
Language Independent Re�nement using Partial

Modeling

Rick Salay, Michalis Famelis, Marsha Chechik

Department of Computer Science, University of Toronto, Toronto, Canada
{rsalay,famelis,chechik}@cs.toronto.edu

Abstract. Models express not only information about their intended
domain but also about the way in which the model is incomplete, or
�partial�. This partiality supports the modeling process because it per-
mits the expression of what is known without premature decisions about
what is still unknown, until later re�nements can �ll in this information.
A key observation of this paper is that a number of partiality types can
be de�ned in a modeling language-independent way, and we propose a
formal framework for doing so. In particular, we identify four types of
partiality and show how to extend a modeling language to support their
expression and re�nement. This systematic approach provides a basis for
reasoning as well as a framework for generic tooling support. We illus-
trate the framework by enhancing the UML class diagram and sequence
diagram languages with partiality support and using Alloy to automate
reasoning tasks.

1 Introduction

Models are used for expressing two di�erent yet complementary kinds of in-
formation. The �rst is about the intended domain for the modeling language.
For example, UML class diagrams are used to express information about system
structure. The second kind of information is used to express the degree of incom-
pleteness or partiality about the �rst kind. For example, class diagrams allow
the type of an attribute to be omitted at an early modeling stage even though
the type will ultimately be required for implementation. Being able to express
partiality within a model is essential because it permits a modeler to specify the
domain information she knows without prematurely committing to information
she is still uncertain about, until later re�nements can add it.

The motivating observation of this work is thatmany types of model partiality
are actually domain independent and thus support for expressing partiality can be
handled in a generic and systematic way in any modeling language! Furthermore,
each type of partiality has its own usage scenarios and comes with its own
brand of re�nement. Thus, we can de�ne certain model re�nements formally yet
independently of the language type and semantics. This may be one reason why
many practitioners of modeling resist the formalization of the domain semantics
for a model: it is possible to do some sound re�nements without it!

Current modeling languages incorporate partiality information in ad-hoc
ways that do not clearly distinguish it from domain information and leave gaps in

1

Property

Class

ownedAttribute

super

type

Datatype

type

∀x:Property ∃c:Class⋅ownedAttribute(c,x)
∀x:Property⋅(∃c:Class⋅type(x,c))⇔¬(∃d:Datatype⋅type(x,d))
∀x:Property ∃c1, c2:Class⋅type(x,c1)∧type(x,c2)⇒c1=c2
∀x:Property ∃d1, d2:Datatype⋅type(x,d1)∧type(x,d2)⇒d1=d2
∀x:Property, c1,c2:Class⋅ownedAttribute(c1,x)∧ownedAttribute(c2,x)⇒c1=c2

Fig. 1. A simpli�ed UML class diagram metamodel.

expressiveness. For example, with a state machine diagram, if the modeler uses
multiple transitions on the same event out of a state, it may not be clear (e.g.,
to another modeler) whether she is specifying a non-deterministic state machine
(domain information) or an under-speci�ed deterministic state machine (par-
tiality information). Bene�ts of explicating partiality in a language-independent
manner include generic tool support for checking partiality-reducing re�nements,
avoiding gaps in expressiveness by providing complete coverage of partiality
within a modeling language, and reusing a modeler's knowledge by applying
partiality across di�erent modeling languages consistently. Ad-hoc treatments of
partiality do not allow the above bene�ts to be e�ectively realized. Our approach
is to systematically add support for partiality information to any language in the
form of annotations with well-de�ned formal semantics and a re�nement relation
for reducing partiality.

The use of partiality information has been studied for particular model types
(e.g., behavioural models [9,13]) but our position paper [3] was the �rst to discuss
language-independent partiality and its bene�ts for Model Driven Engineering.
In this paper, we build on this work and provide a framework for de�ning dif-
ferent types of language-independent partiality. Speci�cally, this paper makes
the following contributions: (1) we de�ne the important (and novel) distinction
between domain and partiality information in a modeling language; (2) we de-
scribe a formal framework for adding support for partiality and its re�nement
to any modeling language; (3) we use the framework to de�ne four types of
language-independent partiality that correspond to typical pragmatic modeling
scenarios; (4) we implement the formalization for these using Alloy and show
some preliminary results.

The rest of this paper is organized as follows: We begin with a brief introduc-
tion to the concept of partiality in Section 2 and give an informal description of
four simple language-independent ways of adding partiality to a modeling lan-
guage. We describe the composition of these partiality types and illustrate them
through application to the UML class diagram and sequence diagram languages
in Section 3. In Section 4, we describe a formalization of these types of partiality.
In Section 5, we describe our tool support based on the use of Alloy [8]. After
discussing related work in Section 6, we conclude the paper in Section 7 with
the summary of the paper and suggestions for future work.

2 Adding Partiality to Modeling Languages

When a model contains partiality information, we call it a partial model. Se-
mantically, it represents the set of di�erent possible concrete (i.e., non-partial)
models that would resolve the uncertainty represented by the partiality. In this

2

paper, we focus on adding partiality information to existing modeling languages
in a language-independent way, and thus, we must work with arbitrary meta-
models. Figure 1 gives an example of a simple metamodel for class diagrams,
with boxes for element types and arrows for relations. The well-formedness con-
straints (on the right) express the fact that every Property must have one type
given by a Class or a Datatype and must be an ownedAttribute of one Class.
Models consist of a set of atoms - i.e., the elements and relation instances of
the types de�ned in its metamodel. In order to remain language-independent,
we assume that partiality information is added as annotations to a model.

De�nition 1 (Partial model) A partial model P consists of a base model,
denoted bs(P), and a set of annotations. Let T be the metamodel of bs(P). Then,
[P] denotes the set of T models called the concretizations of P .

Partiality is used to express uncertainty about the model until it can be
resolved using partiality re�nement. Re�ning a partial model means removing
partiality so that the set of concretizations shrinks until, ultimately, it represents
a single concrete model. In general, when a partial model P ′ re�nes another
one P , there is a mapping from bs(P ′) to bs(P) that expresses the relationship
betwen them and thus between their concretizations. We give examples of such
mappings later on in this section. In the special case that the base models are
equivalent, P ′ re�nes P i� [P ′] ⊆ [P].

We now informally describe four possible partiality types, each adding sup-
port for a di�erent type of uncertainty in a model: May partiality � about exis-
tence of its atoms; Abs partiality � about uniqueness of its atoms; Var partiality
� about distinctness of its atoms; and OW partiality � about its completeness.

May partiality. Early in the development of a model, we may be unsure
whether a particular atom should exist in the model and defer the decision
until a later re�nement. May partiality allows us to express the level of certainty
we have about the presence of a particular atom in a model, by annotating it.
The annotations come from the lattice M = 〈{e,m},�〉, where the values cor-
respond to �must exist� (e) and �may exist� (m), respectively, ≺ means �less
certain than�, and m ≺ e.

A May model is re�ned by changing m atoms to e or eliminating them
altogether. Thus, re�nements result in submodels with more speci�c annotations.
The ground re�nements of aMay model P are those that have no m elements and
thus, correspond to its set of concretizations [P]. Figure 2(a) gives an example
of a May model (P), a re�nement (P′) and a concretization (M). The models are
based on the metamodel in Figure 1. Atoms are given as name:type with the
above annotations, and mappings between models are shown using dashed lines.
Model (P) says �there is a class Car that may have a superclass Vehicle and
may have a Length attribute which may be of type int�. The re�nement (P′)
and concretization (M) resolve the uncertainty.

Abs partiality. Early in the development of a model we may expect to have
collections of atoms representing certain kinds of information but not know ex-
actly what those atoms are. For example, in an early state machine diagram for a

3

text editor, we may know that we have InputingStates, ProcessingStates and
FormattingStates, and that InputingStatesmust transition to ProcessingStates
and then to FormattingStates. Later, we re�ne these to sets of particular con-
crete states and transitions. Abs partiality allows a modeler to express this
kind of uncertainty by letting her annotate atoms as representing a �particu-
lar�, or unique, element (p) or a �set� (s). The annotations come from the lattice
A = 〈{p, s},�〉, where � indicates �less unique than�, and s ≺ p.

A re�nement of an Abs model elaborates the content of �set� atoms s by
replacing them with a set of s and p atoms. The ground re�nements of an Abs
model P are those that have no s elements and thus, correspond to its set
of concretizations [P]. Figure 2(b) illustrates an Abs model, a re�nement and
concretization. Only node mappings are shown to reduce visual clutter. Model
(P) says �class Car has a set SizeRelated of attributes with type int�. The
re�nement (P′) re�nes SizeRelated into a particular attribute Length and the
set HeightRelated.

Var partiality. Early in a modeling process, we may not be sure whether two
atoms are distinct or should be the same, i.e., we may be uncertain about atom
identity. For example, in constructing a class diagram, we may want to introduce
an attribute that is needed, without knowing which class it will ultimately be
in. To achieve well-formedness, it must be put into some class but we want to
avoid prematurely putting it in the wrong class. To solve this problem, we could
put it temporarily in a �variable� class - i.e., something that is treated like a
class but, in a re�nement, can be equated (merged) with other variable classes
and eventually be assigned to a constant class. Var partiality allows a modeler
to express uncertainty about distinctness of individual atoms in the model by
annotating an atom to indicate whether it is a �constant� (c) or a �variable� (v).
The annotations come from the lattice V = 〈{c,v},�〉, where v ≺ c.

A re�nement of a Var model involves reducing the set of variables by as-
signing them to constants or other variables. The ground re�nements of a Var
model P are those that have no v elements and thus, correspond to its set of
concretizations [P].

Figure 2(c) illustrates a Var model, its re�nement and concretization. Model
(P) says �class Car has superclass Vehicle and variable class SomeVehicle has
attribute Length with variable type SomeType�. Re�nement (P′) resolves some
uncertainty by assigning SomeVehicle to Car.

OW partiality. It is common, during model development, to make the as-
sumption that the model is still incomplete, i.e., that other elements are yet to
be added to it. This status typically changes to �complete� (if only temporar-
ily) once some milestone, such as the release of software based on the model,
is reached. In this paper, we view a model as a �database� consisting of a set
of syntactic facts (e.g., �a class C1 is a superclass of a class C2�, etc.). Thus,
incompleteness corresponds to an Open World assumption on this database (the
list of atoms is not closed), whereas completeness � to a Closed World. OW
partiality allows a modeler to explicitly state whether her model is incomplete

4

(a)

(E)
Car:Class

(M)
Vehicle:Class

(M)
super

(M)
Length:Property

(M)
ownedAttribute

(M)
int:Datatype

(M)
type

(E)
Car:Class

(E)
Vehicle:Class

(M)
super

Car:Class Vehicle:Classsuper

P

P’

M

(b)

(P)
Car:Class

(S)
SizeRelated:Property

(S)
ownedAttribute

(P)
int:Datatype

(S)
type

(P)
Car:Class

Car:Class

P

P’

M

(S)
type

(P)
Length:Property

(S)
HeightRelated:Property

(P)
int:Datatype

(P)
type

(S)
ownedAttribute

type

Length:Property

InteriorHeight:Property

int:Datatype type

ExteriorHeight:Property

type

ownedAttribute

ownedAttribute

ownedAttribute

(P)
ownedAttribute

(c)

(C)
Car:Class

(C)
Vehicle:Class

(C)
super

(C)
Length:Property

(V)
Sometype:Datatype

(V)
type

(C)
Car:Class

(C)
Vehicle:Class

(C)
super

Car:Class Vehicle:Classsuper

P

P’

M

(V)
SomeVehicle:Class

(V)
ownedAttribute

(V)
super

(C)
Length:Property

(V)
Sometype:Datatype

(V)
type

(C)
ownedAttribute

Length:Propertyint:Datatype type ownedAttribute

(d)

Car:Class Vehicle:Classsuper

Length:Property ownedAttributeint:Datatype type Car:Class Vehicle:Classsuper

Car:Class Vehicle:Classsuper

P

P’

MLength:Property ownedAttributeint:Datatype type

(inc)

(comp)

Fig. 2. Examples of di�erent partiality types: (a) May ; (b) Abs; (c) Var ; (d) OW. In
each example, model M concretizes both P′ and P, and P′ re�nes P.

5

(i.e., can be extended) (inc) or not (comp). In contrast to the other types of
partiality discussed in this paper, here the annotation is at the level of the entire
model rather than at the level of individual atoms. The annotations come from
the lattice O = 〈{comp , inc },�〉, where inc ≺ comp .

A re�nement of an OW model means making it �more complete�. The ground
re�nements of an OW model P , corresponding to its set of concretizations [P],
are its �complete� extensions. Figure 2(d) illustrates an OW model, re�nement
and concretization.

3 Combining and Applying Partiality Types

In this section, we show how to combine the four partiality types de�ned in
Section 2 and then apply them to UML class diagrams and sequence diagrams,
showing the language-independence of partiality-reducing re�nements.

Combining Partiality Types. The four partiality types described above have
distinctly di�erent pragmatic uses for expressing partiality and can be combined
within a single model to express more situations. We refer to the combination
as the MAVO partiality, which allows model atoms to be annotated with May,
Abs and Var partiality by using elements from the product latticeM×A× V
de�ned as MAV = 〈{e,m} × {p, s} × {c,v},�〉. For example, marking a class
as (m, s,c) means that it represents a set of classes that may be empty, while
marking it as (e, s,v) indicates that it is a non-empty set of classes but may
become a di�erent set of classes in a re�nement. OW partiality is also used, but
only at the model level, to indicate completeness.

MAVO re�nement combines the re�nement from the four types component-
wise. IfMAVO model P1 is re�ned by model P2, then there is a mapping from the
atoms of P1 to those of P2, and the annotation in P2 has a value that is no less
than any of its corresponding atoms in P1. Thus, the class marked (m, s,c) can
be re�ned to a set of classes that have annotations such as (m,p,c) or (e, s,c)
but not (m, s,v). Examples of applying the MAVO partiality are given below.

Application: MAVO Class Diagrams. One of the bene�ts of the fact that
a partiality type extends the base language is that we can build on the existing
concrete syntax of the languages. For example, consider the MAVO partial class
diagram P1 shown in the top of Figure 3. We do not show ground annotations
(i.e., c for Var, p for Abs, etc.) and use the same symbols as in the abstract
syntax for non-ground annotations. While there may be more intuitive ways
to visualize some of these types of partiality (e.g., dashed outlines for �maybe�
elements), we consider this issue to be beyond the scope of this paper.

In P1, the modeler uses May partiality to express uncertainty about whether
a TimeMachine should be a Vehicle or not. May partiality is also used with
Hovercraft to express that the modeler is uncertain whether or not to in-
clude it and which class should be its superclass. Var partiality is used with
�variable� class C1 to introduce the attribute numOfDoors : Integer since the
modeler is uncertain about which class it belongs in. Abs and Var partiality
are used together to model sets of Vehicle attributes with unknown types with

6

-(S)sizeRelated : (SV)Types1
-numOfPassengers : Int
-(S)securityRelated : (SV)Types2

Vehicle

CarTimeMachine Boat

(M)Hovercraft

(MS)OtherVehicles

-numOfDoors : Int

(V)C1
(M) (M)

(M)
(M)

(MS)

-numOfDoors : Int

CarTimeMachine Boat (MS)OtherVehicles

-(S)sizeRelated : Int, Real
-numOfPassengers : Int
-lastLegalEntry : Timestamp
-lastIDNumber : (V)Type2
-previousIDNumber : (V)Type2

Vehicle

Truck

(MS)

(SV)Types1

(SV)Types2

Real

(V)Type2

Int

Timestamp

Refines

P1:CD

P2:CD

Int

Fig. 3. Example of MAVO class diagrams with re�nement.

Person Car (MV)Monitor

(S) driving actions

exit

lock

(S) prep actions

enter

unlock
(M) notify

(M) notify

Person Car

(S) driving actions

exit

lock

check mirrors

enter

unlock (M) notify

Refines

P3:SD (inc) P4:SD

check fuel

Fig. 4. Example sequence diagram with MAVO partiality.

sizeRelated : Types1 and securityRelated : Types2. Finally, May and Abs
partiality are used with OtherVehicles and super(OtherVehicles, Vehicle)
to indicate that the modeler thinks that there may be other, not yet known,
vehicle classes.

Model P2, on the bottom of Figure 3, is a re�nement of P1. Re�nement map-
pings are shown as dashed lines and, to avoid visual clutter, we omit the identity
mappings between ground atoms. In P2, the modeler re�nes super(TimeMachine,
Vehicle) from �may exist� to �exists�; however, the decision on Hovercraft is to
omit it. The re�nement puts attribute numOfDoors : Integer into Car by setting
C1 = Car. Also, the types of sizeRelated attributes are re�ned to Int or Real,
and the securityRelated attributes are re�ned as well; however, the types of
LastIDNumber and PreviousIDNumber are still unknown, although they are now
known to be the same SType2. Finally, OtherVehicles is re�ned to expose Truck

7

as one of these but still leaves the possibility for more Vehicle subclasses. The
omitted OW annotation indicates that the models are �complete�, and thus, new
elements can only be added by re�ning an Abs set such as OtherVehicles.

Application: MAVO Sequence Diagrams. The left model in Figure 4, P3,
shows a MAVO sequence diagram specifying how a Person interacts with a Car.
We follow the same concrete syntactic conventions for annotations as for the class
diagrams in Figure 4. While some interactions are known in P3, at this stage of
the design process, it is known only that there will be a set of prepActions and
drivingActions, and Abs partiality is used to express this. In addition, there
is a possibility of there being a monitoring function for security. May partiality
is used to indicate that this portion may be omitted in a re�nement, and Var
partiality is used to indicate that it is not yet clear which object will perform the
Monitor role. Finally, P3 uses the OW partiality since we expect more objects
to be added in a re�nement.

In the model P4, on the right of Figure 4, the modeler has re�ned prepActions
to a particular set of actions. In addition, she has assigned the Monitor role to
Car itself (i.e., Monitor=Car) and retained only the �rst Notify message. Fi-
nally, she has decided that the model will not be extended further and it is set
as �complete�.

Discussion. While class diagrams and sequence diagrams are di�erent syntac-
tically and in their domains of applicability (i.e., structure vs. behaviour), the
MAVO partiality provides the same capabilities for expressing and re�ning un-
certainty in both languages. In particular, it adds the ability to treat atoms as
removable (May), as sets (Abs), and as variables (Var), and to treat the entire
model as extensible (OW). Furthermore, we were able to use the same concrete
syntactic conventions in both languages � this is signi�cant because modeler
knowledge can be reused across languages. Note that while our examples come
from UML, MAVO annotations are not UML-speci�c and can be applied to
any metamodel-based language, regardless of the degree of formality of the lan-
guage. The reason is that the semantics of partiality is expressed in terms of
sets of models (i.e., possible concretizations) and does not depend on the native
semantics of the underlying modeling language.

Most of the expressions of partiality in these examples required the added
partiality mechanisms. The exceptions, which could have been expressed na-
tively, are: (1) that types of attributes are unknown (as with the sizeRelated

attributes), in class diagram P1, and (2) the choice between the Monitor and
its Notify messages (using an Alt operator, e.g., based on the STAIRS seman-
tics [6]), in sequence diagram P3. This suggests that language-independent par-
tiality types can add signi�cant value to modeling languages.

4 Formalizing Partiality

In this section, we de�ne an approach for formalizing the semantics of a partial
model and apply it to MAVO partiality. Speci�cally, given a partial model P ,
we specify the set of concretizations [P] using First Order Logic (FOL). Our

8

approach has the following bene�ts: (1) it provides a general methodology for
de�ning the semantics of a partial modeling language; (2) it provides a mech-
anism for de�ning re�nement, even between partial models of di�erent types;
(3) it provides the basis for tool support for reasoning with partial models using
o�-the-shelf tools; and (4) it provides a sound way to compose partial modeling
languages.

We begin by noting that a metamodel represents a set of models and can be
expressed as an FOL theory.

De�nition 2 (Metamodel) A metamodel is a First Order Logic (FOL) theory
T = 〈Σ,Φ〉, where Σ is th e signature and Φ is a set of sentences representing the
well-formedness constraints. Σ = 〈σ, ρ〉 consists of the set of sorts σ de�ning the
element types and the set ρ of predicates de�ning the types of relations between
elements. The models that conform to T are the �nite FO Σ-structures that
satisfy Φ according to the usual FO satisfaction relation. We denote the set of
models with metamodel T by Mod(T).

The class diagram metamodel in Figure 1 �ts this de�nition if we interpret boxes
as sorts and edges as predicates.

Like a metamodel, a partial model also represents a set of models and thus
can also be expressed as an FOL theory. Speci�cally, for a partial model P ,
we construct a theory FO(P) s.t. Mod(FO(P)) = [P]. Furthermore, since P
represents a subset of T models, we require that Mod(FO(P)) ⊆ Mod(T). We
guarantee this by de�ning FO(P) to be an extension of T that adds constraints.

Let M = bs(P) be the base model of a partial model P and let PM be the
ground partial model which has M as its base model and its sole concretization
� i.e., bs(PM) = M and [PM] = {M}. We �rst describe the construction of
FO(PM) and then de�ne FO(P) in terms of FO(PM). To construct FO(PM),
we extend T to include a unary predicate for each element in M and a binary
predicate for each relation instance between elements in M . Then, we add con-
straints to ensure that the only �rst order structure that satis�es the resulting
theory is M itself.

We illustrate the above construction using the class diagram M in Figure 2(a).
Interpreting it as a partial model PM, we have:

FO(PM) = 〈〈σCD, ρCD ∪ ρM〉, ΦCD ∪ ΦM〉

(see De�nition 2), where σCD, ρCD and ΦCD are the sorts, predicates and well-
formedness constraints, respectively, for class diagrams, as described in Figure 1.
ρM and ΦM are model M-speci�c predicates and constraints, de�ned in Figure 5.
Since FO(PM) extends CD, the FO structures that satisfy FO(PM) are the class
diagrams that satisfy the constraint set ΦM in Figure 5. Assume N is such a class
diagram. The constraint Complete ensures that N contains no more elements or
relation instances than M. Now consider the class Car in M. Exists says that N
contains at least one class called Car, Unique � that it contains no more than
one class called Car, and Distinct � that the class called Car is di�erent from the
class called Vehicle. Similar sentences are given for class Vehicle and super

9

instance CsuperV. The constraint Type ensures that CsuperV has correctly typed
endpoints. These constraints ensure that FO(PM) has exactly one concretization
and thus N = M.

Relaxing the constraints ΦM allows additional concretizations and represents
a type of uncertainty. For example, if we are uncertain about whether M is com-
plete, we can express this by removing the Complete clause from ΦM and thereby
allow concretizations to be class diagrams that extend M. Note that keeping or
removing the Complete clause corresponds exactly to the semantics of the an-
notations comp and inc in OW partiality, as de�ned in Section 2. Similarly,
expressing each of May, Abs and Var partiality corresponds to relaxing ΦM by
removing Exists, Unique and Distinct clauses, respectively, for particular atoms.
For example, removing the Exists clause ∃x : Class · Car(x) is equivalent to
marking the class Car with m(i.e., Car may or may not exist), while removing
the Distinct clause ∀x : Class · Car(x)⇒ ¬Vehicle(x) is equivalent to marking
the class Car with v(i.e., Car is a variable that can merge with Vehicle).

Figure 6 generalizes the construction in Figure 5 to an arbitrary ground
theory FO(PM). ρM contains a unary predicate E for each element E in M
and a binary predicate Rij for instance R(Ei, Ej) of relation R in M . Each of
the atom-speci�c clauses is indexed by an atom in model M to which it applies
(e.g., ExistsE applies to element E). For simplicity, we do not show the element
types of the quanti�ed variables.

We now formalize our earlier observation about relaxing ΦM :

Observation 3 Given a ground partial model PM with FO(PM) = 〈〈σT , ρT ∪
ρM 〉, ΦT ∪ ΦM 〉 constructed as in Figure 5, any relaxation of the constraint ΦM

introduces additional concretizations into Mod(FO(PM)) and represents a case
of uncertainty about M.

This observation gives us a general and sound approach for de�ning the semantics
of a partial model. For partial model P with base model M , we de�ne FO(P)
as FO(PM) with ΦM replaced by a sentence ΦP , where ΦM ⇒ ΦP .

Application to MAVO. Table 1 applies the general construction in Figure 6
to the individual MAVO partiality annotations by identifying which clauses to
remove from ΦM for each annotation. For example, the annotation (s)E corre-
sponds to removing the clause UniqueE. Note that nothing in the construction
of FO(PM) or in Table 1 is dependent on any speci�c features of the metamodel
and hence the semantics of MAVO is language-independent.

The semantics for combined annotations is obtained by removing the clauses
for each annotation � e.g., the annotation (sv)E removes the clause UniqueE and
the clauses DistinctEE′ and DistinctEE′ for all elements E′.

The MAVO partiality types represent special cases of relaxing the ground
sentence ΦM by removing clauses but, as noted in Observation 3, any sentence
weaker than ΦM could be used to express partiality ofMas well. This suggests a
natural way to enrich MAVO to express more complex types: augment the basic
annotations with sentences that express additional constraints. We illustrate this
using examples based on model P1 in Figure 3. The statement �if TimeMachine is

10

ρM contains the unary predicates Car(Class), Vehicle(Class) and the binary predicate
CsuperV(Class, Class).

ΦM contains the following sentences:
(Complete) (∀x : Class · Car(x) ∨ Vehicle(x))∧

(∀x, y : Class · super(x, y)⇒ CsuperV(x, y)) ∧ ¬∃x · Datatype(x) ∧ . . .
Car:

(Exists) ∃x : Class · Car(x)
(Unique) ∀x, x′ : Class · Car(x) ∧ Car(x′)⇒ x = x′

(Distinct) ∀x : Class · Car(x)⇒ ¬Vehicle(x)
similarly for Vehicle
CsuperV:

(Type) ∀x, y : Class · CsuperV(x, y)⇒ Car(x) ∧ Vehicle(y)
(Exists) ∀x, y : Class · Car(x) ∧ Vehicle(y)⇒ CsuperV(x, y)
(Unique) ∀x, y, x′, y′ : Class · CsuperV(x, y) ∧ CsuperV(x′, y′)⇒ x = x′ ∧ y′ = y

Fig. 5. Example constraints for class diagram M in Figure 2(a).

Table 1. Semantics of MAVO Partiality Annotations.

MAVO annotation Clause(s) to remove from ΦM
inc Complete

(m)E ExistsE
(s)E UniqueE
(v)E DistinctEE′ and DistinctE′E for all E′, E′ 6= E

(m)Rij ExistsRij

(s)Rij UniqueRij

(v)Rij DistinctRijR
′
kl
and DistinctR′

kl
Rij

for all R′
kl, i 6= k, j 6= l

a Vehicle, then Hovercraft must be one as well� imposes a further constraint
on the concretizations of P1. Using FO(P1), we can express this in terms of the
Exists constraints for individual atoms: ExistsTimeMachine ⇒ ExistsHovercraft ∧
ExistsHsuperV. Thus, propositional combinations of Exists sentences allow richer
forms of the May partiality to be expressed.

Richer forms of the Abs partiality can be expressed by putting additional
constraints on �s�-annotated atoms to further constrain the kinds of sets to
which they can be concretized. For example, we can express the multiplicity
constraint that there can be at most two sizeRelated attributes by replacing
the constraint UniquesizeRelated with the following weaker one:

∀x, x′, x′′ · sizeRelated(x) ∧ sizeRelated(x′) ∧ sizeRelated(x′′)
⇒ (x = x′ ∨ x = x′′ ∨ x′ = x′′)

Of course, this can be easily expressed in a language with sets and counting, like
OCL. Similar enrichments of the Var and the OW partialities can be produced
by an appropriate relaxation of the Distinct and Complete constraints, respec-
tively. These enrichments of MAVO remain language-independent because they
do not make reference to the metamodel-speci�c features.

Re�nement of MAVO partiality. We have de�ned partial model semantics
in terms of relaxations to ΦM . Below, we de�ne re�nement in terms of these as
well. Speci�cally, assume we have relaxations ΦP ′ and ΦP for partial models P ′

11

Input: model M of type T = 〈〈σT , ρT 〉, ΦT 〉
Output: FO(PM)
FO(PM) = 〈〈σT , ρT ∪ ρM 〉, ΦT ∪ ΦM 〉
ρM = ρe ∪ ρr, where ρe = {E(·)|E is an element of M}

and ρr = {Rij(·, ·)|Rij is an instance of relation R ∈ ρT in M}
ΦM contains the following sentences:

(Complete) (∀x ·
∨

E∈ρe
E(x)) ∧ (

∧
R∈ρT

∀x, y ·R(x, y)⇒
∨

Rij∈ρr
Rij(x, y))

for each element E in M :
(ExistsE) ∃x · E(x)
(UniqueE) ∀x, y · E(x) ∧ E(y)⇒ x = y∧
E′∈ρe,E′ 6=E

(DistinctEE′) ∀x · E(x)⇒ ¬E′(x)

for each relation instance Rij in M :
(TypeRij) ∀x, y · Rij(x, y)⇒ Ei(x) ∧ Ej(y)
(ExistsRij) ∀x, y · Ei(x) ∧ Ej(y)⇒ Rij(x, y)
(UniqueRij) ∀x, y, x′, y′ · Rij(x, y) ∧ Rij(x

′, y′)⇒ x = x′ ∧ y = y′∧
R′
kl
∈ρr,i 6=k,j 6=l

(DistinctRijR
′
kl
) ∀x, y · Rij(x, y)⇒ ¬R′

kl(x, y)

Fig. 6. Construction of FO(PM).

and P , respectively. In the special case that their base models are equivalent,
we have P ′ re�nes P i� [P ′] ⊆ [P] and this holds i� ΦP ′ ⇒ ΦP . However,
when the base models are di�erent, the sentences are incomparable because they
are based on di�erent signatures. The classic solution to this kind of problem
(e.g., in algebraic speci�cation) is to �rst translate them into the same signature
and then check whether the implication holds in this common language (e.g.,
see [5]). In our case, we can use a re�nement mapping R between the base
models, such as the one in Figures 3 and 4, to de�ne a function that translates
ΦP to a semantically equivalent sentence R(ΦP) over the signature ΣP ′ . Then,
P ′ re�nes P i� ΦP ′ ⇒ R(ΦP). We omit the details of this construction due to
space limitations; however, interested readers can look at the Alloy model for
Experiment 6 in Section 5 for an example of this construction.

5 Tool Support and Preliminary Evaluation

In order to show the feasibility of using the formalization in Section 4 for auto-
mated reasoning, we developed an Alloy [8] implementation forMAVO partiality.
We used a Python script to generate the Alloy encoding of the clauses (as de�ned
in Figure 6) for the models P1 and P2, shown in Figure 3. The Alloy models are
available online at http://www.cs.toronto.edu/se-research/fase12.htm. We
then used this encoding for property checking. More speci�cally, we attempted to
address questions such as �does any concretization of P have the property Q?�
and �do all concretizations of P have the property Q?�, where Q is expressed in
FOL. The answer to the former is a�rmative i� ΦP ∧ Q is satis�able, and to
the latter i� ΦP ∧ ¬Q is not satis�able. We also used the tooling to check cor-
rectness of re�nement, cast as a special case of property checking. As discussed
in Section 4, P ′ re�nes P i� ΦP ′ ⇒ R(ΦP) where R translates ΦP according to

12

Exp. # Question Answer Scope Time (ms)

1 Does the ground case for P1 have a single instance? Yes 7 453

2 Does the ground case for P2 have a single instance? Yes 6 366

3 Is P1 extended with Q1 consistent? Yes 4 63

4 Is P1 extended with Q1 and Q2 consistent? No 20 64677

5a Is P1 extended with Q1 and Q3 consistent? Yes 4 64

5b Is P1 extended with Q1 and ¬Q3 consistent? Yes 5 151

6 Is P2 a correct re�nement of P1? Yes 10 9158

Table 2. Results of experiments using Alloy.

the re�nement mapping. Thus, the re�nement is correct i� ΦP ′ ∧¬R(ΦP) is not
satis�able.

Table 2 lists the experiments we performed, using the following properties:

Q1 : Vehicle has at most two direct subclasses.
Q2 : Every class, except C1 is a direct subclass of C1.
Q3 : There is no multiple inheritance.

Experiments (1) and (2) verify our assumption that the encoding described
in Figure 6 admits only a single concretization. Although any pure MAVO model
is consistent by construction, Experiments (3) and (4) illustrate that this is not
necessarily the case when additional constraints are added. First, P1 is extended
with Q1 and shown to be consistent. However, extending P1 with both Q1 and Q2

leads to an inconsistency. This happens because Q2 forces (a) C1 to be merged
with Vehicle, and (b) TimeMachine to be its subclass, raising its number of
direct subclasses to 3. This contradicts Q1, and therefore, P1 ∧ Q1 ∧ Q2 is incon-
sistent. Note that Experiment (4) takes longer than the others because showing
inconsistency requires that the SAT solver enumerate all possible models within
the scope bounds. In Experiment (5), we asked whether the version of P1 ex-
tended with Q1 satis�es property Q3 and found that this is the case in some
(Experiment 5a) but not all (Experiment 5b) concretizations. Finally, in Exper-
iment (6) we veri�ed the re�nement described in Figure 3, using the mapping in
the �gure to construct a translation of ΦP1, as discussed in Section 4.

Our experiments have validated the feasibility of using our formalization for
reasoning tasks. In our earlier work [4], we have done a scalability study for
property checking using a SAT solver for May partiality (with propositional
extensions). The study showed that, compared to explicitly handling the set
of concretizations, our approach o�ers signi�cant speedups for large sets of con-
cretizations. We intend to do similar scalability studies for allMAVO partialities
in the future.

6 Related Work

In this section, we brie�y discuss other work related to the types of partiality
introduced in this paper.

A number of partial behavioural modeling formalisms have been studied in
the context of abstraction (e.g., for veri�cation purposes) or for capturing early
design models [12]. The goal of the former is to represent property-preserving

13

abstractions of underlying concrete models, to facilitate model-checking. For ex-
ample, Modal Transition Systems (MTSs) [9] allow introduction of uncertainty
about transitions on a given event, whereas Disjunctive Modal Transition Sys-
tems (DMTSs) [10] add a constraint that at least one of the possible transitions
must be taken in the re�nement. Concretizations of these models are Labelled
Transition Systems (LTSs). MTSs and DMTSs are results of a limited applica-
tion of May partiality. Yet, the MTS and DMTS re�nement mechanism allows
resulting LTS models to have an arbitrary number of states which is di�er-
ent from the treatment provided in this paper, where we concentrated only on
�structural� partiality and thus state duplication was not applicable.

In another direction, Herrmann [7] studied the value of being able to express
vagueness within design models. His modeling language SeeMe has notational
mechanisms similar to OW and May partiality; however, there is no formal
foundation for these mechanisms.

Since models are like databases capturing facts about the models' domain,
work on representing incomplete databases is relevant. Var partiality is tradition-
ally expressed in databases by using null values to represent missing information.
In fact, our ideas in this area are inspired by the work on data exchange between
databases (e.g., [2]) which explicitly uses the terminology of �variables� for nulls
and �constants� for known values. An approach to the OW partiality is the use
of the Local Closed World Assumption [1] to formally express the places where
a database is complete.

Finally, our heavy reliance on the use of FOL as the means to formalize meta-
models and partial models gives our work a strong algebraic speci�cation �avor
and we bene�t from this connection. In particular, partial model re�nement is
a kind of speci�cation re�nement [11]. Although our application is di�erent �
dealing with syntactical uncertainty in models rather than program semantics �
we hope to exploit this connection further in the future.

7 Conclusion and Future Work
The key observation of our work is that many types of partiality information and
their corresponding types of re�nement are actually language-independent and
thus can be added to any modeling language in a uniform way. In this paper, we
de�ned a formal approach for doing so in any metamodel-based language by using
model annotations with well-de�ned semantics. This allows us to incorporate
partiality across di�erent languages in a consistent and complete way, as well
as to develop language-independent tools for expressing, reasoning with, and
re�ning partiality within a model. We then used this approach to de�ne four
types of partiality, each addressing a distinctly di�erent pragmatic situation
in which uncertainty needs to be expressed within a model. We combined all
four and illustrated their language independence by showing how they can be
applied to class diagrams and to sequence diagrams. Finally, we demonstrated
the feasibility of tool support for our partiality extensions by describing an Alloy-
based implementation of our formalism and various reasoning tasks using it.

The investigation in this paper suggests several interesting directions for
further research. First, since adding support for partiality lifts modeling lan-

14

guages to partial modeling languages, it is natural to consider whether a similar
approach could be used to lift model transformations to partial model trans-
formations. This would allow partiality to propagate through a transformation
chain during model-driven development and provide a principled way of apply-
ing transformations to models earlier in the development process, when they
are incomplete or partial in other ways. Second, it would be natural to want
to interleave the partiality-reducing re�nements we discussed in this paper with
other, language-speci�c, re�nement mechanisms during a development process.
We need to investigate how these two types of re�nements interact and how they
can be soundly combined. Third, since modelers often have uncertainty about
entire model fragments, it is natural to ask how to extend MAVO annotation to
this case. Applying May partiality to express a design alternative is straightfor-
ward � a fragment with annotation m may or may not be present; however, the
use of the other MAVO types is less obvious and deserves further exploration.
Finally, although we have suggested scenarios in which particular MAVO an-
notations would be useful, we recognize that the methodological principles for
applying (and re�ning) partial models require a more thorough treatment. We
are currently developing such a methodology.

References

1. A. Cortés-Calabuig, M. Denecker, and O. Arieli. �On the Local Closed-World
Assumption of Data-Sources�. J. Logic Programming, 2005.

2. R. Fagin, P. Kolaitis, R. Miller, and L. Popa. �Data Exchange: Semantics and
Query Answering. Theoretical Computer Science, 336(1):89�124, May 2005.

3. M. Famelis, S. Ben-David, M. Chechik, and R. Salay. �Partial Models: A Position
Paper�. In Proc. of MoDeVVa'11, pages 1�6, 2011.

4. M. Famelis, R. Salay, and M. Chechik. �Partial Models: Towards Modeling and
Reasoning with Uncertainty�, Submitted, 2011.

5. J.A. Goguen and R.M. Burstall. �Institutions: Abstract model theory for speci�-
cation and programming�. Journal of the ACM (JACM), 39(1):95�146, 1992.

6. O. Haugen, K.E. Husa, R.K. Runde, and K. Stolen. �STAIRS: Towards Formal
Design with Sequence Diagrams�. SoSyM, 4(4):355�357, October 2005.

7. T. Herrmann. Hndbk of Research on Socio-Technical Design and Social Networking
Systems, chapter �Systems Design with the Socio-Technical Walkthrough�, pages
336�351. 2009.

8. D. Jackson. Software Abstractions: Logic, Language, and Analysis. MIT Press,
2006.

9. K. G. Larsen and B. Thomsen. �A Modal Process Logic�. In Proc. of LICS'88,
pages 203�210, 1988.

10. P. Larsen. �The Expressive Power of Implicit Speci�cations�. In Proc. of ICALP'91,
volume 510 of LNCS, pages 204�216, 1991.

11. D. Sannella and A. Tarlecki. �Essential Concepts of Algebraic Speci�cation and
Program Development�. Formal Aspects of Computing, 9(3):229�269, 1997.

12. S. Uchitel and M. Chechik. �Merging Partial Behavioural Models�. In Proc. of
FSE'04, pages 43�52, 2004.

13. O. Wei, A. Gur�nkel, and M. Chechik. �On the Consistency, Expressiveness, and
Precision of Partial Modeling Formalisms�. J. Inf. Comput., 209(1):20�47, 2011.

15

	Language Independent Refinement using Partial Modeling

