
Comparing the Effectiveness of Reasoning Formalisms for
Partial Models

Pooya Saadatpanah Michalis Famelis Jan Gorzny Nathan Robinson
Marsha Chechik Rick Salay

University of Toronto, Toronto, Canada
{pooya, famelis, jgorzny, nrobinso, chechik, rsalay}@cs.toronto.edu

ABSTRACT
Uncertainty is pervasive in Model-based Software Engineering. In
previous work, we have proposed partial models as a way to expli-
cate uncertainty during modeling. Using partial models, modelers
can perform certain forms of reasoning, like checking properties,
without the having to prematurely resolve uncertainty. In this pa-
per, we present a strategy for encoding partial models into differ-
ent reasoning formalisms and conduct an empirical study aimed to
compare the effectiveness of these formalisms for checking prop-
erties of partial models.

1. INTRODUCTION
Modelers are routinely called upon to work with artifacts that con-
tain varying degrees of uncertainty. However, existing modeling
methodologies, tools, and libraries usually assume unambiguous
artifacts. Modelers are thus often forced to act as if they were cer-
tain, artificially removing uncertainty from their artifacts. This car-
ries the risk of making premature decisions, which can have signif-
icant effects on the quality of the produced software.

In [5], we introduced the idea of using partial models as first class
artifacts to explicitly handle uncertainty by allowing the deferral
of uncertainty resolution in model-based software development. A
partial model is a model that represents a set of conventional mod-
els. In subsequent work, we’ve studied various aspects of this ap-
proach, such as property checking and diagnosis [6], refinement [15]
and transformation [7]. In [17], we introduced MAVO partiality, as
a way to explicate uncertainty using syntactic annotations. We in-
troduced four kinds of such annotations:

• May partiality: annotating a model element with M indicates
that we are unsure about whether it should exist in the model or not,

• Abs partiality: annotating an element with S indicates that
we are unsure about whether it should actually be a collection of
elements,

• Var partiality: annotating an element with V indicates that we
are unsure about whether it should actually be merged with other
elements, and

• OW partiality: annotating the entire model with INC indicates
that we are unsure about whether it is complete.

Figure 1(a) shows a simple partial class diagram M1. In addition to
the class Vehicle, M1 has several points of uncertainty, explicated
with MAVO annotations: (a) We are uncertain whether we need to
create separate classes for LandVehicles. (b) If we do that, we do
not know how many such classes we may need to create. (c) We
are not sure whether they should be subclasses of Vehicle. (d) We
do not know where we should add the attribute numDoors in this
hierarchy. Figure 1(b) shows a conventional model m1 where all
these points of uncertainty have been resolved. Such models that
can result from systematically removing uncertainty from a MAVO
model are called concretizations. In this example, LandVehicle
has been refined to three classes Car, Truck and Motorcycle. The
attribute numDoors has been assigned to the class Vehicle and
thus the class Motorcycle does not inherit from Vehicle.

An important benefit of partial models is that we can check their
properties without the need to remove uncertainty, thus facilitating
decision deferral. For example, we might be interested in checking
whether there can exist a refinement of M1 that has cycles in the
inheritance hierarchy.

In [17], we gave semantics to the MAVO annotations using First
Order Logic (FOL) and demonstrated how they can be used for
property checking using Alloy [11]. In this paper, we compare Al-
loy with three other reasoning formalisms, CSP [19], SMT [3] and
ASP [12], aiming to determine which is most efficient for checking
properties of partial models. We focus exclusively on the first three
partiality types (May, Abs, Var). In the future, we intend to also
study reasoning with OW, which is significantly harder. To facili-
tate meaningful comparison, we created an encoding of MAVO in
Relational Algebra that can be readily translated into the different
modeling formalisms. Using this encoding, we set up a series of
experiments using randomly generated MAVO models.

The rest of the paper is structured as follows: Section 2 gives neces-
sary background on MAVO models and the reasoning formalisms.
Section 3 introduces the relational encoding of MAVO. Section 4
describes the experiments for comparing the reasoning formalisms.
We discuss related work in Section 5 and conclude in Section 6.

2. BACKGROUND
MAVO models. In this paper, we consider models expressed as
typed, directed graphs. The model M1 in Figure 1(a) is shown in
its abstract syntax as a typed graph GM1 in Figure 1(c). Classes

Figure 1: (a) Example MAVO model M1. (b) A concretization
m1 of M1. (c) M1 expressed as an annotated, typed graph GM1 .
(d) GM1 ’s type graph GCD .

and attributes are represented in GM1 as typed nodes; inheritance
and attribute ownership as typed edges. A typed graph’s nodes and
edges are called its elements. GM1 conforms to the type graph
GCD , shown in Figure 1(d), that corresponds to the signature of a
very simple UML Class diagram metamodel. GCD specifies that
there exist Classes and Attributes, that one Class can inherit
another, and that Classes can own Attributes.

A MAVO model is simply a typed graph whose elements can be
decorated with the MAVO annotations. Semantically, a MAVO
model represents a set of conventional models (its concretizations).
We consider a non-annotated model to be a MAVO model that rep-
resents a set containing exactly one concretization. In Figure 1(c),
MAVO annotations are shown in black circles. For example, the
attribute numDoors is owned by the class X annotated with V, indi-
cating that it can be merged with some other Class node.

In Section 1, we introduced the idea that a MAVO model can be re-
fined [17] to conventional models, based on the MAVO annotations
of its elements. This is done by refining the individual elements
of the MAVO model (“MAVO elements”) to elements in the con-
cretization (“instance elements”), according to the definitions of the
different MAVO annotations. For example, in the concretization
m1, shown in Figure 1(b), the instance elements Car, Truck and
Motorcycle refine the S-annotated MAVO element LandVehicle
of M1.

Reasoning formalisms. In this section, we briefly introduce the
four reasoning formalisms that we study in this paper.

Alloy [11] allows users to create First Order Logic specifications
expressed in relational logic. Using the Alloy Analyzer tool, these
specifications are grounded within an explicit bounded scope to
create a CNF representation. Properties can be expressed as asser-
tions and an off-the-shelf SAT solver, such as Minisat [4], is used
to attempt to disprove the assertions by finding counterexamples.

Constraint Satisfaction Problems (CSP) operate over a finite set of
variables and a finite set of constraints over them. The CSP solver
attempts to find values of all variables so that all constraints are
satisfied. For our investigation, we used Minizinc [13], a medium-
level constraint modeling language and solver designed for speci-

fying constrained optimization and decision problems over integers
and real numbers.

Satisfiability Modulo Theory (SMT) solvers combine the standard
constraint satisfaction search with richer theories, such as linear
arithmetic, bitvectors, arrays, etc. [3]. The standardized input lan-
guage SMT-LIB2 [2] is often used for modeling the problem. For
our investigation, we used Z3, an SMT solver and theorem prover
developed at Microsoft Research [3].

Answer Set Programming (ASP) [1] combines a rich declarative in-
put language based on logic programming with negation-as-failure.
Solutions to an ASP program are minimal sets of atoms that are
supported by and consistent with the program. Modern ASP solvers
are based on a modified DPLL procedure or compile the input pro-
gram into CNF and use an off-the-shelf SAT solver. For our inves-
tigation, we used the solver Clasp [9] with the program grounder
GrinGo [8]. GrinGo accepts rules with variables, arithmetic, sets,
and cardinality constraints.

3. ENCODING MAVO
We introduced FOL semantics for MAVO in [17]. Here, we present
an encoding of MAVO models in Relational Algebra (RA), a for-
malism typically used in the field of database management systems
(DBMSs) [18]. This encoding is intended to be used as a specifi-
cation that can be readily implemented in the same way in all four
reasoning formalisms that we study in this paper.

Intuitively, our encoding represents MAVO elements as relations
whose content is constrained according to their MAVO annotations.
We present it by illustrating the steps required to encode the exam-
ple the partial model M1 shown in Figure 1(a).

For each type in the MAVO model’s type graph, we create an in-
stantiation relation which associates MAVO elements of that type
with their refining instance elements in the concretization. All in-
stantiation relations for M1 are shown in Figure 2(b). For example,
consider the type Class from the type graph GCD in Figure 1(d).
Its corresponding instantiation relation, CLASS, relates MAVO el-
ements in M1 with the instance elements in m1, shown in Fig-
ure 1(b), that refine them. For example, LandVehicle is refined
by the instance elements Car, Truck, and Motorcycle.

Every instantiation relation like CLASS has two columns, one for
MAVO elements and one for instance elements. We keep track
of all elements of the MAVO model in a special relation called
Constants . The instance elements are declared in a separate set
of relations called universe relations.

The Constants relation has an entry for every MAVO element,
keeping track of its name, its type and its MAVO annotations. In
our example, the relation Constants for M1 is:

name type isM isV isS
Constants : Vehicle Class False False False

LandVehicle Class True False True
X Class False True False

numDoors Attribute False False False
g1 Inherits True False True
c1 Owns False False False

We create one universe relation for each type of element. When
a MAVO model is concretized, the universe relations are popu-
lated with instance elements. The universe relations for M1 are

Instance element MAVO element Instance element left right
Class_Univ: Vehicle CLASS: Vehicle Vehicle Inherits_Source: g1/1 LandVehicle/Car

LandVehicle/Car LandVehicle LandVehicle/Car g1/2 LandVehicle/Truck
LandVehicle/Truck LandVehicle LandVehicle/Truck
LandVehicle/Moto LandVehicle LandVehicle/Moto left right

X Vehicle Inherits_Target: g1/1 Vehicle
Instance element g1/2 Vehicle

Attribute_Univ: numDoors MAVO element Instance element
ATTRIBUTE: numDoors numDoors left right

Instance element Owns_Source: c1 Vehicle
Inherits_Univ: g1/1 MAVO element Instance element

g1/2 INHERITS: g1 g1/1 left right
g1 g1/2 Owns_Target: c1 numDoors

Instance element
Owns_Univ: c1 MAVO element Instance element

OWNS: c1 c1

(a) (b) (c)

Figure 2: Relational representation of m1, shown in Figure 1(b): (a) universe relations, (b) instantiation relations, (c) graph relations.

shown in Figure 2(a). In our example, they have been populated
with the instance elements of the concretization m1. E.g., the rela-
tion Inherits_Univ contains two inheritance instance elements,
g1/1 and g1/2, as both Car and Truck inherit from Vehicle in m1.

We define bound to be the maximum number of instance elements
that can be associated with some MAVO element in an instantia-
tion relation. Choosing an appropriate bound is necessary for most
solvers because they typically ground the encoding to some finite
representation. The choice of the bound can have significant impli-
cations: for example, when the bound is 2, m1 is not a valid con-
cretization of M1 because LandVehicle is associated with three
instance variables in the relation CLASS.

The relational-algebraic definitions of the instantiation relations of
M1 are shown in lines 3-7 of Figure 3. The instantiation rela-
tion for each type is defined as the Cartesian product of its uni-
verse with the subset of the elements of that type in the relation
Constants . The result is stripped of the additional metadata
columns from Constants using projection, to only keep a column
for MAVO elements and one for instance elements. In general,
in instantiation relations, a MAVO element can be associated with
any number of instance elements. Additionally, different MAVO
elements may be associated with the same instance element. In our
example, in CLASS, LandVehicle is associated with three instance
elements (Car, Truck and Motorcycle), while Vehicle and X are
both associated with the instance element Vehicle.

The possible ways that MAVO elements can be associated with
instance elements are constrained by the presence or absence of
MAVO annotations. In an instantiation relation, MAVO elements
that aren’t annotated with S cannot be associated with more than
one instance element. In our example, only the MAVO elements
LandVehicle and g1 are S-annotated, so all others are associ-
ated with at most one instance element. The relational-algebraic
definitions of the Sconstraints for M1 are in lines 13-17 of Fig-
ure 3. There is one constraint for each MAVO element that does not
have an Sannotation. For example, the constraint for the element
Vehicle selects the records containing it from its type’s instanti-
ation relation (CLASS) and checks whether the selection contains
more than one record.

In an instantiation relation, MAVO elements that are not anno-
tated with M must be associated with at least one instance ele-

ment (which is true in our example). Yet g1 is associated with
only two inheritance instance elements: there exists one instance
of LandVehicle (the element Motorcycle) that does not inherit
Vehicle. The relational-algebraic definitions of the M constraints
for M1 are given in lines 8-12 of Figure 3. For example, the con-
straint for the element Vehicle selects the records containing it
from its type’s instantiation relation (CLASS) and checks whether
the selection is empty.

Pairs of MAVO elements of the same type where both don’t have
the annotation V, e.g., Vehicle and LandVehicle, cannot share
instance elements. However, Vehicle does share an instance ele-
ment with the V-annotated element X. The relational-algebraic def-
initions of the V constraints for M1 are given in lines 18-23. For
example, the constraint for the element Vehicle creates two selec-
tions: one by selecting from CLASS all instance elements refining
Vehicle and one by selecting from CLASS all instance elements
refining other non-V-annotated elements. The constraint then uses
natural join to check whether these two selections intersect.

In addition to the universe and instantiation relations, and the MAVO
constraints, we also define other relations and constraints, to ensure
that concretizations are structurally well-formed graphs. For every
edge type, we create two graph relations, one for the source and
one for the target. The graph relations for M1 are shown in Fig-
ure 2(c). E.g., for the type Owns from the type graph GCD in Fig-
ure 1(d), we have the relations Owns_Source and Owns_Target.
The former says that the source node of c1 is the class Vehicle; the
latter that its target node is the attribute numDoors.

The relational-algebraic definitions of the graph relations of M1 are
shown in lines 24-28 of Figure 3. According to GCD , the source
node of any instance element of type Owns must be of type Class
and its target of type Attribute. Therefore, the source graph re-
lation for Owns is defined as the Cartesian product of the universe
relation of Owns and that of Class. The target graph relation is de-
fined similarly. For clarity, the columns of each Cartesian product
are renamed to “left” and “right”, where “left” always refers to the
Owns element and “right” to its source or target node.

The well-formedness of concretizations is ensured by constraints
over graph relations. We create one graph constraint for each MAVO
edge element requiring that (a) if an instance edge exists, its source
and target instance nodes also exist, and (b) the edge’s type is re-

Universe relations:1

Class_Univ, Attribute_Univ, Inherits_Univ, Owns_Univ2

Instantiation Relations:3

CLASS = πMavoElement, InstanceElement((σtype=ClassConstants)×Class_Univ)4

ATTRIBUTE = πMavoElement, InstanceElement((σtype=AttributeConstants)×Attribute_Univ)5

INHERITS = πMavoElement, InstanceElement((σtype=InheritsConstants)×Inherits_Univ)6

OWNS = πMavoElement, InstanceElement((σtype=OwnsConstants)×Owns_Univ)7

M constraints:8

σMavoElement=VehicleCLASS 6= ∅9

σMavoElement=XCLASS 6= ∅10

σMavoElement=numDoorsATTRIBUTE 6= ∅11

σMavoElement=c1OWNS 6= ∅12

S constraints:13

|σMavoElement=VehicleCLASS | ≤ 114

|σMavoElement=XCLASS | ≤ 115

|σMavoElement=numDoorsATTRIBUTE | ≤ 116

|σMavoElement=c1OWNS | ≤ 117

V constraints:18

((σMavoElement 6=Vehicle ∧ isV=FalseConstants) 1MavoElement CLASS) 1InstanceElement σMavoElement=VehicleCLASS = ∅19

((σMavoElement 6=LandVehicle ∧ isV=FalseConstants) 1MavoElement CLASS) 1InstanceElement σMavoElement=LandVehicleCLASS = ∅20

((σMavoElement 6=numDoors ∧ isV=FalseConstants) 1MavoElement ATTRIBUTE) 1InstanceElement σMavoElement=numDoorsATTRIBUTE = ∅21

((σMavoElement 6=g1 ∧ isV=FalseConstants) 1MavoElement INHERITS) 1InstanceElement σMavoElement=g1INHERITS = ∅22

((σMavoElement 6=c1 ∧ isV=FalseConstants) 1MavoElement OWNS) 1InstanceElement σMavoElement=c1OWNS = ∅23

Graph Relations:24

Inherits_Source=ρleft/Inherits_Univ.InstanceElement, right/Class_Univ.InstanceElement(Inherits_Univ×Class_Univ)25

Inherits_Target=ρleft/Inherits_Univ .InstanceElement, right/Class_Univ.InstanceElement(Inherits_Univ×Class_Univ)26

Owns_Source=ρleft/Owns_Univ.InstanceElement, right/Class_Univ.InstanceElement(Owns_Univ×Class_Univ)27

Owns_Target=ρleft/Owns_Univ .InstanceElement, right/Attribute_Univ.InstanceElement(Owns_Univ×Attribute_Univ)28

Graph constraints:29

σMavoElement=g1INHERITS 6= ∅ ⇒ (σMavoElement=LandVehicleCLASS 6= ∅) ∧ (σMavoElement=VehicleCLASS 6= ∅) ∧
(σleft=g1 ∧ right=LandVehicleInherits_Source 6= ∅) ∧ (σleft=g1 ∧ right=VehicleInherits_Target 6= ∅)

30

31

σMavoElement=c1OWNS 6= ∅ ⇒ (σMavoElement=XCLASS 6= ∅) ∧ (σMavoElement=numDoorsATTRIBUTE 6= ∅) ∧
(σleft=c1 ∧ right=XOwns_Source 6= ∅) ∧ (σleft=c1 ∧ right=numDoorsOwns_Target 6= ∅)

32

33

Figure 3: Relational encoding of the MAVO model M1 shown in Figure 1(a).

spected. For example, the existence of the Owns instance element
c1 implies the existence of m1 nodes Vehicle and numDoors. The
type of c1 is respected because the source and target nodes are in-
cluded in its corresponding graph relations. The graph constraints
for M1 are shown in lines 29-33 of Figure 3. For example, the
constraint for Owns mandates that its M-constraint implies the M-
constraints of its endpoints (X and numDoors) and also that its
graph constraints contain instance elements of the endpoints.

Implementation details. The RA encoding that we present here
is designed to function as an intermediate representation between
the FOL semantics of MAVO, presented in [17], and reasoning for-
malisms such as Alloy, CSP, SMT, and ASP. More efficient en-
codings, that take advantage of the intricacies of each of these for-
malisms, can definitely be created. Yet the advantage of the one
presented here is that it can be readily translated into each of the
four formalisms.

In the CSP encoding, we represent instance elements as integers
and the various relations as finite sets of integers. The maximum
size of the sets has to be defined statically, depending on the ex-
plicit value of bound. The MAVO M- and S-constraints become
constraints over the cardinalities of sets, whereas the V-constraints
are constraints over the intersection of sets.

In the SMT encoding, we implement instance elements as abstract
values and relations as uninterpreted boolean functions. A function
implementing a relation returns True for tuples that belong to the

relation, and False otherwise. MAVO constraints are implemented
in quantified logic over the truth tables of the functions. Unlike the
other formalisms, SMT does not require an explicitbound because
the solver is able to efficiently handle infinite types using abstrac-
tion.

In the Alloy encoding, we implement relations as Alloy signatures.
The tool natively supports relational logic, and running it populates
the signatures with atoms which represent the instance elements.
MAVO constraints are expressed as quantified predicates over the
signatures. As with the CSP encoding, a bound on the number of
isntance variables is required.

In the ASP encoding, we use a set of program rules to generate
ASP atoms representing a bounded number of instance elements.
Another set of program rules generates ASP atoms to represent the
relations on these instance variables. Finally, a set of program rules
eliminates solutions that do not correspond to valid a concretization
given the MAVO constraints.

4. EXPERIMENTS
To study the effectiveness of the four reasoning formalisms for
checking properties of MAVO models, we conducted a series of
experiments. To simplify our investigation, we did not consider the
OW partiality type, focusing instead on the other three: May, Set
and Var.

Experimental Setup. To get inputs for our experiments, we cre-

Small Medium Large X-Large
0.00

20.00

40.00

60.00

80.00

100.00

Bound = 2

SMTASPAlloyCSP

Model size

T
im

in
g

 s
co

re

Small Medium Large X-Large
0.00

20.00

40.00

60.00

80.00

100.00

Bound = 4

SMTASPAlloyCSP

Model size

T
im

in
g

 s
co

re

Small Medium Large X-Large
0.00

20.00

40.00

60.00

80.00

100.00

Bound = 6

SMTASPAlloyCSP

Model size

T
im

in
g

 s
co

re

Figure 5: Experimental results.

Size of Model S M L XL
#Elements (0, 25] (25, 50] (50, 75] (75, 100]
Exemplar 12 37 62 87
#Nodes 7 14 20 24
#Edges 5 23 42 63

Table 1: Model size categories.

• There exists a node with a self-loop.
• All nodes have outgoing edges.
• All nodes have outgoing or incoming edges.
• For all pairs of nodes 〈n1, n2〉 there exists at most one edge

e such that n1
e→ n2

• For every pair of nodes 〈n1, n2〉, n1 6= n2 there exist two
edges 〈e1, e2〉 such that n1

e1→ n2 and n2
e2→ n1.

Figure 4: Properties used in the experiments.

ated a random model generator. The generated models conform to
a bare-bones metamodel for directed graphs and are randomly dec-
orated with MAVO annotations. Given that solvers typically take
advantage of constraints to prune the search space, we opted to us-
ing a minimal metamodel of plain directed graphs. Since it imposes
a minimal set of constraints, it is thus the most difficult and the most
general metamodel for checking properties.

We aimed to create parameterized random models to enable in-
creasing model sizes and levels of uncertainty. To avoid a com-
binatorial explosion of possible setups, we fixed a few structural
parameters of the generated models, based on three “real” case
studies constructed using MAVO [17, 16, 10]. In particular, we
fixed the graph density of the models (0.11), the overall percentage
of MAVO-annotated elements (36%) and the percentages (out of
all MAVO-annotated elements) of M-, S- and V-annotated elements
(48%, 33% and 43%, respectively).

We discretized the space of possible model sizes by defining four
size categories (Small, Medium, Large and Extra Large) which
range between 0 and 100 elements such that two ([6, 17]) of the
three case studies fell into the Medium category and one ([16])
into the L category. We selected the median number of elements
as the exemplar model size for each category (see Table 1). With
fixed percentages of MAVO annotations, each category represents
an increasingly more difficult verification problem, since the corre-
sponding MAVO model is bigger and further encodes a larger set
of concretizations.

Each generated model was automatically translated into each rea-
soning formalism and checked for five properties. The proper-
ties, shown in Figure 4, were inspired from the structural well-
formedness constraints of the models in our three reference case
studies. The result of the run is determined as follows [6]: a prop-
erty is True (False) for a MAVO model iff it is True (False) for
all its concretizations. If the property is True for some concretiza-
tions and False for others, then the result of checking the property
is Maybe, meaning that it depends on how the MAVO model is
going to be refined. Therefore, in order to check a property, we
have to run the solver twice: once to find a concretization where
the property is True and once where it is False.

Each experiment was repeated for three different values of bounds,
set to 2, 4 or 6. We ran each experiment five times and recorded the
average for each datapoint. We set cut-off values for runtime and
memory consumption to 10 minutes and five GB of RAM, respec-
tively. The experiments were run on an Ubuntu 10.04 LTS 64-bit
machine with two quad-core Intel E5355 CPUs with 2.66 GHz and
28GB of RAM. Our recorded observations are available online at
http://www.cs.toronto.edu/~pooya/modevva12.html .

Results. In our experiments, 8.2% of property checks turned out
to be True, 18.4% False, and 32.3% Maybe. An additional 41.1%
of checks was inconclusive because of time-outs. We present the
(averaged) results in Figures 5(a-c), for bounds 2, 4 and 6, respec-
tively. Each chart tracks the changes in runtime for each modeling
formalism as the reasoning problems become harder with increas-
ing size. The horizontal axis captures the model size (S, M, L, XL);
the vertical axis records the timing score for each solver. The score
is calculated as the percentage of the total allocated time (120 sec.)
that was unused after the solver completed all five property checks.
A solver that times out for all 5 properties gets a score of 0%. The
runtime also reflects the solver’s performance with respect to mem-
ory consumption (exceeding the memory limit causes disk usage
thus slowing the solver down). In general, a higher score means
that the solver needed less time and less memory to complete.

In the figures, SMT is represented by a solid black line and is con-
sistently above roughly 80% and (as expected) is unaffected by
bound. CSP, indicated by an orange dotted line with rhombuses,
consistently scores below 20% for anything except S models. Al-
loy (blue dotted line with rectangles) performs well for S, M and L
models and small bounds, but rapidly deteriorates with larger mod-
els and increasing the bound. ASP is indicated by a green dotted
line with triangles. Its performance follows that of SMT, but dete-

http://www.cs.toronto.edu/~pooya/modevva12.html

riorates for XL models.

Our observations indicate that with increasing bound and model
size, SMT generally performs better than the other formalisms.
The only case where SMT does not score the best is for models in
the L category and bound 2, where it scores 86.92%, compared to
94.83% from Alloy. For the easiest problem (S models and bound
2), all formalisms performed very well, scoring close to 100%. In
general, the performance of ASP was comparable to that of SMT,
except for models in the XL category. For all bounds and for all
categories except XL, the average difference between the score of
ASP and that of SMT was 4.42%. However, for XL models their
average difference was 41.61%.

The worst score that we observed for SMT was 77.65% for mod-
els in the XL category. To further study the limitations of using
SMT for reasoning, we conducted an additional experiment. We
incrementally increased the size of the problem, extrapolating lin-
early from the four model size categories in Table 1. We found
that SMT’s score dropped to 41% for models in the category with
(175,200] elements. In other words, doubling the size of the model
almost halved the score.

We thus concluded that SMT is the most efficient of the four solvers
for checking properties of MAVO models. SMT is unaffected by
increases in bound; more importantly, it is designed for reasoning
with specifications at a higher level of abstraction, without need-
ing the potentially expensive translation and/or grounding phase
required by the other formalisms. These characteristics allow the
SMT solver to consistently outperform other formalisms.

Threats to Validity. There are two main threats to the validity of
this experimental study: (a) the use of randomly generated MAVO
models, and (b) the fairness of comparison between the different
formalism vis-a-vis the efficiency of the encodings. To mitigate
the first threat, we tuned the generator to create random models
with realistic graph density and frequency of MAVO annotations.
Additionally, we fixed these properties to values found in existing
MAVO case studies.

With regard to the second threat, it is clear that the perfect com-
parison would require using the most efficient encoding in each
formalism which is impossible to do. Instead, we opted to create
a common encoding that is directly implementable in each formal-
ism. This way we leveled the playing field, enabling meaningful
comparisons.

5. RELATED WORK
In [6], we experimentally studied the effectiveness of reasoning
(property checking and diagnosis) for partial models that only con-
tain May partiality (these are called May models). For this, we used
an intuitive encoding of May models directly as propositional ex-
pressions which was used as input to a SAT solver. In [15, 7], we
used Alloy [11] to verify properties of transformations of MAVO
models. In this paper, we expand the scope of our study by consid-
ering more types of partiality, as well as by considering different
verification tools.

Software product line (SPL) analysis has connections to our work:
they express sets of models in a manner similar to May models. In
[14], Pohl et. al. do a study to compare the use of SAT, CSP and
Binary Decision Diagrams (BDDs) to check properties of feature
models. They conclude that BDD-based solvers – the approach

we did not examine – have the best performance. Their results are
not comparable to ours since they check properties of the entire
set of concretizations such as "does their exist a concretization?"
whereas we check properties that could hold for each concretization
separately (see Figure 4). However, we are inspired to conduct
experiments with BDD-based solvers in the future.

6. CONCLUSION
We presented a comparison of four reasoning formalisms (Alloy,
CSP, SMT and ASP) with regard to their effectiveness in checking
properties of MAVO models. In order to have meaningful compar-
isons, we introduced an encoding of MAVO, in relational algebra,
that can be readily translated into each of these formalisms. We
carried out the comparison by running experiments where we used
the four reasoning formalisms to check five properties on randomly
generated models. Our investigation indicates that, in general, the
most efficient formalism is SMT, as it scales better for increasingly
hard problems. In the future, we intend to expand the scope of our
study to include the OW partiality, as well as to incorporate more
complex properties, such as those requiring transitive closure.

7. REFERENCES
[1] C. Baral. Knowledge Representation, Reasoning and Declarative Problem

Solving. Cambridge University Press, Cambridge, UK, 2003.
[2] C. Barrett, A. Stump, and C. Tinelli. The SMT-LIB Standard: Version 2.0. In

Proc. of SMT’10, 2010.
[3] L. De Moura and N. Bjørner. Satisfiability Modulo Theories: Introduction and

Applications. Commun. ACM, 54(9):69–77, Sept. 2011.
[4] N. Eén and N. Sörensson. An Extensible SAT-Solver. In Theory and

Applications of Satisfiability Testing, pages 333–336. Springer, 2004.
[5] M. Famelis, S. Ben-David, M. Chechik, and R. Salay. Partial Models: A

Position Paper. In Proc. of MoDeVVa’11, pages 1–6, 2011.
[6] M. Famelis, M. Chechik, and R. Salay. Partial Models: Towards Modeling and

Reasoning with Uncertainty. In Proc. of ICSE’12, June 2012.
[7] M. Famelis, M. Chechik, and R. Salay. The Semantics of Partial Model

Transformations. In Proc. of MiSE’12, June 2012.
[8] M. Gebser, R. Kaminski, A. König, and T. Schaub. Advances in gringo Series

3. In Proc. of LPNMR’11, volume 6645 of LNCS, pages 345–351, 2011.
[9] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub. Conflict-Driven Answer

Set Solving. In Proc. of IJCAI’07, pages 386–392, 2007.
[10] J. Gorzny, R. Salay, and M. Chechik. Change Propagation Due to Uncertainty

Change, August 2012. submitted.
[11] D. Jackson. Software Abstractions: Logic, Language, and Analysis. MIT Press,

2006.
[12] V. W. Marek and M. Truszczynski. Stable Models and an Alternative Logic

Programming Paradigm. CoRR, cs.LO/9809032, 1998.
[13] N. Nethercote, P. Stuckey, R. Becket, S. Brand, G. Duck, and G. Tack.

Minizinc: Towards a Standard CP Modelling Language. In Proc. of CP’07,
pages 529–543. Springer, 2007.

[14] R. Pohl, K. Lauenroth, and K. Pohl. A Performance Comparison of
Contemporary Algorithmic Approaches for Automated Analysis Operations on
Feature Models. In Proc. of ASE’11, pages 313–322. IEEE Computer Society,
2011.

[15] R. Salay, M. Chechik, and J. Gorzny. Towards a Methodology for Verifying
Partial Model Refinements. In Proc. of VOLT’12, April 2012.

[16] R. Salay, M. Chechik, and J. Horkoff. Managing Requirements Uncertainty
with Partial Models. In Proc. of RE’12, 2012. to appear.

[17] R. Salay, M. Famelis, and M. Chechik. Language Independent Refinement
using Partial Modeling. In Proc. of FASE’12, 2012.

[18] A. Silberschatz, H. Korth, and S. Sudarshan. Database System Concepts.
McGraw-Hill, 2010.

[19] E. Tsang. Foundations of constraint satisfaction. Academic Press, London San
Diego, 1993.

	Introduction
	Background
	Encoding MAVO
	Experiments
	Related work
	Conclusion
	References

