
Managing Forked Product Variants

Julia Rubin1,2, Andrei Kirshin2, Goetz Botterweck3, Marsha Chechik1

1University of Toronto, Canada
2IBM Research at Haifa, Israel

3Lero, University of Limerick, Ireland

mjulia@il.ibm.com, kirshin@il.ibm.com, goetz.botterweck@lero.ie, chechik@cs.toronto.edu

ABSTRACT
We consider the problem of supporting effective code reuse as part
of Software Product Line Engineering. Our approach is based on
code forking – a practice commonly used in industry where new
products are created by cloning the existing ones. We propose to
maintain meta-information allowing organization to reason about
the developed product line in terms of features rather than incre-
mental code changes made in different forks and to detect inconsis-
tencies in implementations of these features. In addition, we pro-
pose to detect and maintain semantic, implementation-level require
relationships between features, supporting the developers when they
copy features from different branches or delete features in their
own branch, thus facilitating reuse of features between products.
Our approach aims at mitigating the disadvantages of the forking
mechanism while leveraging its advantages. We illustrate the ap-
proach on an example, and discuss its possible implementation and
integration with Software Configuration Management systems.

Categories and Subject Descriptors
D.2.13 [Software Engineering]: Reusable Software—Reuse Mod-
els; D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement—Version Control

General Terms
Design, Algorithms

Keywords
Software product lines, software configuration management, SCM.

1. INTRODUCTION
Software Product Line Engineering (SPLE) approaches support

development of products from a common set of core assets in a pre-
scribed way [3, 19]. These approaches advocate strategic, planned
reuse that yields predictable results. However, in reality, product
lines often emerge ad-hoc, when companies have to release a new
product that is similar, yet not identical, to existing ones. To imple-
ment new product functionality, developers often fork an existing
product and modify it to fit the new requirements (the “clone-and-
own” approach) [17, 6].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPLC’12 September 02-07, 2012, Salvador, Brazil
Copyright © 2012 ACM 978-1-4503-1094-9/12/09 ...$15.00.

Layered Map

Trip Computer

POI

Live Traffic Info

GPS-Pro GPS-EZ

Basic GPS

3D Building

Night Mode

Shortest Time
Routing

Basic GPS

Layered Map

POI

Night Mode

Figure 1: Two GPS products and their features.

Forking is typically perceived to be the easiest and the fastest
reuse mechanism, providing the ability to start from existing al-
ready tested code, while having the freedom and independence to
make necessary modifications to it. The disadvantages of this ap-
proach are also well-known: keeping track of changes made to each
of the forked variants and propagating the changes between the
variants increases the maintenance effort as the number of prod-
ucts grows. We illustrate some of these issues on the following
example.
Example: GlobalCo is a company that delivers GPS solutions. It
develops an advanced product (GPS-Pro) that has the Trip Computer
feature for monitoring the vehicle speed and the time to destination,
and the Layered Map feature for overlaying graphical objects on the
map. The product is well tested and released to the market.

At some point, GlobalCo market analysis reveals the need for a
simplified and less expensive variant of the product (GPS-EZ). Lay-
ered Map is determined to be the only essential advanced feature of
this product, while Trip Computer should not be included. The eas-
iest way to cope with this request is to fork the already tested code
of GPS-Pro and remove the Trip Computer feature implementation
from it.

Meanwhile, the development of GPS-Pro continues, and the abil-
ity to show points of interests (POI) and Live Traffic Info as addi-
tional layers on the map are added. It is decided to extend GPS-EZ
with the POI feature but not with Live Traffic Info; thus the imple-
mentation of the POI feature should be copied from GPS-Pro.

In parallel, the development team of GPS-EZ implements the abil-
ity to show 3D Buildings as an additional layer on the map. The
team also implements an extension to the POI feature but it cannot
be immediately propagated to GPS-Pro because its current version
of code is frozen towards a close release.

At this point, the GlobalCo marketing department decides to re-
assess the product portfolio. They ask the Product Line Manager
which features are implemented in which products and whether
there are differences in how these features are implemented. For
example, they want to know that the POI feature works differently
in GPS-Pro and GPS-EZ. However, since products are managed in-
dependently, there is no global view on the set of specific changes
performed by each team.

Moreover, if GlobalCo chooses to add new features Night Mode
and Shortest Time Routing to GPS-Pro, it is not clear whether they
can also be easily incorporated into GPS-EZ: the Night Mode feature

is not designed to work with 3D Buildings, because GPS-Pro does
not contain it. The Shortest Time Routing feature requires the Live
Traffic Info feature that GPS-EZ does not have. Yet the information
about such dependencies between features or even which feature
exists in which product is not readily available.

To assist GlobalCo and to facilitate similar scenarios, the devel-
opment environments should support the following tasks:

T1. Identify features implemented in the entire product portfolio
and in each individual product.

T2. Discover inconsistencies between implementations of fea-
tures in different products.

T3. Selectively copy feature implementations between products
while resolving possible interaction conflicts – those that oc-
cur when the integration of two features would modify the
behavior of one of them.

T4. Selectively remove feature implementations from a product.

The first two tasks support management of the product portfolio
and decisions about its evolution, whereas the second two support
feature exchange between products. These tasks rely on the ability
to (1) group low-level changes into semantically meaningful units
of functionality and (2) maintain implementation-level semantic re-
quire dependencies between these units.
Related work. Forked product variants are often managed by the
Software Configuration Management (SCM) systems as distinct
branches [28, 29]. Several authors aim to integrate SPLE concepts
with SCM [27, 25], focusing mostly on deriving products from a
common branch that encapsulates the entire product line and on
managing the derived products. Some approaches capture compo-
sition constraints between different versions of software compo-
nents that are stored in an SCM system and allow assembling a
configuration containing just those component versions that satisfy
the constraints [9, 31]. [4] proposes a heuristic for detecting arti-
facts that frequently changed together in different user activities.
[16] describes a technique for visualizing dependencies between
changes in an SCM system, but does not explicate what these de-
pendencies are or how they are collected. [2] focuses on provid-
ing SCM capabilities that reflect the hierarchical structure of pro-
gramming projects and teams that work on them. Numerous works
suggest promoting team awareness by sharing information about
changes and potential conflicts across branches [21, 10] or facili-
tating consistent editing of cloned code in a single branch [18]. The
language-based approach of [22] represents a product line as a core
module and a set of delta modules; user-defined ordering between
these is intended to capture semantic dependencies between the fea-
tures. Yet we are not aware of approaches aiming to organize ex-
isting, language-independent SCM-level changes into semantically
meaningful group, i.e., features, and to detect implementation-level
require dependencies between these features.
Contributions. Similarly to other authors, we believe that SPLE
can rely on forking for realizing code reuse, if the approach is well-
managed [24, 27, 25]. We thus propose to improve the efficiency of
forking practices used in industrial organizations while mitigating
their disadvantages. Specifically, we make the following contribu-
tions:

1. We define the Product Line Changeset Dependency Model
(PL-CDM), which captures the necessary information required for
managing forked product variants. PL-CDM stores grouping of re-
lated code modifications into meaningful functionalities and group-
ing of those into user-level features. It also stores semantic re-
quire dependencies between the functionalities and the features, as
well as the information on which functionalities and features are
included in each product.

2. We suggest ways of building PL-CDM and discuss possible
integration with existing SCM tools.

3. We demonstrate our approach for managing and evolving
forked product variants on the GlobalCo example.

Product Line Change Set
Dependency Model

Developer

Product Line
Manager

change sets
to remove

Artifact Process
data flow

(model building)

Legend

SCM System

Feature
Aggregation

Feature
Dependency
Calculation

T1: Identify
features

T4: Remove
feature

T3: Copy
feature

T2: Discover
inconsistencies

change sets
to copyCM Meta-data SCM Meta-data

data flow
(task execution)

Artifact AnArtifact AnWork item 1

involved in task

Artifact AnArtifact AnArtefact 1

CM System

Figure 2: Overview of our approach.

The remainder of this paper is organized as follows. We provide
an overview of the approach in Section 2. The PL-CDM model and
its uses are described in detail in Section 3. In Section 4, we discuss
ways of implementing our approach. Section 5 concludes the paper
and outlines ideas for future work.

2. OUR APPROACH
In this section, we outline our approach, schematically illustrated

in Figure 2. Its core part is the Product Line Changeset Dependency
Model (PL-CDM). It contains information about the entire product
line: its products, features of these products, and relationships be-
tween the features.

PL-CDM is built by extracting and analyzing data contained in
the SCM repository and possibly other sources of information such
as a Change Management (CM) system. This data analysis has the
following goals:

1. Feature Aggregation: grouping incremental code changes into
higher level concepts of SPLE, such as features. This facilitates
raising the level of abstraction and reasoning about the developed
product line using the accepted SPLE terminology and manage-
ment mechanisms.

2. Feature Dependency Calculation: detecting semantic depen-
dencies between feature implementations, such as require depen-
dencies indicating that one feature implementation cannot be real-
ized without the other. This facilitates isolating the minimal func-
tionality essential for a feature to operate.

The above goals are archived by the corresponding processes in
Figure 2. These processes can leverage a number of techniques,
including static code analysis, and analysis of CM and SCM meta-
data (e.g., information about branching) (see Section 4).

The information stored in PL-CDM is used for different SPLE-
related tasks. For example, Product Line Managers can query PL-
CDM to obtain the complete set of product line features and the
products that contain them (task T1). They can also detect products
that have inconsistent implementation of a feature, i.e., products
containing different sets of functionalities for a given feature (task
T2). Software Developers can also consult PL-CDM for detect-
ing require relationships between features and their corresponding
functionalities. These dependencies specify the entire set of func-
tionalities that need to be copied (resp., removed) when a feature is
copied (resp., removed) (tasks T3 and T4).

Various automatic tools can use PL-CDM as well. For example,
the SCM system itself can use it to issue notifications to developers
of one of the products when a feature they use was modified in an-
other product of the same product line. These active notifications,
at the granularity level of a feature, can help keep the developed
products in sync and prevent late and painful synchronization.

(a)

Glue

POI

GPS-Pro
GPS-EZ

18

Trip Computer

Live Traffic Info

Layered Map

3D Buildings

Night Mode

Basic GPS

Feature

Functionality

Change Set

Requires

1, 2, 3, 4, 5

GPS-Pro
GPS-EZ

GPS-Pro
GPS-EZ

19, 20

GPS-Pro
GPS-EZ

15, 16, 17

GPS-Pro
GPS-EZ

8, 9, 10

GPS-Pro
GPS-EZ

13

GPS-Pro
GPS-EZ

14

GPS-Pro
GPS-EZ

6, 7

GPS-Pro
GPS-EZ

11, 12

Shortest Time Routing

GPS-Pro
GPS-EZ

22, 23
GPS-Pro
GPS-EZ

21

Product

(b)
Figure 3: (a) the PL-CDM meta-model and (b) its instance, representing the GlobalCo GPS product line.

3. THE PRODUCT LINE CHANGESET DE-
PENDENCY MODEL

In this section, we describe the PL-CDM in more detail. We start
by describing the meta-model underlying the information stored by
PL-CDM (see Figure 3(a)) and then show how the captured infor-
mation facilitates common product line management and evolution
tasks.

3.1 The PL-CDM Meta-Model
Functionality is a central object of PL-CDM. It represents a soft-

ware module that fulfills a specific purpose. Functionalities are
implemented by a collection of individual Change Sets – a notion
used by most modern SCM systems to represent sets of changes
(additions, modifications and removals) delivered by a developer
in a single commit operation. Functionalities are grouped into Fea-
tures – objects that represent a prominent aspect that is of interest
to the user. A single functionality can implement a complete fea-
ture, some aspect of a feature, or fix a bug in a feature. In addition,
a functionality can be part of more than one feature.

Figure 3(b) shows a concrete instance of PL-CDM that corre-
sponds to the GlobalCo GPS product line after executing the sce-
nario described in Section 1. Here, the change sets and their group-
ing into functionalities were produced by hand. In this example,
Basic GPS, Trip Computer, Layered Map, Night Mode, POI, Live
Traffic Info, 3D Buildings and Shortest Time Routing are features of
the GlobalCo GPS product line. They are denoted by rectangular
elements. The POI feature is implemented by two separate func-
tionalities, denoted by shaded ellipses. The first one, realized by
two change sets (11 and 12), was originally implemented by the
team of GPS-Pro and later copied to GPS-EZ. The second one, real-
ized by a single change set (18), was implemented by the team of
GPS-EZ when they extended the POI feature.

The Product Line object represents the developed product line
and has a set of Products – GPS-Pro and GPS-EZ in our example.
Products differ in the functionalities they include. In Figure 3(b),
for each functionality in the lower half of the ellipse we list prod-
ucts that include this functionality and strike-through those that do
not. E.g., the second functionality of the POI feature (realized by
the change set 18) is included in GPS-Pro but not in GPS-EZ.

We say that a product includes a feature if it includes at least one
functionality of that feature. For example, feature POI is included
in GPS-Pro because one of its two functionalities is included.

We say that a functionality is common if it is included in all prod-
ucts of a product line. A feature is common if each product includes
at least one of its functionalities. For the GPS product line in Fig-
ure 3(b), POI is a common feature, while the Trip Computer feature
is included only in GPS-Pro but not in GPS-EZ.

When a functionality A cannot be realized without a function-
ality B, we say that A requires B. Require dependencies between
functionalities are denoted in Figure 3(b) by dashed arrows. For ex-

13

22, 23

11, 12 18

6, 7

15, 16,

17

19, 20

14 21

8, 9,

10

1, 2, 3, 4, 5

Shortest Time

Routing

Trip

Computer

POI

Basic GPS

Layered

Map

Night

Mode

Live Traffic

Info

3D

Buildings

Figure 4: A representation of the GPS product line.

ample, the first functionality of the POI feature requires the single
functionality of Layered Map.

Require dependencies between functionalities induce the corre-
sponding dependencies between features: a feature A requires a
feature B if at least one of the functionalities of A requires a func-
tionality of B. In Figure 3(b), we determine that feature POI re-
quires Layered Map because the first functionality of POI requires
the Layered Map’s sole functionality.

Glue (a.k.a. lifter in [20]) is a special type of functionality that
is used when two or more functionalities need integration. Glue is
included in a product whenever all functionalities that it requires
are included. For example, the Night Mode and the 3D Buildings
features were not designed to work together: the former was im-
plemented as part of product GPS-Pro which does not include the
latter. Propagating the Night Mode feature from GPS-Pro to GPS-EZ
caused problems presenting three-dimensional buildings when the
GPS operates in the night mode. The problem was resolved by
creating the glue functionality with change set 21.

3.2 Using the Meta-Model
Explicitly capturing and maintaining the information about the

developed products and their corresponding functionalities allows
us to construct different views on the data, assisting product line
managers and developers in their day-to-day tasks.

One example of such a view, describing the complete product
line of the GlobalCo GPS products, is shown in Figure 4. In this
view, similarly to Figure 3(b), product line features are represented
by rectangular elements, whereas their corresponding functional-
ities are represented by shaded elliptical elements. Similarly to
FODA notations for feature modeling [11], we organize the fea-
tures in a tree structure where parent-child relationships are derived
from dependencies between features: a child node requires its par-
ent node. When a feature has multiple require dependencies, we
pick a random one for the parent-child link and represent the rest
as cross-tree constraints (e.g., between the Shortest Time Routing
feature and the Basic GPS feature). More sophisticated techniques
for heuristically selecting the most appropriate parent element [23]
can be applied as well.

We also use FODA notations to represent common and variable
features and functionalities: common elements that are part of all
products of the product line are marked with a filled circle, whereas
those that are part of some but not all products are marked with
a hollow one. Even though common features are not necessarily
mandatory – e.g., it might be possible to produce a product that
does not have the Night Mode feature which exists in both GPS-Pro
and GPS-EZ, we find the notation useful to describe the current state
of a product line.

The generated view allows the user to assess the portfolio of
existing products (task T1). It also shows that the POI feature is
implemented in both GlobalCo’s GPS products, but the two imple-
mentations are not consistent – one of the products does not contain
a functionality that includes change set 18 (task T2).

Using PL-CDM, we can construct another view to show depen-
dencies between features of a particular product, which is espe-
cially useful for large models. Due to space limitations, we do not
include this view in the paper. However, it can be easily obtained
from the representation in Figure 3(b) by including only function-
alities and features which are part of the product of interest. This
view can tell the developers that if they decide to remove the feature
Layered Map from GPS-EZ, they should remove the POI feature as
well since its implementation depends on Layered Map (task T4).
Similarly, when deciding to add the Shortest Time Routing feature
implemented in GPS-Pro to GPS-EZ, the developers can see that
it depends on one of the functionalities of Live Traffic Info, which
should be added to GPS-EZ as well (task T3). Furthermore, such a
view can support developers in handling interactions between fea-
tures. For example, if the developers decide to copy the 3D Build-
ings feature from GPS-EZ to GPS-Pro, they will encounter the same
issue as faced by the developers of GPS-EZ when integrating the 3D
Buildings and the Night Mode features – these feature do not work
well together. However, they can detect and reuse the glue that was
already created in GPS-EZ.

The information captured in PL-CDM can assist users in a va-
riety of additional tasks, such as identifying the potential conse-
quences of a change (change impact analysis) or instantiating new
products by selectively “collecting” and assembling features of the
existing ones rather than performing a full fork.

4. TOWARDS AN IMPLEMENTATION
In Section 3, we showed that PL-CDM can be used for a variety

of product line related tasks performed on forked product variants.
While our proposal has not yet been implemented, in this section
we discuss ways of collecting the information required to construct
PL-CDM and integrating it with contemporary SCM systems.

4.1 Constructing PL-CDM
Figure 2 depicts two activities for building PL-CDM – Feature

Aggregation and Feature Dependency Calculation. The input to
these activities can come from a variety of sources. Below we de-
scribe a few concrete ideas for analyzing the information provided
by Change Management and SCM systems.
Feature Aggregation. Most modern SCM systems organize the
stored information into change sets. To reach a higher level of ab-
straction, we propose to aggregate change sets into functionalities
and features by analyzing meta-data provided by SCM systems.
For instance, common branching practices [28, 29] advise creating
a separate branch for development of each distinct functional unit.
We can then group all change sets committed to that branch into a
single functionality and all related functionalities into a feature.

Another source of aggregation information are Change Manage-
ment (CM) systems, e.g., Bugzilla1 and IBM Rational Team Con-
cert (RTC)2. RTC allows to organize user activities into work items

1http://www.bugzilla.org/
2http://www.ibm.com/software/rational/products/rtc/

which are further grouped into user stories. When coupled with
an SCM system, a CM system allows associating change sets with
work items. Hence, we can group all change sets belonging to the
same work item into a functionality and all functionalities belong-
ing to the same user story – into a feature.

Feature location techniques [5], aiming to locate pieces of code
that implement a specific program functionality, can also support
the aggregation process. Specifically, approaches based on static
analysis and information retrieval can be applicable for grouping
individual changes into functionalities.
Feature Dependency Calculation. To detect require dependen-
cies between functionalities, we can apply static code analysis tech-
niques, e.g., inter-procedural code slicing [26], which can help de-
termine whether two pieces of code depend on each other. For
example, if code introduced by at least one of the change sets im-
plementing functionality A modifies a value of some variable while
code of a change set implementing functionality B reads this value,
we can conclude that B requires A. However, if both functional-
ities only read and display the same variable, there is no require
dependency between them. They both depend on a functionality
that modifies this variable. In addition, approaches such as [13]
can help distinguish semantically meaningful changes from those
that introduce non-essential differences, i.e., cosmetic in nature and
generally not changing the behavior. Such differences can be dis-
regarded when detecting require dependencies.

While static analysis techniques can help identify non-trivial de-
pendencies that are not easily detected by humans, not all depen-
dencies can be detected this way. Additional information can come
from the CM meta-data: since work items are mapped onto func-
tionalities, the links between these work items, such as related to
and depends on, can be translated into dependencies between func-
tionalities. Such links are maintained by many CM systems, in-
cluding RTC.

4.2 Implication for SCM Tools
In our work, we described information necessary for managing

forked product variants and assisting the user in a variety of SPLE-
specific tasks. This information can be stored in a special-purpose
SPLE management layer implemented on top of existing SCM so-
lutions. However, we believe that if the information were available
within SCM tools, it could be used for a variety of “generic” (i.e.,
not only SPLE-specific) tasks. In what follows, we describe several
proposed extensions to SCM tools.
Require Dependencies. Existing systems keep track of temporal
dependencies between change sets. However, given a change set,
they provide no support for determining which dependent change
sets are required for the software to function properly. Thus, it is
impossible to determine which changes are to be propagated when
copying a functionality from one branch to another.

To solve this problem, we propose extending SCM tools with an
ability to capture semantic require dependencies between change
sets. While these dependencies are computed using language-specific
code analysis techniques which are hardly appropriate for SCMs,
obtaining them from external modules, such as PL-CDM, storing
them and presenting them to users when they browse change his-
tories, can support selective propagation of coherent functionalities
between branches.
Change Set Propagation. A mechanism called patching in RTC
and cherry picking in Git3 allows picking and selectively propagat-
ing some of the change sets between branches. This mechanism,
however, usually results in creating a new change set in the target
branch, without any traceability to the original one. This leads to
divergence of change histories and makes propagation of changes
between branches even more complex since users do not have in-

3http://git-scm.com/

formation about which functionalities exist in other branches and
absent in their own branch.

To address this issue, SCMs could maintain an explicit map-
ping between change sets as they are propagated between branches.
In this paper, we assumed such a mapping by using the original
change set numbers in the source and the target branch. For exam-
ple, in Figure 3(b), the Shortest Time Routing feature copied from
GPS-Pro to GPS-EZ is implemented in both products by the same
change sets, 22 and 23. This treatment was inspired by a planned
extension to RTC that proposes a similar approach for handling his-
tory divergence in future RTC releases (work item #170658).

5. CONCLUSION AND FUTURE WORK
In this work, we presented an approach for realizing code reuse

as part of SPLE. The approach is based on SCM branching, typi-
cally perceived to be the easiest and the fastest reuse mechanism as
it provides the ability to start from existing and already tested code,
while having the freedom and independence to make any necessary
modifications to it.

The proposed approach can be implemented on top of existing
SCM systems, allowing the user to reason about the developed
product line in terms of features rather than individual code changes
made in distinct branches and to detect inconsistencies in imple-
mentations of these features. In addition, we proposed to detect and
maintain semantic require relationships between features, support-
ing the developers when they copy features from different branches
or delete features in their own branch, thus facilitating reuse of fea-
tures between products.

Instead of maintaining forked product variants, some approaches,
e.g., [15, 1], advocate refactoring them into “single-copy” represen-
tations, eliminating duplications and explicating variabilities (e.g.,
the annotative or compositional SPLE approaches [12]). Explicit
guidelines and methodologies for building product lines out of le-
gacy systems have been defined [14, 8], and tool support for helping
the user identify similar code elements is available. These tools are
based on clone detection mechanisms, e.g., [7, 17], change history
analysis [30] and more. Most of the code refactoring approaches,
however, are invasive, time-consuming and require significant man-
ual work. Often organizations are not willing or cannot afford the
transformation to single-copy representations and thus keep using
the forking practices. To support such organizations, we focus on
improving the efficiency of practices that are in use rather than at-
tempting to refactor legacy product lines.

However, since our approach explicates product line commonal-
ities and variabilities and traces them to the implementation, it can
reduce the transition effort if an organization decides to shift to a
different form of code reuse. More research is needed to validate
the costs and benefits of supporting existing practices vs. trans-
forming organizations into different approaches. This could be a
direction for possible future work.

In addition, our PL-CDM can be further extended to support ad-
ditional tasks and use-cases, including handling of product releases,
as well as detecting and using additional dependencies such as mu-
tual exclusion or feature interactions. Implementing the proposed
system and deploying it in a real-life setting is also an obvious di-
rection for future work.

6. REFERENCES
[1] D. Beuche. Transforming Legacy Systems into Software Product

Lines. In Proc. of SPLC’11 Tutorial, 2011.
[2] M. C. Chu-Carroll and S. Sprenkle. Coven: Brewing Better

Collaboration through Software Configuration Management.
SIGSOFT Softw. Eng. Notes, 25:88–97, Nov. 2000.

[3] P. C. Clements and L. Northrop. Software Product Lines: Practices
and Patterns. SEI Ser. in Soft. Eng. Addison-Wesley, 2001.

[4] G. Clemm. Activity-Based Software Traceability Management
Method and Apparatus, 2010. US Patent 7716649 B2.

[5] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk. Feature
Location in Source Code: A Taxonomy and Survey. J. of Soft.
Maintenance and Evolution, 23(8), 2011.

[6] N. A. Ernst, S. M. Easterbrook, and J. Mylopoulos. Code Forking in
Open-Source Software: a Requirements Perspective. CoRR,
abs/1004.2889, 2010.

[7] D. Faust and C. Verhoef. Software Product Line Migration and
Deployment. J. of Soft. Practice and Exp., 30(10):933–955, 2003.

[8] S. Ferber, J. Haag, and J. Savolainen. Feature Interaction and
Dependencies: Modeling Features for Reengineering a Legacy
Product Line. In Proc. of SPLC’02, pages 235–256, 2002.

[9] B. Gulla, E.-A. Karlsson, and D. Yeh. Change-Oriented Version
Descriptions in EPOS. Soft. Eng. J., 6(6):378 –386, 1991.

[10] L. Hattori and M. Lanza. Syde: a Tool for Collaborative Software
Development. In Proc. of ICSE’10, Vol. 2, pages 235–238, 2010.

[11] K. Kang, S. Cohen, J. Hess, W. Nowak, and S. Peterson.
Feature-Oriented Domain Analysis (FODA) Feasibility Study.
Technical report, CMU/SEI-90TR-21, 1990.

[12] C. Kästner and S. Apel. Integrating Compositional and Annotative
Approaches for Product Line Engineering. In Proc. of GPLE’08
Wksps., pages 35–40, 2008.

[13] D. Kawrykow and M. P. Robillard. Non-Essential Changes in Version
Histories. In Proc. of ICSE’11, pages 351–360, 2011.

[14] R. Kolb, D. Muthig, T. Patzke, and K. Yamauchi. Refactoring a
Legacy Component for Reuse in a Software Product Line: a Case
Study: Practice Articles. J. of Software Maintenance and Evolution,
18(2):109–132, 2006.

[15] C. W. Krueger. Easing the Transition to Software Mass
Customization. In Proc. of 4th Wrksp. on Soft. Product-Family Eng.
(PFE), pages 282–293. Springer-Verlag, 2002.

[16] C. R. Loff. Graphical Representation of Dependencies Between
Changes of Source Code, 2011. US Patent 11/647,905.

[17] T. Mende, R. Koschke, and F. Beckwermert. An Evaluation of Code
Similarity Identification for the Grow-and-Prune Model. Journal of
Software Maintenance and Evolution: Research and Practice,
21(2):143–169, 2009.

[18] T. T. Nguyen, H. A. Nguyen, N. H. Pham, J. M. Al-Kofahi, and T. N.
Nguyen. Clone-Aware Configuration Management. In Proc. of
ASE’09, 2009.

[19] K. Pohl, F. Guenter Boeckle, and van der Linden. Software Product
Line Engineering : Foundations, Principles, and Techniques.
Springer, 2005.

[20] C. Prehofer. Feature-Oriented Programming: A Fresh Look at
Objects. In Proc. of ECOOP’97, pages 419–443, 1997.

[21] A. Sarma, Z. Noroozi, and A. V. D. Hoek. Palantir: Raising
Awareness among Configuration Management Workspaces. In Proc.
of ICSE’03, 2003.

[22] I. Schaefer, L. Bettini, V. Bono, F. Damiani, and N. Tanzarella.
Delta-Oriented Programming of Software Product Lines. In Proc. of
SPLC’10, pages 77–91, 2010.

[23] S. She, R. Lotufo, T. Berger, A. Wasowski, and K. Czarnecki.
Reverse Engineering Feature Models. In Proc. of ICSE’11, 2011.

[24] M. Staples and D. Hill. Experiences Adopting Software Product Line
Development without a Product Line Architecture. In Proc. of
APSEC’04, pages 176–183, 2004.

[25] C. Thao, E. Munson, and T. Nguyen. Software Configuration
Management for Product Derivation in Software Product Families. In
Proc. ECBS’08, pages 265–274, 2008.

[26] F. Tip. A Survey of Program Slicing Techniques. J. Prog. Lang., 3(3),
1995.

[27] J. van Gurp and C. Prehofer. Version Management Tools as a Basis
for Integrating Product Derivation and Software Product Families. In
Proc. of SPLC’06 Wrksp. on Variab. Mgment, pages 48–58, 2006.

[28] C. Walrad and D. Strom. The Importance of Branching Models in
SCM. IEEE Computer, 35(9):31–38, 2002.

[29] L. Wingerd and C. Seiwald. High-level Best Practices in Software
Configuration Management. In Proc. of SCM’98, volume 1439 of
LNCS, pages 57–66, 1998.

[30] K. Yoshimura, F. Narisawa, K. Hashimoto, and T. Kikuno. FAVE:
Factor Analysis Based Approach for Detecting Product Line
Variability from Change History. In Proc. of MSR’08, pages 11–18,
2008.

[31] A. Zeller and G. Snelting. Unified Versioning Through Feature
Logic. ACM Trans. Softw. Eng. Methodol., 6:398–441, 1997.

