these mod€lsD,) must be in the relation and,

asCy —l>r C4, so must(Cy, D) and intermediate staf&€, D;). However, the latter is
clearly inconsistent a8, —, but this is not the case fdb; .

A consistency relation between two models describes demsibehaviours: anything
one model does can be simulated by the other. Thus, an ititey@sd useful consistency
relation is the one that captures as much of the consistéai/imur between the models as
possible. To describall reachable consistent behaviours between two consistei¢lso
we give the notion of théargest (strong) consistency relatiorlt is straightforward to
show from Definition 5.2 that the union of two consistencytielns is also a consistency
relation.

DerINITION 5.3. (Largest Consistency Relatiofihelargest consistency relatidre-
tween consistent MTSd and N is

U{CM,N - C, N s a consistency relation betwedii and N'}.

For example, consider mode®s andi/ in Figure 8 defined over the vocabulajy, c}.
While Cry = {(Ro,Uo), (R1,U1), (R1,Uz2))} is the largest consistency relation between
them,C%,, = Cru \ {(R1,U2)} is a consistency relation as well. In particular, these
two relations correspond to different common refinement® aindi/, namely,) and)’.
Unlike V', modelV does not rule out the possibility of an actieccurring after an action
a becaus&’'ry, does not exclude the consistent behaviou®aandif;.

Computing the largest consistency relation betw&erand N can be done using a fix-
point algorithm, similar to those used for computing bisiations [Fischbein et al., 2006].
Such an algorithm (see Algorithm 5.1 below) starts with tlaet€sian product of states of
MTSs M and N, and then iteratively removes pairs that are fastep consistent, wheie
is the number of iterations performed so far.

ALGORITHM 5.1. WEAKALPHABETCONSISTENCYRELATION(M, N)

Input: MTSsM = (S]u, Ay, Aﬁ[, A?M’ 80]\4) andN = (SN, Apn, A?V' A;?V’ SON)
Co ={(Ms,N) - s € Spy andt € Sy}
Repeat
Cit1 < {(P,Q) € C; | (P,Q) satisfies conditions 1-4 of Definition §.2
Until Ci+1 =C;
Return C;
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Itis easy to show that the algorithm terminates as it stasts fa finite setCy, andC;,1 C

Ci; hence, a fixpoint is reached in at mdslo|| steps. Therefore, the time and the space
complexity of this algorithm isO(m x n* x log(n)) and O(n?), respectively. n and

m are the maximum number of states and transitions of the inmdels, respectively.
Furthermore, if there exists a consistency relation betwdeand NV then the algorithm
returns the largest consistency relation between them.

THEOREM 5.3. (Soundness of Algorithm 5.1t M = (Sas, An, Al AR sonr)
andN = (Sy, An, Aly, AR, son) be MTSs and’ be the relation returned by
CONSISTENCY(M, N). If (M, N) € C thenC is a weak alphabet consistency relation
betweenV/ and N.

The coNsisTENCYalgorithm can be used to check whether two models with idehti
alphabets are consistent (Theorem 5.1). However, sinceotineerse of Theorem 5.2 does
not hold, we cannot rely on this algorithm when it returnsdah the case of models with
different alphabets. The following result, however, i resolves this issue by con-
verting the consistency problem between models with difiealphabets to a consistency
problem between models with identical alphabets.

THEOREM 5.4. (Consistency Implies Consistency over Common Alptydbé/ and
N are consistent, the”d @(aM N aN) and N@(aM N aN) are consistent as well.

Hence, if two models are inconsistent w.r.t. their commarhabet, as computed by
CONSISTENCY, they are not consistent. Thus, we can determine consistémeodels)M
and N with different alphabets via the following process:

ALGORITHM 5.2. WEAKALPHABETCONSISTENT(M, N)

Input: MTSsM = (SM, AI\,{, Aﬁ/[, A?M' SOM) and N = (SN, AN, A?V’ A?V' SON)
If (M, N) € WEAKALPHABETCONSISTENCYRELATION (M, N)
Return True
M’ + M@(aM NaN)
N’ + NQ(aM NnaN)
If (M',N'") ¢ WEAKALPHABETCONSISTENCYRELATION (M’, N')
Return False
Return Unknown

In summary, in this section, we have characterized weak-aipimabet) consistency by
means of the existence of a weak consistency relation. Iitiaddwe have shown that
the existence of a weak alphabet consistency relationlgnktes existence of a common
weak alphabet refinement. To mitigate the fact that the nastence of a weak alphabet
consistency relation does not entail inconsistency, we Ipagved a theorem allowing us
to relate consistency of models with different alphabetthad of consistency over their
shared alphabet.

6. COMPUTING MERGE

In this section, we describe the algorithm for constructimngrge under weak alphabet
refinement. We first define the.,- operator and show that if there is a consistency relation
betweenM andN, thenM +.,. N is acommon refinement éff andN (Section 6.1). The
result of+.. may not be an MCR in general. Hence, we present an algoritheRd#,
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Fig. 10. Example MTSs for illustrating merge.

that iteratively abstractd8/ +.. N while guaranteeing that the result is still a common
refinement ofA/ and N. This algorithm copes with the case in which two models have
more than one MCR.

6.1 Building a Common Refinement

In this subsection, we introduce the.,. operator and show that if there is a consistency
relation between/ and N, thenM +.,. N is an element o€ R(M, N), which preserves
the properties of the original systems.

DEFINITION 6.1. (The+., operator)Let M = (Sa, Am, Aly, AL, som) and
N = (Sn, An, Ay, AL, son) be MTSs and le€, v be the largest consistency re-
lation between themV/ +.,. N is the MTSCyn, Ap UAN, A”, AP (sonr, Son ), Where
A" and AP are the smallest relations that satisfy the rules below/far Act, :

M=%, M' N=%,N’ bR M=%, M N=%,N’
(M,N)—5.,.(M',N") (M,N)~5,.(M,N")

M=% ,M' N, N’ / NU M=, M', N=>,N’ / MU
P AN () FlaNuir}) o (M,N)—5,.(M',N") #laMUiT})

Mép]\ff/, N%ﬁpN'

(M,N)-5, (M’ ,N")
Intuitively, the areas of agreement (described by the sterscy relation) of the models
being merged are traversed simultaneously, synchronizirgipared actions and producing
transitions in the merged model that amount to merging kadgé from both models.
Thus, transitions which are possible but not required in ioelel can be overridden by
transitions that are required or prohibited in the other. é&@mple, ifM can transit o
through a required transition ard can do so via a possible but not necessarily required
transition, thenV/ +.,. N can transit orf through a required transition, captured by rules
RP and PR in Definition 6.1.

The cases in which the models agree on possible transitemhardled by rule PP in
Definition 6.1. If bothA andN can transit orf through possible transitions, théfi+ ... N
can transit orf through a possible transition.

The rules mentioned so far do not apply to non-shared actitié # 7 is not in a
model’'s alphabet, then that model is not concerned Witfiherefore, if the other model
can transit on the non-shared actibthrough a required transition, the merge can do so
as well. Our rules (PD and DP) allow the model which does ngtlfan its alphabet
to stay in the same state or to move througtnansitions to another state. The following
example motivates this. Consider mode#dJ in Figure 10 and assume that = {a, b}
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andaJ = {a}. The largest consistency relation foandJ is Cry = {(Io,Jo), (I1,J1)}.
T %, 1,, but (I1,Jo) ¢ Ciy (the above definition requires the resulting moblel.,. J to

b
stay within consistent states), and therefdiger., Jo #— I +.- Jo. However,Jo —,
J1, and(ly,J:1) € Cyy. Rule PD allowdl +., J to have a required transition an i.e.,

To +er Jo —20 I 4o, J1. Infact,I +., J is preciselyl, which is inCR(LJ).

Note that rules PD and DP are conservative, i.e., they ingedequired transitions
rather than possible transitiodseven when neither of the models being composed has
a required transition od. In these rules, ift-., were constructed with possible but not
required transitions, then the resulting MTS would not beommon refinement of the
models being composed. For instance, considering the madé&ligure 7(a)Z +.- J
would yieldZ (which is not a refinement qf') rather tharO©.

Special care must be taken in order to combine only consisedaviours of the two sys-
tems (i.e., elements in the consistency relation). For @t@nsuppose that modgl+.,. F
(see Figure 10) were built without this restriction. There awo transitions ora from
the initial state off, and, therefore, four ways of combining them via the ruleBdfini-
tion 6.1. This composition results in modé] which isnota refinement of’. On the other
hand, since the pair&,,F;) and(F2,F;) are not in any consistency relation betwéén
and itself, constructingf’ 4., IF using this restriction yieldB, as desired.

When a consistency relation exists, thg. operator as defined above yields a common
refinement of its operands:

THEOREM 6.1. (+., builds CRs)if there is a consistency relation betwekhand V,
thenM +.. NisinCR(M, N).

For example, suppose we are interested in computing theenadrgnodelsF and G
shown in Figure 10, whereF = oG = {a,b,c}. The largest consistency relation is
C]FG = {(Fo,Go), (]FQ,Gl), (Fg,Gg)}. SinceIFO :a>p Fs, GO :a>r G, and(FQ,Gl) S
Crg, it follows that(Fy, Go) —%, (F2, G,) is a transition off +.,.G by the PR rule. Since
Fy :C>T Fs3, Gy :C>T Go, and(IE‘g, Gg) € Crg, it follows that(Fg, Gl) —C>T (Fg, Gg) is
a transition inf +.,. G. HenceF +., G = G, as desired.

6.2 The MERGEAlgorithm

While the +.,. operator can sometimes produce the LCR, as in the above éxainis
generally imprecise. For example, for mod&lsaind 7 in Figure 7,7 4., J = O, but
MCRs ofZ and.7 areC and L (see the discussion in Section 4). Since rules DP and PD
convert all possible but not required transitions on noarst actions to required in the
composition, thus making the conservative choicetheoperator computes a CR that is
not necessarily minimal.

Below, we present an algorithm aimed to detect the requiatsitions resulting from
the conservative rules that define thg. operator and converting them into possible but
not required transitions. It does so while guaranteeintgtfier each iteration, the resulting
MTS continues to be a refinementf and V.

We begin by defining an abstraction operation which, giveiMars and a subset of
its required transitions, returns an MTS in which theseditions are possible but not
required:
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Fig. 11. Example MTSs for illustrating cover sets.

DEFINITION 6.2. (Abstraction OperatioetM = (S, A, A", AP, sy) bean MTS and
let A C A" be a subset of required transitions. Then Himstraction operatiois defined
as follows:

Abs(M,A) 2 (S, A, A"\ A, AP, 50)

We now use the abstraction operation to define a notionGd\aer Set- a set of outgoing
required transitions from a given state on a given set olsaech that if these are the only
transitions kept as required, the resulting model consrtaebe a common refinement of
M andN.

DEFINITION 6.3. (Cover SethetM = (Sar, An, AYyy, AL, som), N = (Sn, Aw,
A?V' AZ])V, SON) andP = (SP, Ap, A?g, AZI)_—,, Sop) be MTSs, withP € CR(M, N) For
s € SpandA C Ap, aset(;, 4 C Al is acover setf the states on labelsA iff the
following conditions hold:

(1) Con C AT(s, A), whereAT, (s, A) = {s — s’ € AL, | L € A)}
(2 M =, AbS(Pa A?D(Sv A) \CS,A)
(3) N <, Abs(P,A%L(s, A)\ (s,4)

The first rule of Cover Set states that a cover¢set of P with respect tal/ and N is
a set of required transitions @t originating from states. The second (third) rule states
that if all the required transitions fromon a label inA that do not belong tq@, 4 are
removed (leaving their behaviour as possible but not regl)ithen the resulting MTS is a
refinement of\/ (respectivelyV).

For example, consider mod®l which is a common refinement of modésand L
(see Figure 11).(p., = {0 - 3} is the only non-trivial cover set favl. The result
of executingAbs(M, Af;(0,a) \ o,.) is modelN, which is an abstraction d¥l while
remaining to be a refinement Bf andL.

Thus, to compute a merge of modélg and NV, the algorithm should continuously
abstractM +.,. N while ensuring that the result remains a refinementbfind N, and
it seems that the approach to do this is to apply the abstraciperation on cover sets
of the common refinement af/ and N. However, more than one cover set can exist in
this case. For example, consider models in Figure 11. MbHe a common refinement
of modelsQ andL and has exactly two non-empty cover sesy, = {0 — 1} and
¢ . = {0 -2 3}. The result ofAbs(M, A7, (0,a) \ (o.) is @ modelN, and the result of
Abs(M, Ar(0,a) \ (0.o) is amodelP. While P is a refinement oN, N is nota refinement
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Fig. 12. Example MTSs for illustrating the need for clonitgtes.

of P. Hence, out of the two choices of the cover set, the bettersafag, since it yields the
less refined model. We say that the coverdgetrefines(y , (and thus(y , is theminimal
cover set). We formalize this intuition below:

DEFINITION 6.4. (Cover Set Refinemeritet an MTSP = (Sp, Ap, A, AL, sop)
be given and led C Ap. For a pair of cover sets over a stateon A, ¢; 4 and C;A,
we say that/, 4 is refined byC;A, written (5 4 =< (;,A, iff Abs(P, A% (s, A)\ (5,4) =
Abs(P, A (s, A) \ G 4)-

As expected, refinement of cover sets defines a partial drdera common refinement
may have two cover sets where neither refines the other. @emgie models in Fig-
ure 12. ModeB, a common refinement @ andR, has exactly two non-empty cover sets:
Gy={1-52) and¢; , = {1 2 4}. Neither of these cover sets refine each other as
Abs(S, Ag(1,y) \ ¢1,4) (ModelU) is not a refinement ofibs(S, Ag(1,y) \ ¢7,) (model
T), nor is the latter a refinement of the former. An algorithmttpicks only one of these
cover sets to abstrastis not able to compute the LCR @f andR: modelV. To compute
V fromS, we need to replicate, or clone, statm modelS, obtaining an equivalent model,
modelW, which allows an application of a different cover set forteaopy of1 in order
to abstract the model.

We formally define the clone operation below.

DEFINITION 6.5. (Clone Operation)et M = (S, A, A", AP, sy) be an MTS. For a
states € S, let theclone operatiobe defined a€lone(M, s) = (S’, A, A" | AP sg),
whereds’ ¢ S, s.t. fort € A,

(1) $'=5u{s}
(2) AP = AP U{(s',£,1)|(s,0,t) € AP}y U{(t, £, 5)|(t, ¢, s) € AP}
(3) A” = AT U{(5,6,1)|(s, £,t) € ATYU{(t,¢,8)|(t, L, s) € AT}

PROPERTY 6.1. The clone operation preserves implementations. In othedsyo
Z[Clone(M, s)] = Z[M].
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ALGORITHM 6.1. MERGHM, N)

Input: consistent MTS81 = (Sar, Aar, Al AL soar) and N = (S, An, ARy, AR son)
P+ M +er N
A—{{e} | Le(aMnaN)}U{(aM\ aN)U (aN\ aM)U{r}}
repeat
Q + emptyQueue
enqueue(Q(sonr, son))
V <« 0 //Visited and not Abstracted
W < ( //Visited and Abstracted
while|Q| > 0
s + dequeue(Q)
For each A € A do
LetS be the set of all minimal non-trivial cover setsobn A
if|S| =0
if (s,A) eV
continue
V< VU{(s,A)}
ese
if (s,A) e W
abort
Clone states in P |S| — 1 times
For each 7 do
takes; in Sp and(s;, 4 €S
P+ Abs(P, AL(s:,A)\ (s;,4)
W~ WU {(s;, A)}
For each s’ such that exist§ € A - (s,¢,s") € AK do
enqueue(Q, s')
until no change inP

return P : .
Fig. 13. The MerGEalgorithm.

We are now ready to present the algorithre RGE (see Algorithm 6.1 in Figure 13). As
illustrated earlier in this section, the®GEalgorithm computes a common refinement of
two consistent models and then iteratively abstracts itligtracting required transitions
based on least refined cover sets of the common refinementidStnere be more than
one, the algorithm clones the appropriate states and apafistraction with respect to
each cover set to each clone.

When applied to model® andR in Figure 12, this algorithm yields mod#| as desired.
The algorithm includes one small optimization: rather tlwaoking for cover sets for all
possible subsets @f M U aN, it tries to only build cover sets for singleton sets over the
common alphabet aff andN (i.e.,{¢} | ¢ € (M N «N)) and the set of actions that are

not observable to eithe¥ or N (i.e.,(aM \ aN)U (aN \ aM) U {7}). This is because
any other subset af M U aN will, by definition of cover set and refinement, never yield
a cover set.

Termination of the algorithm is guaranteed as each itanatimsiders a fewer number of
cover sets for the current state and its clones. Otherwisghart statement is invoked. The
compleity of the algorithm is discussed in Section 6.3. Toeartness of this algorithm
is straightforward to prove using properties of cloning aoger sets. The latter are by
definition guaranteed to result in a common refinement whewl urs the context of an
abstraction operation.
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Fig. 14. Example of a merge where the LCR does not exist.

PROPERTY 6.2. If there is a consistency relation betwekhand N, then theMERGE
algorithm produces a common refinemenfiéfand N but not necessarily a minimal one.

As we discussed in Section 4, two consistent models do n@yshlvave a unique least
common refinement — they may have non-equivalent minimahesonrefinements instead.
In the remainder of this section, we show that theRgEealgorithm deals with these cases
correctly and effectively when it clones states.

Consider the models in Figure 14 (modglof Figure 11 is repeated here for conve-
nience). ModelC is a common refinement &f andY and has two incomparable cover
sets: (o, = {0 % 1} and(),, = {0 - 3}. Interestingly, applying the abstraction
operation of these incomparable cover set€ajields two minimal common refinements
of X andY: modelsZ andA. The result of the MRGEalgorithm is modeB (by cloning
state0 of C and applying a different cover set to each clone). WABiles equivalent to
Z because stat® is unreachable, changing the initial state frorto 0’ yields a model
equivalent to the other MCR &f andY, namelyA.

Hence, the MRGEalgorithm is able to encode the various ways in which the twdetfs
can be merged by computing an MTS wihsetof potential initial states. Each one of
these states defines an MTS which is an MCR of the models bedngead (as in the above
example) or which refines it. We formalize this correctnespprty below.

PROPERTY 6.3. Let M and N be MTSs with a consistency relation between them. Let
P = (Sp,Ap, A%, AL, (mg,n0)°) be the result of applying th®ERGE algorithm to
M and N, and let(mg,no)? be the clones of the initial state éf. Then, for anyP; =
(Sp, Ap, A%, AL, (mg,ng)?) where (mg,ng)? € Sp, there exists) € MCR(M,N)
such thatl) < P;.

6.3 Limitations and Discussion

Unlike merge under strong semantics, described in [Fisohled Uchitel, 2008], the
MERGEalgorithmin Section 6.2 is not complete: given two consiskTSs with a unique
LCR, it does not necessarily construct this LCR; furthergegitwo consistent MTSs with
multiple MCRs, it does not necessarily encadleof these in its resulting MTS. There are
two reasons for this incompleteness: (1) reliance on th&t@xte of a consistency relation
which is not complete with respect to weak alphabet refingfldreorem 5.2) and (2) the
use of the insufficiently strong abstraction strategy basedoning and cover sets.

In other words, the first reason for incompleteness is thahéncase of weak alpha-
bet refinement, the non-existence of a consistency reldi@s not imply inconsistency.
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Fig. 15. An example showing that merge is incomplete. b?

Hence, given two consistent models, th&REGE algorithm may not execute because a
consistency relation does not exist. This is not a limitatfdhe two models being merged
have the same alphabet, possibly wittransitions, as the notion of consistency relation
is complete with respect to weak refinement. The originalgaeperation for strong re-
finement, from [Larsen et al., 1996], was also incomplete éinglar way, requiring the
existence of an independence relation. In addition, therdhgn presented in this section
is an extension to that of [Fischbein and Uchitel, 2008] aglde is complete with respect
to strong refinement.

The second cause for incompleteness is that the abstrattategy based on cloning
and cover sets is not sufficiently strong to guarantee tlest @R or MCRs will be reached
through successive abstractions. For example, considgelisio andE in Figure 15. Their
common refinemenDE, is strictly more refined than ERGHD, E).

In general, a complete merge algorithm is not possible. ‘€asan for this is that two
MTSs may have an infinite number of MCRs. Encoding such casasingle MTS would
result in a model with an infinite number of states.

While incomplete, the MRGE algorithm is better than the one presented in [Uchitel
and Chechik, 2004]. For the cases handled by the algorithfdghitel and Chechik,
2004], MErRGE can compute more abstract common refinements. In additi@rd# can
compute common refinements (and possibly minimal commoneaefents) for a broader
range of consistent MTSs.

Some sufficient rules for guaranteeing completeness hage &eplored in [Brunet,
2006]. However, they are either not intuitive enough to ba&cpcal to an engineer, or
overly restrictive.

The time complexity of the merge algorithm strongly depeodghe amount of non-
determinism of the model produced by the application ofthg operation. If this initial
approximation of the merge is deterministic the time comipyés polynomial. However, it
grows exponentially with the degree of non-determinisnhefrhodel. The degree of non-
determinism is defined as follows: The degree of non-detdami of a model on a given
state and label is equal to the number of outgoing transtieith that label minus one.
The degree of non-determinism of an MTS is the sum of the @egf@on-determinism
for every state and label. Thus, ourB®GE algorithm has the same complexity as the
merge algorithm for strong refinement [Fischbein and U¢H#@08]. However, while both
algorithms are exponential in time and polynomial in spHoedegree of non-determinacy
is higher for the cases of weak alphabet refinement, rerglfrencorresponding algorithm
more expensive in practice.

From a practical perspective, time complexity oERIGEmay not be problematic since
the algorithm approximates the final result by iterativeti@tsion operations, and thus the
user may decide to cut the process short and obtain a modéd theommon refinement of
the original ones. As this approximation characterizedeémgntations that satisfy require-
ments captured in the original models, it can still be uskfulalidation and verification
of the system behaviour. The only potential issue with ngtthe merge of MTS4a/ and
N short is that if the resulting model is then merged with adhmodel, P, a spurious
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inconsistency may be obtained: The resulting common refem¢mf A/ and N may not
be abstract enough to include a valid implementation thalsis an implementation a?.
This problem can be resolved by computingraary rather than pairwise merge, which
we discuss in Section 10.3.

7. ALGEBRAIC PROPERTIES OF MERGE

In practice, partial behaviour model construction, refieatrand merging are likely to be
combined in many different ways, possibly in conjunctiothaather operators on partial
models, such as parallel composition. Therefore, it isrd&@deto study their algebraic
properties, to guarantee that the overall process yielusitde results. For example, does
the order in which various partial models are merged mattisrt the same to merge
two models and elaborate the result through refinement astit elaborate the models
independently and then merge them? In this section, we aiamsaver such questions.
Specifically, we show that while the existence of multiple+emuivalent MCRs does not
guarantee many of the properties that hold when LCRs ekstigjht choice of an MCR
among the possible merges can be made in order to guaramtieglpa algebraic proper-
ties. In Section 9, we apply these results to a case study.

7.1 Properties of Parallel Composition

We first study properties of the parallel composition opmrptoposed by Larsen in [Hiittel
and Larsen, 1989]. We study the relation between the impitatiens of two MTSs to be
composed in parallel with the implementations of the modsliting from the application
of the parallel composition operator. The results provimie,one hand, an insight into
the semantics of the parallel composition operator, andhemther, property preservation
results that are important to understand how merge andlglatamposition can be used
together.

Composing two MTSs in parallel should resultin a model tiwairacterizes all pairwise
parallel compositions of implementations of each of the ET3n other words, given
MTSs M andN, it is expected that

I[M||N] = {Inm|/In | Inr € ZIM] N In € Z[N]}) (1)

independently of the choice of refinement (strong, weak kvedighabet).

However, this is not the case even under strong refinemenhsi@er the models in
Figure 16. Modellr| ¢ is a strong refinement d||G. Yet it is easy to see that there are
no implementationdgr and /g of F andG, respectively, such thayc = Ir||/g: In all
implementations oF, if £ occursp is then enabled. In implementations®fthe trace, b
must be possible. So the parallel composition of an impldatim of F andG must either
not havel transitions, or it must allow the behavioib.

Although it is tempting to think that the problem is the nogteministic choice inv,
this is not the case. Consider models in Figure 17. Bbémdl are deterministic, and},
is a strong refinement &f||I. Yet there are nd, and]; such that their parallel composition
is equivalent tdlyy ;. Intuitively, the problem is that if we pick implementat®ofH and|
which admitb anda respectively, their parallel composition should admit arigrleaving
of these two actions. Yet if;, only one interleaving is allowed.

Summarizing, the MTS parallel composition operator infidiland Larsen, 1989] pro-
duces a superset of the expected implementations (seeid&t(Btabove) independently
of the choice of refinement (strong, weak, weak alphabet):

For resubmission to ACM Transactions on Software Engingeaind Methodology, 2010.



Weak Alphabet Merging of Partial Behaviour Models : 31

O, O=0D.,  O~0D.. O-~0D.
FHG 0 F: G: ¢ IFHG:

@i)b @iDb
Fig. 16. Examples for Parallel Composition: Non-Deterstiai Models.
a? @ b? @ @ a? @
H||| b? CE? H: I: IHHI:
@ a? @

Fig. 17. Example for Parallel Composition: Deterministiodiéls with Different Alphabets.

THEOREM 7.1. (Implementations of the MTS Parallel Composition @panFor MTSs
M andN,

TIM|IN] 2 {In|lIn | Ins € Z[M] A Iy € Z[N]}).

Itis possible to enunciate restrictions that make the @ mposition operator correct
and complete with respect to a semantic definition alongittes lof the one proposed in
Equation (1). The restrictions are that the two MTSs to be mmsad in parallel have
the same alphabet and that the operator yields a deterimiMi$tS. In addition, we must
restrict the result to the universe of deterministic impbertations:

THEOREM 7.2. (Parallel Composition Preserves Deterministic Imyaatations)-or
MTSsM and N, if aM = aN and M||N is deterministic, then

% M||N) = {Im||In | Ine € T* M)A In € T [N]})
under strong, weak and weak alphabet refinement.

Even though the parallel composition operator admits momglémentations than it
should (Theorem 7.1), the following results provide guszas of property preservation
and give methodological guidelines as to how to use paredieiposition in partial be-
haviour model elaboration.

The implementations characterized b#{| N can be simulated by the parallel composi-
tion of some choicef implementations o/ andN.

The notion of simulation between transition systems wagimally introduced in [Mil-
ner, 1989]. A formal definition is presented below.

DEFINITION 7.1. (Simulation]Milner, 1989] Let LTSSP and@ such thainP = aQ.
@ simulatesM, written P Cg @, iff (P, @) is contained in somsimulation relation? C
p % g, for which the following holds for all € Act and for all (P", Q') € R:

VP”-(PI i> P’ =3Q" Q' i> Q" A (PH,QH) €R)
THEOREM 7.3. (Parallel Composition Preserves Simulatiba) M/ and N be MTSs
andlyy be anLTS. Il x € Ta[M||N], then
=18Y; EIA[]\/[],IN S IA[N] . (aIM Naly = Oé]\/fﬁOéN) A (I]\,{HN Ce IM”IN)

Given that simulation relations preserve safety prope(tjfdbadi and Lamport, 1991]),
a corollary of the above theorem is that true safety properire preserved by parallel
composition. That is, if a safety property holds in an MTSal&o holds in its parallel
composition with every other MTS.
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J:M K:@i,@ L:@ M:C)c7,c> 0) N:@L,@ P: @;,@_b,@)

Fig. 18. Example MTSs for algebraic properties.

COROLLARY 7.1. (Parallel Composition Preserves True Safety Praggftichitel
et al.,, 2009] LetM and N be MTSs andp € FLTL. If ¢ is a safety property and
o™ = t, thenllp| MY = t.

The implications of the results discussed so far are thatlien elaborating the be-
haviour of the system-to-be, we have a partial descriptfdh® system and a partial be-
haviour of the environment, it is possible to reason contjorslly about the safety prop-
erties of the composite system-environment. However, iihéerrect to compose these
models in parallel and continue the elaboration processcaa the composite model;
elaboration must proceed in a component-wise fashion,imgfithe model of the system
and of the environment separately. In fact, component-wigboration is standard for
traditional approaches to behaviour modelling and anslysi

In Section 7.2, we show that the result on property presenvaliscussed above also
plays a role in behaviour elaboration when using merge, speeifically, in the distribu-
tivity of merge over parallel composition.

7.2 Properties of LCRs

In this subsection, we discuss properties related to mddelhich the existence of a
unigue minimal common refinement can be guaranteed. In tktesubsection, the unique-
ness requirement is relaxed.

PROPERTY 7.1. For MTSsM, N, and P, the following properties hold:

1. (Idempotence) LCRym =M.

2. (Commutativity) |E£C'R,]\4,N, thenECRM,N = ﬁCRN,]u.

3. (Associativity) I8BLCR M N, 3LCR P LCR s n» ANDILCR N, p, then
EECRM.,LCRNYP andﬁCRp_,LcRM,N = ECRM.,LCRN,p-

A useful property of LCR is monotonicity with respect to refinent as it allows elabo-
rating different viewpoints independently while ensurihgt the properties of the original
viewpoints put together still hold.

PROPERTY 7.2. (Monotonicity 1) et MTSsM, N and P be given. HLCR ys, v €Xists,
M < PandN < @, thenfCRy,n < Cforal C € MCR(P,Q).

We now look at distributing merge over parallel compositi&issume that two stake-
holders have developed partial modélsand N of the intended behaviour of the same
component. Each stakeholder will have verified that somaired properties hold in a
given context (other components and assumptions on theoamentpP, ..., P,). It
would be desirable if merging viewpointg and N preserved the properties of both stake-
holders under the same assumptions on the environmenfor&CRy N || P || -+ |
p,.
The following property supports the above reasoning anidva from Corollary 7.1
and the fact that parallel composition is monotonic undeaknaphabet refinement.

PROPERTY 7.3. (Monotonicity 2)f M <, N andaP C aM, thenM||P <, N||P.
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PROPERTY 7.4. Let M, N, and P be MTSs such thatP C aM NaN andy is a
safety FLTL property. Ifip|| M7 = t or ||| VI¥ = t, then||p|| ~CRm~IP = ¢,

7.3 Properties of MCRs

In this subsection, we present algebraic properties of mgngithout assuming the ex-
istence of the LCR. The algebraic properties are therefiated in terms of sets and the
different choices that can be made when picking an MCR. Ideenze is the only prop-
erty of Section 7.2 that still holds as is, since an LCR alwenists between a system and
itself. The rest of the properties discussed in Section@qgire some form of weakening.
Commutativity of merge holds independently of the exiséesican LCR. The following

property states that the set of MCRs obtained flahand V is the same as those obtained
from N and M.

PROPERTY 7.5. (CommutativityMCR(M, N) = MCR(N, M).

On the other hand, associativity cannot be guaranteed the say as commutativity.
That is, it cannot be guaranteed that the same MCRs are achiegardless of the order
in which the three MTSs are merged. Howewbg set of implementatior{see Defini-
tion 3.15) reachable through refinement is not affected bynkrge order.

PROPERTY 7.6. (Associativityl etZ(X) = U Z(x) andletM, N, and P be MTSs.

zeX
Then,

I( | MCR(M,A)=1T( | ] MCR(A,P)).

AEMCR(N,P) AEMCR(M,N)

From a practical perspective, the above property says thettgineer with a specific im-
plementation in mind is able to reach it through successfiaements, regardless of the
merge order of the three models. However, if the goal is natctdeve a specific imple-
mentation but rather obtain a particular partial model abtarizing the implementations
that conform to the three MTSs, then the merge order becomgsrtant. This problem
can be solved by defining arrary merge, as discussed in Section 10.3.

Monotonicity is also disrupted by multiple MCRs. It is notp@cted that any choice
from MCR(M, N) is refined by any choice froctMCR (P, N) when)M is refined byP,
because incompatible decisions may be made in the two meRgther, there are two
desirable forms of monotonicity:1Y whenever a choice frooMCR(M, N) is made, a
choice fromMCR(P, N) can be made such a refinement holds; &) avhenever a choice
from MCR(P, N) is made, some model MCR(M, N) can be chosen for a refinement
to exist.

Form (1) does not hold, as the following example shows. ConsideraisétdandN in
Figure 18 withaK = {c} andaN = {b}. These models are consistent, and their merge
may resultin moddP € MCR(K,N). Also,K =< L (assuming thatL = {c}) and models
L andN are consistent. HowevefCR, y is equivalent tdN over{b, c}, and sincé\ £ P,
no MCR ofL andN that refined® can be chosen.

Form (1) fails because there are two choices of refinement being n@wi¢he one hand,
by picking one minimal common refinement faf and N over others, we are choosing
one of several incompatible refinements. On the other hardare also choosing how
to refine M into P. These two choices might be inconsistent, leading to tHar&aiof
monotonicity. This tells us that choosing an MCR adds infation to the merged model,
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which may be inconsistent with evolutions of the differei@wpoints that are represented
by the models being merged. Forg) @lways holds, as stated below.

PROPERTY 7.7. (Monotonicity)if M, N, P, and Q are MTSs, then:
M<PAN=Q=VBecMCR(P,Q)-3A € MCR(M,N)-A=<B.

Thus, once a model WMCR(P, Q) is chosen, there always exists some moddMaR (M, N)
that it refines, and so the properties of each MCRb&ndN are preserved by the MCRs
of P and@. If MCR(M, N) is a singleton set, Property 7.7 reduces to Property 7.3, as
expected. In practical terms, this means that if the vandespoints are still to be elab-
orated, the results of reasoning about one of their possiklges (picked arbitrarily) are
not guaranteed to carry through once the viewpoints have fugther refined.

Finally, Property 7.4 can also be extended to the contextdfiple MCRs:

PROPERTY 7.8. LetM, N,andP be MTSs such thatP C aMnNaN andyp is a safety
FLTL property. If||o||MIP =t or ||| V17 = t, thenVA € MCR(M,N) - |¢||A17 = t.

In this subsection, we have shown that properties which fmld. CRs do not hold
when consistent models have no unique MCR (Section 7.2)itilvely, the existence of
nonequivalent MCRs implies that merging involves a chola tequires some form of
human intervention: a choice which requires domain knogéedVhile this affects some
of the algebraic properties of merge, we have shown thaethesperties do hold in terms
of preservation of implementations.

8. TOOL SUPPORT

We have developed a tool that supports construction angysisaf MTS models: the
Modal Transition System Analyzer (MTSA) [D’Ippolito et a2008] (available alit t p:

[/ sourceforge. net/projects/ntsal/files/nsal MISA- R2/). The basic
mechanism for describing MTS models is using a text langbaged on the FSP process
algebra [Magee and Kramer, 1999] and includes operatofsasisequential and parallel
composition, and hiding, in addition to the MTS merge opmral he tool also supports
visualization of MTSs in a graphical format, and variouslgses such as animation, mo-
del checking of FLTL properties, consistency checking, ai as deadlock freedom and
refinement checks.

The tool builds upon the Labelled Transition System Analy@dSA) [Magee and
Kramer, 1999], utilizing and extending its graphical useeiface as well as specific anal-
ysis algorithms for LTSs. For instance, MTSA implementsaBsed FLTL model check-
ing of MTSs (under inductive semantics) by reducing the fmabto two classical FLTL
model-checking runs on LTS models (see Theorem 3.3). H&MESA builds on top of
the model checking features of LTSA.

9. A CASE STUDY: THE MINE PUMP

We have applied the results described in this paper to a nuofoease studies includ-
ing the Philips television product family [van Ommering &t 2000] and use-case based
specifications of information system.

The purpose of this section is to show, by means of the mingoyjmamer et al., 1983]
case study, how the results described earlier in this pageexploited in an incremen-
tal behaviour model elaboration process. We do focus onipfeiliterations nor on the
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medWater highWater methAppears switchOn dangerLightOn
@Q._OL_ O O 0O Owea OO O@__0
lowWater medWater methLeaves switchOff dangerLightOff

Fig. 19. The LTSs for (a)VaterLevelSensp(b) MethaneSensp{c) Pump and (d)DangerLight

high-level languages that can be used to describe behdvaurwhich MTS models are
synthesized as this is beyond the scope of this paper.

All analyses were performed automatically by means of the&siTool described above.
In Section 9.1, we give a high level overview and introduc@sa@omponents of the case
study. In Section 9.2, we show how a behaviour model for tke study can be constructed
by merging partial models of the intended system behavand how tool-supported vali-
dation of the resulting model can prompt further elaborati@e construct the final model,
which satisfies the expected requirements, through sueeasgrge operations over par-
tial models.

9.1 Informal Description

A pump controller is used to prevent the water in a mine suromfpassing some thresh-
old, and hence flooding the mine. To avoid explosions, thegpomay only be active when
there is no methane gas present in the mine. The pump camntnatinitors the water and
methane levels by communicating with two sensors. In aslditthe pump is equipped
with a danger light that is intended to reflect the presenceathane in the sump.

The mine pump system consists of five componénaterLevelSenspiMethaneSensor
DangerLight PumpControllerandPump The complete systenMinePumpSystens the
parallel composition of these componeéaterlL evelSensanodels the water sensor and
includes assumptions on how the water level is expectedangtbetween low, medium,
and high. MethaneSensdteeps track of whether methane is present in the nitoenp
and DangerLightmodel the physical pump and danger light, respectivelyctvican be
switched on and off. The LTSs for these components are showigure 19, where we
assume that initially the water is low, the pump is off, no lnagte is present, and the danger
light is off. PumpControllerdescribes the controller that monitors the water and methan
levels, controls the pump in order to guarantee the praggedf the mine pump system,
and also maintains the status of the danger light accorditigetmethane level.

The informal description given above leaves open the exattmevel at which to turn
the pump on and off. For example, the pump could be turned @nwrere is high water
or possibly when the water is not low, (e.g., at a medium Jeviede pump could be turned
off when there is low water or possibly when the water is nghhiln what follows, we
investigate models for the pump controller, which are idhto be merged to create a
model of the entire system, namelinePumpSystem

9.2 Model Construction and Elaboration

We begin by formalizing the requirements of the intendedesyshehaviour given in Sec-
tion 9.1 and providing the MTSs initially used to model palrperational views of this
behaviour. We then show how the merging and analysis regrdsented earlier in this
paper can support the elaboration of a final system modelstitafies the intended re-
quirements.

9.2.1 Initial Models and PropertiesAssume that requirements specification of the
pump has been organized following the IEEE Recommendedi®dor Software Re-
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quirements Specifications Standard 830 [IEEE, 1994], wpiokides a template for struc-
turing requirements based on the operation mode of themaytstédoe. Consequently, re-
guirements are grouped into those that are relevant whemitiepump is on and those in
which the mine pump is off.

As with the ATM example presented in Section 2, the operatioequirements for the
mine pump controller could be given in a variety of specifmaianguages. From some
of these languages (e.g., MSCs, use cases or temporal)ldgitS models could be syn-
thesized automatically [Uchitel et al., 2007; Uchitel et 2009]. Synthesis of MTSs is
beyond the scope of this paper and consequently of this tade $lence, we assume that
two MTSs have been constructed manually or (semi-)auta@altifrom the requirements
corresponding to each mode.

Thus, we begin with two MTSs for the pump controller: one esponding to the mode
in which the pump is off and which specifies when the pump ghbel switchedn (re-
ferred to as the “on policy”, 0OnPolicy— see Figure 20) and another — for the mode in
which the pump is on and which specifies when the pump shouseviiehedoff (referred
to as the “off policy”, orOffPolicy — see Figure 21). While Figure 20 contains both a
graphical depiction and a textual representatio®afolicy, for larger models, such as
OffPolicy, we use only a textual representation, as in Figure 21.

OnPolicyturns the pump on when there is high water and no methanentrasel leaves
open the possibility of turning the pump on when there is medivater. It keeps track
of the state of the pump in addition to the level of methaneaatkr in order to enable
switching the pump on at the appropriate moment. The MTSatieghiin Figure 20 for
OnPolicyis easier understood by noting that the four states in thdéadfpof the diagram
correspond to the water being high, and those in the lowéchalespond to the water not
being high; the states on the left side model the case whea theo methane present,
while the right side has states in which methane is presentfiaally, the four states in
the center correspond to the pump being on, while the outgrsfiates are when the pump
is off. Note state)1 which requiresswitchOn this state is central to enforcing the “on
policy”.

TheOffPolicyturns the pump off when there is low water or methane pre3erdo this,
it keeps track of the state of the pump and changes in the watemethane levels to force
switchOff as soon as the water becomes low or methane appears. lroad@itiPolicy
models a danger light with actiom&ngerLightOrand dangerLightOff(unobservable to
OnPolicy), turning the light on when methane is present in the mines iftention of the
model is to guarantee that the danger light warns miners wiethane is present; hence,
the corresponding danger light action is the only actioovedid upon changes in the level
of methane.

Each of the models has been validated independently andl fuoorrespond to the
intended behaviour of the pump. The validation of these nsaday have included human-
centric activities such as inspection and observation @hations and simulations, and
automated verification techniques such as model checkittgreadel individually against
alternative specifications of the system. Specifically, ssuae that the validation of the
MTS models included properties that both models are exgdotsatisfy. These aré,
and ®,, which express that the pump should only be turned on if itrisaaly off, and
should only be turned off if it is already on, respectivelggsTable 1). In addition, an
expected property for the on policy @, which states that when there is high water and
no methane, the pump should be immediately turned on if ibi®n already. An expected
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methaneAppears?

methaneleaves?

lowWater? lowWater?
medWater? medWater?
methanelLeaves ‘@ @‘ methaneAppears?
switchOff? switchOff?
g methaneAppears?
lowWater? lowWater?
medWater? methaneLeaves? medWater?
methaneLeaves' methaneAppears?
switchOn? switchOn?
g
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@
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highWater? highWater?
methaneLeaves? methaneAppears?
switchOn? methaneAppears? switchOn?
methanelLeaves?
highWater?
methaneAppears?
switchOff?
methaneLeaves?
OnPolicy = QO, | { hi ghWat er?, net haneLeaves?,
Q@ = ({lowater?, nedWater?, switchOn?} -> Q4
net haneLeaves?, switchOif?} -> Q0 | met haneAppears? -> Q7),
| hi ghwater? -> QL QG = (nethaneLeaves? -> QL
| et haneAppears? -> Q@ | {l ot er?, medWater?} -> Q2
| switchOn? -> @), | { hi ghwat er?, net haneAppear s?,
QL = (switchOn -> Q4), switchOff?} -> b
Q@ = (nmethaneLeaves? -> Q | switchOn? -> Q7),
| {| owMat er?, nedWater?, QB = (swtchOf? -> @
met haneAppear s?, switchOff?} -> | met haneLeaves? -> 3
Q@ | {| ot er?, nmedWater?,
| hi ghwater? -> b nmet haneAppears?, switchOn?} ->
| switchOn? -> Q6),
@B = (switchOf? -> Q | hi ghvater? -> Q7),
| {| owmat er?, nedWater?, nethanelLeaves Q7 = (nmethaneLeaves? -> 4
?, switchOn?} -> @B |switchOf? -> @b
| hi ghwater? -> Q4 | {| oMat er?, nmedWater?} -> Q6
| mret haneAppear s? -> Q6), | {hi ghwvat er ?, net haneAppear s?,
A = ({lowater?, nedWater?} -> Q3 switchOn?} -> Q7).

Fig. 20. The graphical and the textual representationseofMS for OnPolicy.

property for the off policy isb,, which states that if there is low water or methane present,
the pump should be immediately turned off if it is not off aidy.

9.2.2 Analysis. Using MTSA [D’Ippolito et al., 2008], we verify that i©nPolicy, &5
evaluates tdrue , but propertiesb,, &, and &, evaluate tomaybe(see Table II). We
further determine that i@ffPolicy, ®, and®, evaluate tdrue, but propertie®; and®;
evaluate tanaybe
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OfPolicy = Q,
Q = (lowater? -> Q0

Q@B = ({highvater?, nmedwater?} -> Q6

| met haneLeaves? -> Q7

| {hi ghvater?, nedwater?} -> QL | et haneAppears? -> 8
| met haneLeaves? -> QL5 | owater? -> ),
| met haneAppears? -> Q16), Q7 = (dangerLightOf -> Q1),
QA = (lowater? -> Q @ = (dangerLightOn -> Q5),
| {hi ghvater?, nedwater?} -> Q Q@ = ({highWater?, nedwater?} -> 6
| switchOn? -> Q@ |l owmater? -> Q9
| met haneLeaves? -> QL3 | met haneLeaves? -> QL0
| met haneAppears? -> Ql4), | met haneAppears? -> QL1),
Q@ = (switchOf? -> QL QL0 = (dangerLightOf -> Q),
| {hi ghvat er?, nedWater?, sw tchOn?} QL1 = (dangerLightOn -> Q9),
-> Ql2 = (switchOf -> Q0),
| met haneLeaves? -> B QL3 = (dangerLightOif -> Q1),
| met haneAppears? -> 4 QL4 = (dangerLightOn -> Q6),
|l owmater? -> Q12), QL5 = (dangerLightOf -> Q),
= (dangerLightOf -> @), QL6 = (dangerLightOn -> Q9).

(dangerLightOn -> Q6),
(switchOf -> Q6),

RREB

Fig. 21. The MTS folOffPolicy.
MonitoredActions= (highWaterv lowWaterv medWater/ methaneAppearg methaneLeaves
(auxiliary definition: an action monitored by the pump colieiohas occurred
O(PumpOn=- X (—switchOnW —PumpOr))
(the off policy: the pump is turned off when there is low waterm@thane preseht
®y; = O(=PumpOn=- X (—-switchOff W PumpOn))
(the pump can only be turned on if it is currently off
®3 = O(AtHighWaterA —MethanePresent- X (—MonitoredActionsW PumpOr))
(the pump can only be turned off if it is currently on
¢, = O(AtLowWaterv MethanePresent- X (—~MonitoredActionsW —PumpOr))
(the on policy: the pump is turned on when there is high watdmanmethang

P,

Table I. Desired properties dinePump expressed in FLTL.

Maybevalues of®, on OnPolicyand of®; on OffPolicyare reasonable as neither model
was produced with the initial goal of satisfying these prtips. This gives us reason to
believe that it is possible to construct an implementatia tonforms to both policies and
satisfies both properties. We construct such an implenientaélow by determining that
the policies are consistent, merging them, and obtainingdeimvhose implementations
satisfy the properties.

Interestingly, although all implementations OffPolicy are guaranteed to satisfly,
only some are guaranteed to sati§fy! This is not necessarily a modelling error, rather, it
can mean that assumptions are being made about the behaitbarenvironment.

Specifically, thePumpmodel in Figure 19 does not allow the pump to be switched on
when itis currently on; hence, it guarantdes as verified by MTSA. This is sufficient to
guarantee (using Corollary 7.1 and the fact thas a safety property) thai; evaluates to
true in OffPolicy|| Environmentwhere

Environment= WaterLevelSenspMethaneSensgPump DangerLight

While theoretical results guarantee thiat is true in OffPolicy|| Environmentwe can
check this using MTSA, obtaining the expected results (sdxeTll).

In summary, propertie®; and®, evaluate tanaybein OnPolicy, and similarly toOff-
Policy, the model of thePumpguarantees that any controller that conform®taPolicy
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[ @& [ ® | & [ P |
OnPolicy maybe | maybe | true maybe
OffPolicy maybe | true maybe true
Pump true false - -
Environment2 Pump|| MethaneSensdf WaterLevelSensdf DangerLight true false false false
OnPolicy || Environment true maybe | true maybe
OffPolicy || Environment true true maybe | true
PumpControllef £ OnPolicy++ OffPolicy maybe | true true true
(OnPolicy|| Environmenk ++ (OffPolicy || Environmenf true true true true
PumpControllef || Environment true true true true
PumpControlles £ PumpControllef +-+ MethaneSensot+ WaterLevelSensfir maybe | true true true
PumpControlleg || Environment true true true true

Table Il.  Property evaluation in different models.

satisfies®; when composed with the environment. However, neitBevironmentnor
OnPolicyguarante@,, nor does their parallel composition.

9.2.3 Merged Policies.Since®3 evaluates tanaybein OffPolicy and totrue in On-
Policy, while &, evaluate tdrue in OffPolicy and maybein OffPolicy, if the policies are
consistent, that is, there are implementations that canforboth, then these implementa-
tions satisfy both properties. This is due to Corollary 4id¢e refinement preserves FLTL.
In addition, sincéffPolicyalso satisfie®,, LTSs thatimplement both policies satisfy this
property as well.

Using MTSA, we can check that the two policies are consistedtbuild their merge,
shown in Figure 22 (in MTSA terms, BRGHM, N) is denotedV ++ N). MTSA can
also be used to verify that properti®s-®, aretrue (as guaranteed by Corollary 4.1) and
®, is maybein PumpController = OnPolicy ++ OffPolicy.

However, what can be said about the truthdgf? This property holds i©ffPolicy ||
Environmentnd inOnPolicy|| EnvironmentHence, it also holds in their merge:

(OffPolicy|| Environment ++ (OnPolicy| Environmenk 2

Yet we are interested in building a model for the pump coter@ind composing this model
with its environment. In other words, we wish to reason about

(OffPolicy++ OnPolicy)||Environment 3)

By Property 7.8 (see Section 7.3), factoring out the pdratienposition in (2) to obtain
(3) is guaranteed to preserve true safety properties oi@yding®;. We can use MTSA
to verify that OffPolicy ++ OnPolicy) || Environmenis a refinement of@ffPolicy || Envi-
ronmenj ++ (OnPolicy || Environmen), and that QffPolicy ++ OnPolicy) || Environment
satisfies propertieg;-d,.

9.2.4 Elaboration. We can now construct the full model of the mine pump system by
composindPumpController in parallel with models of the water level sensor, the meghan
sensor and the pump:

MinePumpSystem= PumpControlley||Environment

The result, depicted in Figure 23, has mangybetransitions and admits deadlocking
implementations. This can be checked using MTSA or by vigwsglection, looking for
reachable states without outgoing required transitiohss ifdicates a problem: The com-
bined policies admit implementations of the pump controlbich can deadlock if com-
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PunpControl lerl = QO,
Q = (lowater? -> Q
| redvater? -> Q7
| met haneAppears? -> @
| hi ghwater? -> Q10
| et haneLeaves? -> QR2),
QA = (medWater? -> QL
| hi ghvater? -> Q@
|l owater? -> 8B
| met haneLeaves? -> QL3
| met haneAppear s? -> Q15),
@ = (nedWater? -> QL
| hi ghwater? -> Q
|l owater? -> B
| met haneAppears? -> QL6
| et haneLeaves? -> Q4),

@B = (nmedWater? -> QL

| hi ghwater? -> @

| owater? -> @B

| met haneLeaves? -> QL4

| met haneAppear s? -> Q19),
QA4 = (dangerLightOn -> Q1),
&b = (dangerLightOn -> Q17),
Q@ = (dangerlLightOn -> Q18),
Q7 = (lowater? -> Q

| et haneAppears? -> 4
| mredvater? -> Q7

| hi ghwater? -> Q10

| swi tchOn? -> Q0

Q2
Q4

net haneLeaves? -> @3),
(switchOf -> Q),
(dangerLightOn -> @),
(switchOn -> Q1),
(dangerLight O f -> Q1),
(dangerLi ght O f -> QO0),
(dangerLightOf -> Q7),
(dangerLightOf -> Q),
(dangerLightOn -> Q1),
(dangerLightOn -> @),
(switchOf -> @),
(switchOf -> Ql),
(dangerLightOn -> @),
(net haneAppears? -> 6

| switchOf? -> Q7

|l owmater? -> 8

| et haneLeaves? -> Q12

| {mredWater?, sw tchOn?} -> Q0

| hi ghwater? -> @1),

= (et haneAppears? -> b

|l owmater? -> 8

| et haneLeaves? -> QL1

| medVat er? -> Q0

{hi ghwater?, switchOn?} -> Q1),
(dangerLightOf -> Q),
(dangerLightOf -> Q7),
(dangerLi ght O f -> QL10).

Fig. 22. The MTS folPumpControllei .

System |tl = Q,
Q = (nmethaneAppears? -> QL
| mredater? -> @),
QL = (dangerLightOn -> @),
Q@ = (lowater? -> Q
| hi ghwater? -> Q4
| mret haneAppears? -> 6
| switchOn? -> Q6),
= (et haneLeaves? -> Q7
| medVater? -> @8),
(switchOn -> Q9),
(dangerLightOn -> @),
(switchOf? -> @
| hi ghwater? -> Q9
|  owMat er? -> QLO
| met haneAppears? -> Ql1),

|/ER B

|9

(dangerLightO f -> Q0),
(lowater? -> B

nmet haneLeaves? -> QL2

hi ghWater? -> QL3),
(nedvater? -> 6

net haneAppears? -> Ql4),
(switchOf -> Q),
(dangerLi ghtOn -> QL15),
(dangerLightO f -> @),
(nmedvater? -> 8

met hanelLeaves? -> QL6),
(dangerLightOn -> QL7),
(switchOf -> @),
(dangerLightO f -> Q4),
(switchOif -> Q13).

Fig. 23. The MTS foMinePumpSystem

posed with the environment. Thus, we need to further refiagértial model of the pump

controller,PumpController.

There is an implicit requirement not addressed by the partadel of the controller:
it cannot block the environment inputs. The requirementlmasatisfied by merging the
controller modePumpControlley with another MTS that captures this requirement, i.e.,
that has required transitions on the controller’s inputaterlevel and methane events.

Merging PumpController with the models foWaterLevelSensand MethaneSensor

achieves the desired result:

PumpControlles = PumpControlley ++ WaterLevelSensar+ MethaneSensor
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Controller2 = Q, | hi ghwater? -> Qi1

Q@ = (nmethaneAppears? -> 4 | switchOi f -> QL3),
| mredWater -> QL3), QL1 = (net haneAppears? -> Q7

QL = (switchOf -> @), | medVater -> QLO

@ = (switchOn -> Q11), | switchOn? -> Q11),

@B = (dangerLightOn -> Q1), Ql2 = (nedWater ->

A4 = (dangerLightOn -> QL5), | met haneLeaves? -> Ql4),

Q@ = (switchOof -> QL2), QA3 = (lowater -> Q

Q@ = (dangerLightOn -> @), | hi ghwater -> @

Q7 = (dangerLightOn -> Q®), | met haneAppears -> Q6

@B = (switchOf -> Q), | switchOn? -> QL0),

Q@ = (highwater? -> Ql2 QL4 = (dangerLightOf -> @),
|l owmater? -> QL5 QL5 = (nmedWater -> Q@
| met haneLeaves -> Q17), | met haneLeaves? -> Q16),

QL0 = (nethaneAppears? -> B QL6 = (dangerLightOif -> Q0),
|l owmater? -> 8 QL7 = (dangerLightOf -> QL3).

| switchOn? -> QLO

Fig. 24. The MTS folPumpControlles.

satisfies propertie®,-®,. PumpControlles, depicted in Figure 24, also satisfiés under
parallel composition withenvironment

Finally, when composed in parallel with its entire enviramhPump MethaneSensor
WaterLevelSens@andDangerLight PumpControlles results in an MTS which only has
deadlock-free implementations. Thi’ympControlles is the desired model of the pump
controller as all its implementations ensure the correbab®ur (non-deadlocking and
conforming to®-®,). The final mine pump system is

MinePumpSysten= PumpControlle||Environment

9.2.5 Discussion.The case study shows that by using MTSs, weak alphabet refine-
ment and merge, we can support the elaboration of a systerelrfroch multiple partial
models of the same system. This case study does not uselad rdgults discussed in this
paper, as doing so would make the models too complex for tesemtation. However, the
case study does show the utility of various theoreticallteslescribed in previous sec-
tions and, in particular, results about combining mergirithy warallel composition, which
is the standard operator for compositional constructioaystem models from complete
(i.e., non-partial, two-valued) component models.

The distributivity property of merge and parallel compiositis of particular relevance
as it allows multiple partial models to be developed indejeertly, with their own en-
vironmental assumption, while guaranteeing that the @makemains valid under these
assumptions as the partial models are merged.

Although the case study highlights how the theoretical ltesdescribed in previous
sections can be used to reason about the elaboration prakes®ol support we have
developed allows this reasoning to be done automaticalhe models used in this case
study, in the input format of MTSA, are availablelatt p: / / sour cef or ge. net/
proj ects/ msal.

10. CONCLUSIONS

In this section, we summarize the paper, compare our wotk reiated approaches, and
discuss directions for future research.
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10.1 Summary

The motivation for the work presented in this paper comeshftioe need to support the
elaboration of partial behaviour models. In particular, msearch has been motivated by
existing limitations for merginglifferentpartial behaviour models of treamesystem.

This paper studies merge for Modal Transition Systems wahieta natural extension to
Labelled Transition Systems that support partial behawi@scriptions. Although MTSs
and merge have been studied extensively [Huth et al., 208f%eln and Thomsen, 1988;
Larsen et al., 1996; Larsen et al., 1995; Fischbein and El¢i2008; Uchitel et al., 2007,
Uchitel et al., 2009], studies have included the strong ragsion that alphabets of all
models are the same. Hence, existing MTS semantics and pseryegandweak[Larsen
et al., 1996], do not allow for a more natural and realistiprapch to modelling in which
different viewpoints being merged have different scopesl laence different alphabets,
and in which the alphabet of the descriptions is extendetbd®ration progresses.

In this paper, we present a study of Modal Transition Systander a new seman-
tics, calledweak alphabet semantic&hich supports alphabet elaboration together with
behaviour elaboration. The paper makes a number of cotitiitaiincluding(i) a novel
semantics for MTSs which preserves fluent linear tempo@atI@-LTL) properties(ii)
theoretical and practical results regarding charactioz®f consistency which extend the
current state of the art [Fischbein and Uchitel, 2008; Liaueseal., 1996](iii)) automated
methods for constructing common refinements and mergea study of the algebraic
properties of merge and parallel composition and theitigahip with refinement. These
results give rise to a formal framework for partial modebaleation, based on merging and
ensures that such a framework is adequately supportedtaigdazally.

10.2 Related Work

Below, we survey related work along three directioriy:hehaviour modelling,2) merg-
ing, and @) abstraction and property preservation with respect tbgdanodels.

10.2.1 Behaviour Modelling.A significant body of work has been produced in the
area of behaviour modelling, including research on proa&g=bras (e.g., [Hoare, 1985]),
notions of equivalence and refinement (e.g., [Milner, 1988hd model checking (e.g.,
[Clarke et al., 1999]). The bulk of this work has used a twatgd semantics approach to
behaviour modelling (e.g., using LTSs [Keller, 1976] asdinelerlying formalism). Typi-
cally, the behaviour explicitly described by the undertystate-machine is considered to
be required, while the rest is considered to be prohibited.stated previously, the as-
sumption that the underlying state machine is completep gptne level of abstraction, is
limiting in the context of iterative development procesggsem and Turner, 2004], and
in processes that adopt use-case and scenario-basedcstieci§ (e.g., [CREWS, 1999;
Uchitel et al., 2004]), or that are viewpoint-oriented [Hemand Nuseibeh, 1998].

While LTSs and other two-valued state machine formalisnmscegture some notion of
partiality, the behaviour they describe is considered theethe upper or the lower bound
to the final, complete, system behaviour (see our discussi@ection 1),but not both
Partial behavioural formalisms capture this nicely, bytaapg the unknown behaviour
explicitly, so as new information becomes available, the bwunds can be refined simul-
taneously. In MTSs, this unknown behaviour is specified aggitions which are possible
but not required.

In this work, we have focused on Modal Transition Systemsctviaire less expressive
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than other partial behaviour modelling formalisms thatenlagen proposed, such as multi-
valued Kripke structures [Chechik et al., 2003] and Mixedn&ition Systems [Dams,
1996]. There is a trade-off between expressiveness, bitittaand understandability and
further studies, extending the results presented in thpepi® these formalisms, are nec-
essary.

10.2.2 Merging. Composition of behaviour models is not a novel idea [Mili€89;
Hoare, 1985]; however, its main focus has beemarallel composition, which describes
how two differentcomponents work together. In the context of model elabonative are
interested inmerge i.e., composing two partial descriptions of tk@mecomponent to
obtain a model that is more comprehensive than either oftiilgenal partial descriptions.

The notion of merge in itself is not novel either; it undeslimany approaches to system
model elaboration such as viewpoints [Cunningham and #stdia, 1986], aspects [Clarke
etal., 2001], and scenario/use case composition (e.ghifeélet al., 2003b; Krueger et al.,
1999]). However, the interplay of partial descriptions amgkge is not necessarily treated
explicitly and formally.

Larsen et. al. originally introduced a merge operator échibnjunctior), but defined it
only for MTSs over the same vocabulary withautransitions, and for which there is an
independence relatiofat which point the least common refinement exists) [Lardexl. g
1995]. Their goal is to decompose a complete specificatitm several partial ones to
enable compositional proofs. Although not studied in deibtl operator in [Larsen et al.,
1995] is based on strong refinement. In particular, [Larseh £1995; Larsen et al., 1996]
use an incomplete notion of consistency and do not addregs tivlem of multiple MCRs.

The subtleties of the existence of multiple MCRs under weakantics were initially
discussed in [Uchitel and Chechik, 2004] and then resoleedtfong semantics in [Fis-
chbein and Uchitel, 2008]: [Fischbein and Uchitel, 2008jgemted a complete and cor-
rect merge algorithm for strong refinement together with mplete characterization of
inconsistency under the same semantics. [Uchitel and @he2004] study merge and
consistency for weak and weak alphabet semantics; howtbearesults presented in here
are stronger: We characterize consistency under weak siesand give a less restrictive
precondition for consistency under weak alphabet sensttitam the one given in [Uchitel
and Chechik, 2004].

[Larsen and Xinxin, 1990] defines a conjunction operatobfisjunctive MTSs (DMTSS),
similar to the one in [Larsen et al., 1995]. These models Biynmerging by allowing in-
consistencies of models being merged to be encoded withiDMTSs. However, the
computational complexity of merging MTS is traded for thengdexity of detecting con-
tradictions: Checking that a DMTS has an implementatiomispéction is non-trivial even
in small examples and in general it is computationally asespve as merge is in MTS.
Checking consistency of an MTS is trivial as by definition &S has an implementa-
tion. The goal of [Larsen and Xinxin, 1990] is to characterzjuation solving in process
algebra. In particular, consistency is used to prove saltility of a given specification.

Hussain and Huth [Hussain and Huth, 2004] also study theist@ngy problem, solv-
ing it for multiple 3-valued models, representing differgiews, with the same alphabet.
But, they focus on the complexity of the relevant model-&magprocedures: consistency,
satisfiability, and validity. Instead, our paper addreskesnore general problem of sup-
porting engineering activities in model elaboration. Hipaur models are more general
than the models of Hussain and Huth in that we merge modehsdifferent vocabularies
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andr transitions, but less general in that Hussian and Huth leamdrid constraints, e.g.,
restricting the number of states a given proposition isietald in.

MTSs are defined over flat state spacés: and AP give a partial description of the
behaviours over &nite set of states. Huth et al. [Huth et al., 2002] use the mixedgoow
domain of Gunter [Gunter, 1992] to generalize MTSs to notstiate spaces, modelled as
domains. This extension is more expressive than MTSs, anbeased to represent other
formalisms such as Mixed MTSs or partial Kripke structuréhis extension guarantees
unigueness of merge, but at the expense of a non-triviaistemsy check for one model.
Checking whether a model has at least one valid implementatnnot be done in poly-
nomial time. This complexity is “transferred” to the modelivhen he or she attempts to
understand a model drawing an intuition from the implemigmmaset given by that model.
In addition, non-uniqueness of merge over MTSs encouniaredr work can be seen as
an opportunity for elicitation, validation, and negotatiof partial descriptions.

Other approaches support merging inconsistent and inaieiews, i.e., enabling rea-
soning in the presence of inconsistencies [EasterbrookCaedhik, 2001; Sabetzadeh and
Easterbrook, 2003]. In [Easterbrook and Chechik, 20013 @&ssumed that only states
with the same label can be merged, and a similar consistesseyvgtion is made in [Xing
and Stroulia, 2005] in the context of UML differencing. Omrtbither hand, in [Sabetzadeh
and Easterbrook, 2003] a more general category-theomgimach is presented which is
based on the observation that it is not always clear how ttadivo views. They use
graph morphisms to express such relationships, enableggér to provide this as a third
argument to merge. Nejati and Chechik present a framewoméoging4-valued Kripke
structures [Nejati and Chechik, 2005], where the fourtlugahdicates disagreement. The
aim is to support negotiation for inconsistency resoluttgping users identify and prior-
itize disagreements through visualization. A key diffaremwith the above approaches is
that we focus on merging models that describe only the obbé\behaviour of a system.
Hence, simulation-like relations, as opposed to relatibas focus on the state structure,
are appropriate for merging. Models merged by [EasterbeoakChechik, 2001; Sabet-
zadeh and Easterbrook, 2003; Nejati and Chechik, 2005tiNgjal., 2007] include state
information, and consequently other notions of preseswaguch as isomorphism, apply.

An alternative to partial operational descriptions, whighfocus on, is the use of declar-
ative specifications. For instance, classical logics arégbén that a theory denotes a set
of models, hence they support merging as the conjunctiohemfrtes which denotes the
intersection of their models. Similarly, Live Sequence &h§Harel et al., 2005] support
merging through logical conjunction, as each chart can tezpreted as a temporal logic
formula. We believe that our approach is complementary baddct that it models ex-
plicitly possible but not required behaviour may faciiaxploration and validation of
unknown behaviours facilitating further elicitation.

The operation of merging also arises in several other dlateas, including synthesis
of StateChart models from scenarios [Krueger et al., 198®gram integration [Horwitz
et al., 1989], and combining program summaries for softwandel-checking [Ball et al.,
2004].

The notion of system composition through partial desaiptiis at the core of ap-
proaches to feature interaction in telecommunicationesyst(e.g., [Calder and Magill,
2000; Nejati et al., 2008]). These approaches aim to deseriproduct through a com-
position of features. When features are described via tipaed models such as state
machines, the formalisms require that each feature be $pkgified. It is not possible to
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model the fact that certain aspects of a feature are prgsamithown, to compose these
features without having to resolve the unknowns, and toyaeathe resulting model in

the presence of these unknowns. Thus, there is no suppadeoning about a family

of products resulting from the unknown aspects of the festuised to build the product
model. Furthermore, the notions of merge and compositimvgbent in the feature inter-
action literature, differ from the ones used in this papee(B\Nejati and Chechik, 2008]
for details).

10.2.3 Abstraction and Property PreservatiofExplicit partiality corresponds natu-
rally to the lack of information at modelling time. Our worla$ focused on finding a
more elaborate model, based on refinement, that preserevpsdperties of two consistent
partial models. The reverse of this process is abstracitiowhich a less refined model
is constructed. Unlike merge, abstract models are usualtyelm from the user for use in
automatic procedures, e.g., for efficient model-checkingrmge or infinite state systems.
In addition, the notion of consistency is irrelevant in ahstion, as there is always a model
that refines an abstraction, namely, the original moddfitswever, like merge, sound-
ness of abstractions with respect to property preservaiohfundamental importance in
order for abstractions to be of any use when checking priggert

The approach of extending transition systems with a seaamdition relation describ-
ing unknown behaviour was originally proposed by [Larsed &homsen, 1988], and in-
dependently by [Dams, 1996]. Larsen and Thomsen introdiESIs as a solution to the
completeness limitation of LTSs, and proved that Hennééiyer logic [Hennessy and
Milner, 1985] characterizes strong refinement. Dams’ MiXeahsition Systems [Dams,
1996; Dams et al., 1997], which are MTSs that do not assumeatheequired transi-
tions are possible transitions, are used for abstractimgkirstructures. It is shown that
3-valued CTL* properties are preserved by the refinementrgerdetween these mod-
els [Dams, 1996]. Bruns and Godefroid introduced partighke Structures (PKs) [Bruns
and Godefroid, 1999], which have a single unlabelled ttasielation and-valued state
propositions. They show thatvalued CTL defined over PKs characterizes their complete-
ness preorder.

[Huth et al., 2002] introduced Kripke MTSs (KMTSs) — a sthesed version of MTSs.
A KMTS has two transition relations, as in an MTS, but instetaving labelled transi-
tions, each state is labelled with a set3evalued propositions. It is shown thatvalued
u-calculus characterizes refinement defined over KMTSs, misicised as the basis for a
3-valued framework for program analysis.

When a property evaluates toaybein an abstract model, the model must be further
refined (where refinement corresponds to splitting absstates). [Shoham and Grumberg,
2004] show that even standard methods of refining abstradetade.g. [Godefroid et al.,
2001]) are not monotonic with respect to property pres@matShoham and Grumberg
define Generalized KMTSs (GKMTSs), an extension of KMTS#igper-transitions, as
a solution to this problem, and obtain a monotonic abswaetefinement framework with
respect t@-valued CTL.

Finally, MTSs, KMTSs, and PKs have the same expressive pf@edefroid and Ja-
gadeesan, 2003], and in additidayalued Kripke structure, Mixed Transition Systems and
Generalized Kripke MTSs have the same expressive power lafGuefinkel et al., 2006;
Wei et al., 2009].
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10.3 Future Work

Our long-term goal is to provide a sound engineering apgrdaache development of
software systems via automated support for constructimigbdehaviour models from
scenario-based specifications, merging and elaboratesgtpartial behaviour models, as
well as enabling users to choose the desired merge from tloé gessible minimal com-
mon refinements. In particular, we plan to develop synthalgjerithms for construct-
ing behaviour models from heterogeneous specificatiogs ¢eenarios, properties, state-
machines) and integrate this into our approach to mergintigbhehaviour models. First
steps towards this goal are reported in [Uchitel et al., 2009

We intend to continue experimentation by conducting laicgse studies in order to
further explore the limitations and the opportunities af firesented framework. One of
the aspects to be addressed in the near future relates tttecakdlifficulties introduced
by merging models with no least common refinement. We aim ¥eldg ann-ary merge
operator that constructs a common refinement from an unlembndmber of MTSs and
iteratively abstracts the result. Such an operator wouttbre the necessity of choosing
MCRs for then — 1 pairwise merges needed to merg®TSs. It would also prevent the
propagation of any incompleteness introduced by mergindetso The fact that MTS are
not closed under merge, i.e., that multiple MCRs may exist prompts the question of
whether other partial behaviour modelling formalisms ddag developed to better support
incremental behaviour model elaboration.

Acknowledgements

The authors would like to thank Shoham Ben-David and Ivo Kikacarefully reading
previous drafts of this manuscript. We are also gratefultie Surfinkel for many fruitful
discussions (specifically, about semantics of FLTL) andiongmous TOSEM reviewers
for their excellent suggestions.

REFERENCES

Abadi, M. and Lamport, L. (1991). “The Existence of RefinemErappings”. Theoretical Computer Science
82(2):253-284.

Ball, T., Levin, V., and Xie, F. (2004). “Automatic Creatiaf Environment Models via Training”. |fProceed-
ings of 10th International Conference on Tools and Alganighfor the Construction and Analysis of Systems
(TACAS'04) volume 2988 oL NCS pages 93-107. Springer.

Boem, B. and Turner, R. (2004Balancing Agility and Discipline: A Guide for the Perplexd@erson Education.

Brunet, G. (2006). “A Characterization of Merging Parti@t&vioural Models”. Master’s thesis, University of
Toronto, Department of Computer Science.

Bruns, G. and Godefroid, P. (1999). “Model Checking Pafidte Spaces with 3-Valued Temporal Logics”.
In Proceedings of Proceedings of 11th International Confeeean Computer-Aided Verification (CAV’'99)
volume 1633 oL.NCS pages 274-287. Springer.

Bruns, G. and Godefroid, P. (2000). “Generalized Model @mgr Reasoning about Partial State Spaces”. In
Proceedings of 11th International Conference on Concuayerheory (CONCUR'0Q)olume 1877 o£NCS
pages 168-182. Springer.

Calder, M. and Magill, E. H., editors (2000freature Interactions in Telecommunications and Softwgstens
VI, May 17-19, 2000, Glasgow, Scotland, URS Press.

Chechik, M., Devereux, B., Easterbrook, S., and Gurfinkel,(2003). “Multi-Valued Symbolic Model-
Checking”. ACM Transactions on Software Engineering and Methodgl&gy4):1-38.

Clarke, E., Grumberg, O., Jha, S., Lu, Y., and Veith, H. (300Progress on the State Explosion Problem in
Model Checking”. In Wilhelm, R., editoinformatics. 10 Years Back. 10 Years Aheaslume 2000 o NCS
pages 176-194. Springer-Verlag.

For resubmission to ACM Transactions on Software Engingeaind Methodology, 2010.



Weak Alphabet Merging of Partial Behaviour Models : a7

Clarke, E., Grumberg, O., and Peled, D. (1999pdel CheckingMIT Press.

Clarke, E. and Wing, J. (1996). “Formal Methods: State ofAlneand Future Directions”. ACM Computing
Surveys28(4):626—643.

CREWS (1999). Cooperative Requirements Engineering Wign&riosht t p: / / Sunsi te. | nfor mat i k.
RWI'H Aachen. DE/ CREWS.

Cunningham, J. and Finkelstein, A. (1986). “Formal Requiats Specification: the FOREST Project”. In
Proceedings of 3rd International Workshop on Software Bipation and Designpages 186-192. IEEE CS
Press.

Dams, D. (1996)Abstract Interpretation and Partition Refinement for Mo@élecking PhD thesis, Eindhoven
University of Technology, The Netherlands.

Dams, D., Gerth, R., and Grumberg, O. (1997). “Abstractrprietation of Reactive Systems2CM Transactions
on Programming Languages and Syste{49):253-291.

Diaz-Redondo, R., Pazos-Arias, J., and Fernandez-Vila@092). “Reusing Verification Information of Incom-
plete Specifications”. IProceedings of the 5th Workshop on Component-Based Seffivayineering

D’Ippolito, N., Fishbein, D., Chechik, M., and Uchitel, 2008). “MTSA: The Modal Transition System An-
alyzer”. In Proceedings of International Conference on Automatednw®oét Engineering (ASE’'08pages
475-476.

Dupont, P., Lambeau, B., Damas, C., and van Lamsweerde0A8J2“The QSM Algorithm and its Application
to Software Behavior Model Induction'dournal of Applied Artificial Intelligence22(1&2):77-115.

Dwyer, M. B., Avrunin, G. S., and Corbett, J. C. (1998). “Pedy Specification Patterns for Finite-state Verifi-
cation”. InProceedings of 2nd Workshop on Formal Methods in Softwaaetie

Easterbrook, S. and Chechik, M. (2001). “A Framework for tilMalued Reasoning over Inconsistent View-
points”. In Proceedings of International Conference on Software Eewimg (ICSE'01) pages 411-420,
Toronto, Canada. IEEE Computer Society Press.

Fischbein, D. and Uchitel, S. (2008). “On Correct and ConeplMerging of Partial Behaviour Models”. In
Proceedings of SIGSOFT Conference on Foundations of Sefrsgineering (FSE'08)pages 297-307.

Fischbein, D., Uchitel, S., and Braberman, V. A. (2006). "'@uRdation for Behavioural Conformance in Software
Product Line Architectures”. IiProceedings of ISSTA'06 Workshop on Role of Software Awcthite for
Testing and Analysis (ROSATEA'Ofages 39-48.

Fitting, M. (1991). “Many-Valued Modal Logics"Fundamenta Informaticael 5(3-4):335-350.

Giannakopoulou, D. and Magee, J. (2003). “Fluent Model €imgcfor Event-Based Systems”. Proceedings
of the 9th joint meeting of the European Software Enginge@ionference and ACM SIGSOFT Symposium on
the Foundations of Software Engineering (ESEC/FSE’'p&yes 257-266. ACM Press.

Godefroid, P., Huth, M., and Jagadeesan, R. (2001). “Atwtrabased Model Checking using Modal Tran-
sition Systems”. In Larsen, K. and Nielsen, M., editdPsoceedings of 12th International Conference on
Concurrency Theory (CONCUR’Qyolume 2154 of. NCS pages 426—-440, Aalborg, Denmark. Springer.

Godefroid, P. and Jagadeesan, R. (2003). “On the Expressseof 3-Valued Models”. IRroceedings of 4th
International Conference on Verification, Model Checkiaggd Abstract Interpretation (VMCAI'03)olume
2575 ofLNCS pages 206-222. Springer.

Godefroid, P. and Pitterman, N. (2009). “LTL GeneralizedddicChecking Revisited”. IRroceedings of the 10th
International Conference on Verification, Model Checkimgl é\bstract Interpretation (VMCAI'09)olume
5403 ofLNCS pages 89-104.

Gunter, C. (1992). “The Mixed PowerdomainTheoretical Computer Sciencg03(2):311-334.

Gurfinkel, A. and Chechik, M. (2005). “How Thorough is ThogbuEnough”. InProceedings of 13th Advanced
Research Working Conference on Correct Hardware Desigrivanification Methods (CHARME'05yolume
3725 ofLNCS pages 65-80, Saarbriicken, Germany. Springer.

Gurfinkel, A., Wei, O., and Chechik, M. (2006). “SystematiariStruction of Abstractions for Model-Checking”.
In Proceedings of 7th International Conference on Verifigatiglodel-Checking, and Abstract Interpretation
(VMCALI'06), volume 3855 o£ NCS pages 381-397, Charleston, SC. Springer.

Harel, D., Kugler, H., and Pnueli, A. (2005). “Synthesis R@ed: Generating Statechart Models from Scenario-
Based Requirements.”. Formal Methods in Software and Systems Modelpages 309-324.

Hennessy, M. and Milner, R. (1985). “Algebraic Laws for Netefminism and ConcurrencyJournal of ACM
32(1):137-161.

Hoare, C. (1985)Communicating Sequential ProcessPsentice-Hall, New York.

For resubmission to ACM Transactions on Software Engingeaind Methodology, 2010.



48 . Fischbein, Brunet, D’'Ippolito, Chechik, Uchitel

Horwitz, S., Prins, J., and Reps, T. (1989). “IntegratinqiMterfering Versions of ProgramsACM Transactions
on Programming Languages and Systefri{3):345-387.

Hunter, A. and Nuseibeh, B. (1998). “Managing Inconsis@pécifications: Reasoning, Analysis and Action”.
ACM Transactions on Software Engineering and Methodql@¢4):335-367.

Hussain, A. and Huth, M. (2004). “On Model Checking Multiplgbrid Views”. In Proceedings of 1st Interna-
tional Symposium on Leveraging Applications of Formal Mdthpages 235-242.

Huth, M., Jagadeesan, R., and Schmidt, D. (2002). “A Domajnafon for Refinement of Partial Systems”.
Submitted to Mathematical Structures in Computer Science.

Huth, M., Jagadeesan, R., and Schmidt, D. A. (2001). “Modah3ition Systems: A Foundation for Three-Valued
Program Analysis”. IProceedings of 10th European Symposium on Programming PERQ volume 2028
of LNCS pages 155-169. Springer.

Huttel, H. and Larsen, K. G. (1989). “The Use of Static Camsts in A Modal Process Logic”. IRroceedings
of Symposium on Logical Foundations of Computer Scienagi¢lad Botik'89) volume 363 ofLNCS pages
163-180.

IEEE (1994). “IEEE Recommended Practice for Software Reguents Specifications Standard 830”. Technical
Standard 830, Wallace S. Read (Chair).

ITU-T (1993). “ITU-T Recommendation Z.120: Message Segeacthart (MSC)".ITU-T.

Jacobson, I. (2004)Object-Oriented Software Engineering: A Use Case Drivepréach Addison Wesley
Longman Publishing Co., Inc., Redwood City, CA, USA.

Kazhamiakin, R., Pistore, M., and Roveri, M. (2004). “Fotiverification of Requirements using SPIN: A Case
Study on Web Services”. IRroceedings of International Conference on Software Eegjiimg and Formal
Methods (SEFM’'04)pages 406-415.

Keller, R. (1976). “Formal Verification of Parallel Program Communications of the ACM9(7):371-384.

Kleene, S. C. (1952)introduction to Metamathematic®New York: Van Nostrand.

Kramer, J., Magee, J., and Sloman, M. (1983). “CONIC: argirsteed Approach to Distributed Computer Control
Systems”.IEE Proceedings130(1):1-10.

Krueger, ., Grosu, R., Scholz, P., and Broy, M. (1999). fRrMSCs to Statecharts”. In Rammig, F. J., editor,
Distributed and Parallel Embedded Systetdkiwer Academic Publishers.

Larsen, K., Steffen, B., and Weise, C. (1996). “The Methodwglof Modal Constraints”. IfFormal Systems
Specificationvolume 1169 oL NCS pages 405-435. Springer.

Larsen, K. and Thomsen, B. (1988). “A Modal Process Logiai.Ptoceedings of 3rd Annual Symposium on
Logic in Computer Science (LICS'8§)ages 203-210. IEEE Computer Society Press.

Larsen, K. and Xinxin, L. (1990). “Equation Solving Using Ml Transition Systems”. IRroceedings of the 5th
Annual IEEE Symposium on Logic in Computer Science (LIQSi{g@yes 108-117. IEEE Computer Society
Press.

Larsen, K. G., Steffen, B., and Weise, C. (1995). “A Constr@riented Proof Methodology based on Modal
Transition Systems”. Iifools and Algorithms for Construction and Analysis of SystéTACAS'95)volume
1019 ofLNCS pages 13-28. Springer.

Letier, E., Kramer, J., Magee, J., and Uchitel, S. (2008).riMdg event-based transition systems from goal-
oriented requirements model&utom. Softw. Eng15(2):175-206.

Magee, J. and Kramer, J. (1999 oncurrency - State Models and Java Programgbhn Wiley.

Milner, R. (1989).Communication and ConcurrenciPrentice-Hall, New York.

Nejati, S. and Chechik, M. (2005). “Let's Agree to Disagreelh Proceedings of 20th IEEE International
Conference on Automated Software Engineering (ASEf¥ges 287 — 290. IEEE Computer Society.

Nejati, S. and Chechik, M. (2008). “Behavioural Model FusiBxperiences from Two Telecommunication Case
Studies”. InProceedings of ICSE’'08 Workshop on Modeling in Softwarei&eging (MiSE’'08)

Nejati, S., Chechik, M., Sabetzadeh, M., Uchitel, S., andeZ#&. (2008). “Towards Compositional Synthesis
of Evolving Systems”. InProceedings of SIGSOFT Conference on Foundations of Seftiaagineering
(FSE’'08) pages 285-296.

Nejati, S., Sabetzadeh, M., Chechik, M., Easterbrook, &, Zave, P. (2007). “Matching and Merging of
Statecharts Specifications”. Proceedings of the 29th International Conference on Soévizngineering
(ICSE'07) pages 54-64.

For resubmission to ACM Transactions on Software Engingeaind Methodology, 2010.



Weak Alphabet Merging of Partial Behaviour Models : 49

Pnueli, A. (1977). “The Temporal Logic of Programs”. Rroceedings of 18th Annual Symposium on the
Foundations of Computer Sciengmges 46-57.

Sabetzadeh, M. and Easterbrook, S. (2003). “Analysis afrisistency in Graph-Based Viewpoints: A Category-
Theoretic Approach”. IrProceedings of 18th IEEE International Conference on Auatieith Software Engi-
neering (ASE'03)pages 12-21. IEEE Computer Society.

Shoham, S. and Grumberg, O. (2004). “Monotonic AbstraeRefinement for CTL". InProceedings of 10th
International Conference on Tools and Algorithms for then§tauction and Analysis of Systems (TACAS'04)
volume 2988 oL.NCS pages 546-560. Springer-Verlag.

Sibay, G., Uchitel, S., and Braberman, V. (2008). “Existdritive Sequence Charts Revisited”. Rioceedings
of the 30th International Conference on Software Engimep(ICSE’'08) pages 41-50. ACM.

Uchitel, S., Broy, M., Krueger, |. H., and Whittle, J. (2008}uest editorial: Special section on interaction and
state-based modelin¢gEEE Transactions on Software Engineer,ii3d.(12):997-998.

Uchitel, S., Brunet, G., and Chechik, M. (2007). “Behaviddidel Synthesis from Properties and Scenarios”.
In Proceedings of International Conference on Software Eegiimg (ICSE’'07)pages 34—43.

Uchitel, S., Brunet, G., and Chechik, M. (2009). “Synthesfi$artial Behaviour Models from Properties and
Scenarios”.IEEE Transactions on Software Engineerii3g§35):384—406.

Uchitel, S. and Chechik, M. (2004). “Merging Partial Betmwial Models”. InProceedings of 12th ACM
SIGSOFT International Symposium on Foundations of Soét\kaigineeringpages 43-52.

Uchitel, S., Kramer, J., and Magee, J. (2003a). “Behaviood® Elaboration using Partial Labelled Transition
Systems”. InProceedings of the 9th joint meeting of the European SoéviEargineering Conference and
ACM SIGSOFT Symposium on the Foundations of Software Erging ESEC/FSE’03)pages 19-27.

Uchitel, S., Kramer, J., and Magee, J. (2003b). “Synthe&iBahavioural Models from Scenarios”|EEE
Transactions on Software Engineerjrizp(2):99-115.

Uchitel, S., Kramer, J., and Magee, J. (2004). “Incremehtaboration of Scenario-Based Specifications and
Behaviour Models using Implied Scenario®#CM Transactions on Software Engineering and Methodglogy
13(1):37-85.

van Lamsweerde, A. (2004). Goal-oriented requirementinerigg: A roundtrip from research to practice. In
RE, pages 4-7. IEEE Computer Society.

van Lamsweerde, A. and Letier, E. (2000). “Handling Obss@h Goal-Oriented Requirements Engineering”.
IEEE Transactions on Software Engineeri2(10):978-1005.

van Ommering, R., van der Linden, F., Kramer, J., and Mage€0D0). “The Koala Component Model for
Consumer Electronics SoftwarefEEE Computer33(3):78-85.

Wei, O., Gurfinkel, A., and Chechik, M. (2009). “Mixed Tratish Systems Revisited”. IRroceedings of 10th
International Conference on Verification, Model Checkimgl ébstract Interpretation (VMCAI'09)olume
5403 ofLNCS pages 349-365.

Xing, Z. and Stroulia, E. (2005). “UMLDiIff: An Algorithm folObject-Oriented Design Differencing”. IAro-
ceedings of 20th IEEE International Conference on Autoth8eftware Engineering (ASE'Q%)ages 54—65.
IEEE Computer Society.

For resubmission to ACM Transactions on Software Engingeaind Methodology, 2010.



