
The Semantics of Partial Model Transformations

Michalis Famelis, Rick Salay and Marsha Chechik
University of Toronto, Canada

{famelis, rsalay, chechik}@cs.toronto.edu

Abstract—Model transformations are traditionally designed
to operate on models that do not contain uncertainty. In previous
work, we have developed partial models, i.e., models that explic-
itly capture uncertainty. In this paper, we study the transforma-
tion of partial models. We define the notion of correct lifting of
transformations so that they can be applied to partial models.
For this, we encode transformations as transfer predicates and
describe the mechanics of applying transformations using logic.
We demonstrate the approach using two example transforma-
tions (addition and deletion) and outline a method for testing the
application of transformations using a SAT solver. Reflecting on
these preliminary attempts, we discuss the main limitations and
challenges and outline future steps for our research on partial
model transformation.

I. INTRODUCTION AND MOTIVATING EXAMPLE

Software modelers often face the challenging task of work-
ing in the presence uncertainty. This involves having to deal
with potentially large sets of design alternatives, in situations
where there is not enough information to make fully informed
decisions. However, existing modeling methodologies, lan-
guages and tools rarely address uncertainty in an explicit way.

In particular, model transformation languages, libraries
and engines usually assume the existence of a single, un-
ambiguous input model. Uncertainty is therefore implicitly
treated as an undesirable property. In fact, in the face of
uncertainty, modelers are forced either (a) to transform each
alternative model separately or (b) to remove uncertainty
entirely before work can continue. The first option is clearly
intractable when the set of alternatives is large. The second
option requires modelers to make provisional decisions that
artificially remove uncertainty from their artifacts. This in-
creases the risk of having to undo their work when previously
unknown information becomes available. Even worse, it can
mean committing too early to design decisions that cannot be
reversed without significant costs, when in fact the modeler
may still find it desirable to keep many alternative options
open for consideration. [9]

In previous work [5], we introduced partial models. Partial
models concisely express sets of possible models that can
result from removing uncertainty. Yet partial models can be
developed directly and used as first-class artifacts in software
development. In this paper, we present our preliminary work
on transforming partial models.

In [11], we introduced a class of transformations that is
particular to partial models, namely, refinement, aimed to
reduce the level of uncertainty. The aim of this paper is dif-
ferent – we want to apply ordinary transformations, otherwise
written for classical models, to partial models. We propose to

Figure 1. (a) Refactoring transformation rule R1 for adding getters and
setters. (b) Initial partial model M1 of our motivating example. (c) Resulting
partial model M2 after applying R1 to M1.

achieve this by lifting, i.e., adapting, the semantics of ordinary
transformations to partial models.

We now present a motivating example. The partial model-
ing approach can be applied to any modeling language, but
in this example we use a simplified version of UML class
diagrams. We assume the scenario where a modeler is facing
uncertainty regarding a fragment of the class diagram for an
application for a food company.

At the start of our scenario, the modeler has come up with
the partial model M1, shown in Figure 1(b) (see Section II for
details about notation and semantics). M1 captures a basic
hierarchy: a class Milk that extends a more general class
Product. The modeler does not yet know if the company
plans to use the application for non-perishables as well.
She is therefore unclear as to whether expirationDate
should be an attribute of all products or just for milk.1 At
the same time, she is yet undecided as to whether an at-
tribute hasExpired, derived from expirationDate, would
be useful. The four possible alternative designs (also called
concretizations), m1,1−m1,4, that this partial model encodes
are shown in Figures 2(a-d).

We further assume that the modeler wants to refactor the
model to add getter and setter methods. For that she wants to

1We disregard the obvious modeling solution for illustration purposes.



Figure 2. (a-d) The four concretizations of M1. (e-h) Concretizations of M2,
i.e., transformed versions of (a-d) respectively after the addition of getters
and setters.

use a simple rewrite rule R1 (in the remainder of the paper,
we refer to it as An Example Adding Rule) which is shown in
Figure 1(a). The left-hand side (LHS) of the rule can match an
attribute of a class. The matched sub-model is then replaced
with the right-hand side (RHS) of the rule, which contains the
newly added getter and setter operations.

Applying a rule to a single classical model is straight-
forward, both in terms of desired results and of mechanics.
But what does it mean to apply a transformation rule to
a partial model? We break down this general question into
two specific ones: (Q1) What should the result of applying
a transformation to a partial model be? (Q2) What is the
mechanics of applying a rule to a partial model?

Regarding (Q1), we describe the intuition as follows: the
partial model M1 in Figure 1(b) encodes exactly the four
models m1,1 − m1,4 in Figure 2(a-d). Applying the rule
R1, using the “standard” graph transformation approach [3]
to each alternative classical model m1,i in produces a new
model m2,i, respectively shown in Figures 2(e-h).2 Models
m2,1 −m2,4 are encoded by the partial model M2 shown in
Figure 1(c). Therefore, the application of the rule R1 directly
to M1 should result in M2. We formalize this intuition as a
correctness criterion in Section IV.

Regarding (Q2), we have opted to not change the trans-
formation itself, but rather redefine the semantics of rule
application for partial models, using logic. In Section II,
we describe how both classical and partial models can be
encoded in propositional logic. In Section III-A, we outline
a method to also encode the rules as transfer predicates and
in Section III-B, we describe how to apply such encoded rules
on partial models.

2We assume a graph transformation engine that applies the rule in parallel
to all matching sites. For example, in the model m1,3 in Figure 2(c), the
rule matches simultaneously both attributes, resulting in the model m2,3 in
Figure 2(g).

We conclude our motivating example by introducing a
second example transformation. After applying R1 to M1 and
producing M2, the modeler realizes that applying this rule
had the undesired effect of also adding setter methods for the
derived attribute hasExpired. For illustration purposes, we
assume that derived attributes follow the naming convention
“hasX”. Based on this, the modeler defined the transforma-
tion R2, shown in Figure 3(a) (in the remainder of the paper,
we refer to it as An Example Deleting Rule). The rule matches
classes that have both a derived attribute and its respective
setter and deletes this setter. Applying R2 to M2 should
result in a new partial model M3, shown in Figure 3(b), that
has exactly the four concretizations m3,1 − m3,4, shown in
Figures 2(c-f).

To summarize, the paper makes the following contribu-
tions: (a) We define the notion of lifting transformations to
partial models and outline a way to test it. (b) We provide a
method for defining semantics of lifting transformations for
partial models using logical encodings in the form of transfer
predicates. (c) We demonstrate the approach by applying it to
two transformation examples and discuss the limitations and
challenges of lifting (Section V).

II. PARTIAL MODELS

In this section, we use the motivating example from Sec-
tion I to briefly explain the notation and semantics of partial
models. Their formal definition, semantics, encodings and
representation are described in detail in [6].

The partial model M1 in Figure 1(b), called a May
Model [11], summarizes the four alternative concretizations
in Figure 2(a-d) compactly and exactly. Each element in M1

is annotated as True, False or Maybe [8]. A Maybe anno-
tation indicates an optional element, such as the attributes
labeled with the letters A to D in Figure 1(b). These are the
model elements that differ between the concretizations and
are depicted graphically using dashed lines.

As more information becomes available, the annotations of
these elements can change from Maybe to True or False (i.e.,
be included or excluded from the model) or remain Maybe.
This process is a form of “point-wise” refinement [11] that
only affects the degree of explicated uncertainty without
introducing additional elements. A concretization of a partial
model is a model where all the Maybe elements have been
annotated with True or False. All concretizations of a partial
model are classical and are obtained via point-wise refine-
ment. We denote the set of concretizations of a partial model
M by [M ].

May models are accompanied by May Formulas constrain-
ing the allowable configurations of the Maybe elements and
thus defining the set of concretizations of the partial model.
For example, the May formula for model M1 is Φmay

M1
=

(A ↔ ¬C) ∧ (B → A) ∧ (D → C). A particular valuation
of Φmay

M1
, namely, 〈A = True, B = C = D = False〉, corre-

sponds to the classical model m1,2, shown in Figure 2(b).
Every classical model is a partial model where all terms are

annotated by True or False and the May formula is True.

2



Figure 3. (a) Refactoring transformation rule R2 for removing setters of
derived attributes. (b) The partial model M3 resulting from applying R2 to
M2. (c-f) Concretizations of M3.

A partial model (and thus every classical model as well!)
can be encoded entirely as a propositional formula [6]. This
is done by conjoining its May Formula with a conjunction
of the model’s True and False elements. For the model
M1, this propositional encoding is the conjunction ΦM1

=
Product∧ Milk∧ gen Milk Product∧ . . .∧Φmay

M1
, where

gen Milk Product represents the generalization between
Milk and Product.3 Moreover, the propositional formula for
a partial model can be obtained by computing a disjunction
of encodings for each of its concretizations.

The set of all variables in such a propositional encoding
is called the scope or vocabulary of the partial model. It
is possible to embed a partial model into a larger scope,
i.e., one that contains elements not present in the original.
The new elements simply appear negated in the propositional
encoding. For example, M1 can be embedded into the scope
of M2, in which case its propositional encoding becomes
ΦM1 ∧ ¬E ∧ . . . ∧ ¬L.

III. PARTIAL TRANSFORMATIONS

In the motivating scenario presented in Section I, the
modeler uses graphical rules to express transformations. Tra-
ditionally, rules and their applications are defined as follows:

Definition 1: A transformation rule R is a tuple 〈LHS,
RHS〉, where the typed, attributed graphs LHS, RHS are
respectively called the left-hand and right-hand sides of the
rule.4

Definition 2: A rule R = 〈LHS, RHS〉 is applied to a
model M by finding all matches of LHS in M and replacing

3We have omitted the ownership relationships between attributes and
classes for brevity.

4We simplify the problem by ignoring negative application conditions [3]

all matched sites with RHS, to produce the output model N .
That is, a rule R can be applied to an input model M to
produce a new model N . We denote this as M R ∗

=⇒ N .
While inspired from algebraic graph transformation [3], we

adopt a purely logic-based perspective of model transforma-
tion. A transformation is accordingly captured as a transfer
predicate that relates elements of the input and the output
models. In this section, we outline our approach for encoding
and applying transformation rules as transfer predicates.

A. Representing Transformations

A transformation rule can be encoded in logic:
Definition 3: Given a rule R = 〈LHS,RHS〉, where

ΦL,ΦR are propositional formula patterns, that logically
encode the rule’s LHS and RHS respectively, the transfer
predicate R(R) encodes the relationship between the vari-
ables of ΦL and those of ΦR as follows: R(R) = (ΦL →
ΦR) ∧ (¬ΦL → ΦNE), where ΦNE describes the case
where the rule has “no effect”. Matching is done by unifying
the variables of ΦL,ΦR with those of the model at each
particular site.

That is, the rule says that if the LHS applies, then in
the result (denoted by primed variables), RHS should hold.
Otherwise, values of variables are left unchanged.

Systematic construction of transfer predicates is still work
in progress. In the following, we outline the manual construc-
tion of transfer predicates for the two rules of the motivating
scenario.

An Example Adding Rule. The rule R1, shown in Fig-
ure 1(a), is a refactoring rule that adds getters and setters for
attributes in classes that don’t have them. Overall, the rule has
four propositional variables: a class c, an attribute a, a getter g
and a setter s. The rule’s LHS explicitly refers to the first two
variables, c and a whereas the variables g, s are implicitly set
to False (i.e., the rule does not match sites where the getter
and the setter already exist). The rule’s RHS sets the variables
of g′, s′ depending on the value of a.

A matched site is captured by ΦL = c ∧ a ∧ ¬g ∧ ¬s.
It is evident that at each matched site, the transfer predicate
includes the expression Φ′R = (c′ ↔ c) ∧ (a′ ↔ a) ∧ (g′ ↔
a)∧ (s′ ↔ a)5. For each model element x that is not matched
by the rule, the transfer predicate is ΦNE = (x′ ↔ x).

An Example Deleting Rule. The rule R2, shown in Fig-
ure 3(a), deletes the setters for derived attributes, assuming
that the naming convention “hasX” is followed. This rule has
three propositional variables: a class c, a derived attribute h
and a setter s. The RHS of the rule implicitly sets s′ to False.

A matched site is captured by ΦL = c ∧ h ∧ s. At each
matched site, the transfer predicate is Φ′R = (c′ ↔ c)∧(h′ ↔
h)∧¬s′. For each model element x that is not matched by the
rule, the transfer predicate is again ΦNE = (x′ ↔ x).

5The operator ↔ is interpreted as equality.

3



B. Applying Transformations

When using the logical representations of models and
transfer predicates, rule application is defined as:

Definition 4: A rule R = 〈LHS,RHS〉, applied to a (par-
tial) model M to produce the output model N , corresponds to
the equation Φ′N = R(R,M,N) ∧ ΦM , where R(R,M,N)
is a transfer predicate, expressed in first-order logic, that
associates the (primed) elements of N with the (unprimed)
elements of M . The transfer predicate R(R,M,N) is con-
structed by unifying the predicate R(R) with each site in M
and N .

Multiple applications of rules can be achieved by the
construction: Φn = Φn−1 ∧R(Rn,M

n−1,Mn).
In this paper, we assume for simplicity that the vocabulary

of the output model is known at the time of rule application.
With this assumption, the Transfer Predicate is propositional-
ized over the union of the vocabularies of M and N .

Rule Application for Classical Models: Example. We il-
lustrate Definition 4 by creating the transfer predicate for
applying the rule R1 to the model m1,1 in Figure 2(a). The
construction is done manually by doing the matching and
grounding over the union of the vocabularies of m1,1 and the
model m2,1 in Figure 2(e). The rule matches the variables
〈c, a, g, s〉 at the matching site 〈Milk, C, I, J〉. Thus, after
simplification, the grounded transfer predicate becomes

R(R1,m1,1,m2,1) = (Milk′ ↔ Milk) ∧ (C′ ↔ C) ∧ (I′ ↔ C)∧
(J ′ ↔ C) ∧ (Product′ ↔ Product)∧
(gen Milk Product′ ↔ gen Milk Product)

The last two clauses of the conjunction are the elements in
the model that are unaffected by the transformation. Given
the propositional encoding Φm1,1

of the model m1,1, the
production m1,1

R1 ∗=⇒ m2,1 is consequently encoded as

Φm2,1
= R(R1,m1,1,m2,1) ∧ Φm1,1

This mechanism for applying transformations is directly
applicable to the transformation of partial models. The only
difference is that partial models have somewhat more com-
plex encoding as propositional formulas. We illustrate on two
examples below.

Example Adding Rule (Cont’d). We begin by encoding
the production M1

R1 ∗=⇒ M2. Using the union of the vo-
cabularies of the models M1,M2, shown in Figures 1(b-
c), we manually perform the matching and propositional-
ize the transfer predicate at the possible matching sites in
M1. For the variables 〈c, a, g, s〉, these are four matches:
{〈Product, A,E, F 〉, 〈Product, B,G,H〉, 〈Milk, C, I, J〉,
〈Milk, D,K,L〉}. The only element unaffected by the rule
in this case is the generalization gen Milk Product). After
simplifying and removing duplicates, the transfer predicate
becomes:

R(R1,M1,M2) = (Product′ ↔ Product) ∧ (Milk′ ↔ Milk)∧
(A′ ↔ A) ∧ (B′ ↔ B) ∧ (C′ ↔ C)∧
(D′ ↔ D) ∧ (E′ ↔ A) ∧ (F ′ ↔ A)∧
(G′ ↔ B) ∧ (H′ ↔ B) ∧ (I′ ↔ C)∧
(J ′ ↔ C) ∧ (K′ ↔ D) ∧ (L′ ↔ D)∧
(gen Milk Product′ ↔ gen Milk Product)

Using the propositional encoding ΦM1
of the partial model

M1, the production M1
R1 ∗=⇒ M2 is thus encoded as

ΦM2
= R(R1,M1,M2) ∧ ΦM1

Example Deleting Rule (Cont’d). We now demonstrate the
application of rule R2 to M2. Using the vocabulary of M2 and
manually doing the match for 〈c, h, s〉, we get two matching
sites {〈Product, B,H〉, 〈Milk, D, L〉}. The transfer predi-
cate becomes

R(R2,M2,M3) = (Product′ ↔ Product) ∧ (Milk′ ↔ Milk)∧
(B′ ↔ B) ∧ (D′ ↔ D) ∧ ¬H′ ∧ ¬L′ ∧ ΦNE

Here we used ΦNE to denote a conjunction of terms
of the form (X ′ ↔ X) for each model element that
was not matched by the rule, such as expirationDate,
getHasExpired, etc. The production M2

R2 ∗=⇒ M3 is en-
coded as

ΦM3 = R(R2,M2,M3) ∧ ΦM2

using the propositional encoding ΦM2
of the partial model

M2.
In this section, we showed how to encode an outcome of

applying a transformation to models, partial and classical.
This gives as semantics of partial transformations and an-
swers question Q2 posted in Section I. Our treatment was
based on knowing what the outcome of the transformation
is supposed to be, since the output model was an integral part
of computing the transfer predicate. In the next section, we
discuss what such output model should be (question Q1).

IV. TOWARDS VERIFICATION OF CORRECTNESS

In this section, we define a criterion that lifted transfor-
mations should follow and check correctness of adding and
deleting rules in our running example.

Correctness Condition. Partial models are intended to be
exact representations of sets of models and lifted transforma-
tions must preserve this. This means that applying a lifted
transformation R to a partial model M should be equivalent
to applying its classical version to each of the concretizations
of M and building a partial model from the result. We
refer to this principle as the Correctness Criterion for lifting
transformations. More formally:

Definition 5: Given a rule R, a partial model M with a set
of concretizations [M ] = {m1, . . . ,mn}, and the set U =

{m′i|∀mi ∈ [M ] · mi
R ∗
=⇒ m′i}, the production M

R ∗
=⇒ N

is correct iff the set of concretizations of the resulting partial
model M ′ satisfies the condition [N ] = U .

4



Figure 4. Testing the rule application M
R ∗
=⇒ N for correctness of lifting:

(a) model view; (b) logical view.

Alternatively, the resulting model N is obtained by building
a partial model from the set U . Note that this correctness
criterion holds independently of how we choose to encode
productions!

Testing Correctness. Using this criterion, we can test
whether a production M

R ∗
=⇒ N is correct with respect to

lifting. Testing is done in three steps: (1) create the model N
by applying the rule, (2) create the set U by appling the rule
to each concretization m of M , (3) compare the sets [N ] and
U . The process is summarized in Figure 4(a). The reason why
we call this testing rather than verification is that we can only
establish that the production is correct w.r.t. an input model
M .

In our motivating example, correctness of our encoding
of the production M1

R1 ∗=⇒ M2 can be tested by checking
whether the set of concretizations [M2] is the same as the
set of models that is constructed by individually transforming
the set of concretizations [M1]. Indeed, by individually trans-
forming the set {m1,1,m1,2,m1,3,m1,4} of concretizations
of M1, shown in Figures 2(a-d), we arrive to the set of models
{m2,1,m2,2,m2,3,m2,4}, shown in Figures 2(e-h), which is
exactly the set [M2].

Towards Tool Support. Our encoding of transformations
using the transfer predicate allows us to automatically check
correctness of transformations using a SAT solver.

In particular, given a production M
R ∗
=⇒ N , we compare

the sets of valuations of the following two formulas: (a) the
rule application formula ΦN = R(R,M,N) ∧ ΦM and
(b) the formula ΦU = Φm′

1
∨ . . . ∨ Φm′

k
. ΦU encodes

the set U of individually transformed concretizations. Each
such concretization m′i is encoded by the formula Φm′

i
=

R(R,mi,m
′
i) ∧ Φmi . The process is summarized in Fig-

ure 4(b). We illustrate this verification approach using our
example.

In order to check the correctness of the production M1
R1 ∗=⇒

M2, we first construct the formula ΦM2 = R(R1,M1,M2)∧
ΦM1

, as discussed in Section III-B. Subsequently, we create
the formula ΦU

2 which represents the set of transformed
concretizations {m2,1,m2,2,m2,3,m2,4}, that are shown in
Figures 2(e-h).

We used these formulas as inputs to MathSAT4 [1], run-

ning the SAT solver in ALLSAT mode. Comparing the valu-
ations produced by MathSAT4 for each formula, we verified
that the two formulas have the same sets of possible valua-
tions, thus satisfying the correctness criterion.

Similarly, we tested the production M2
R2 ∗=⇒ M3.

We compared the valuations of the formulas
ΦM3

= R(R2,M2,M3) ∧ ΦM2
and ΦU

3 . The latter
was constructed similarly to ΦU

2 above for the models
{m3,1,m3,2,m3,3,m3,4}, shown in Figures 3(c-f). Using
MathSAT4, we verified that the sets of valuations of these
formulas coincide, thus satisfying the correctness criterion.

For these small examples, the runtimes of the SAT solver
were negligible. As discussed in Section V, we do expect
scalability issues for transformations of partial models with
larger sets of concretizations and/or more sites of application.
The overall process is expensive, due to the fact that in
order to do a test, we have to enumerate and transform each
concretization of the input model.

V. SUMMARY AND DISCUSSION

Transforming partial models is an important component
of the research agenda for partial models that we presented
in [5], which aims to build a comprehensive framework for
explicitly handling uncertainty in the software engineering
lifecycle. In Section I, we presented the problem of trans-
forming partial models in terms of two basic questions:
(Q1) what should the outcome look like, and (Q2) what
mechanics would produce such an outcome. We have outlined
our preliminary thoughts on this: In Section IV, we defined
a correctness criterion to answer (Q1). In Section III, we
presented our approach to addressing (Q2), using a logic-
based approach for defining the semantics of transformations
that takes into account partial models. We further experi-
mented with two examples of transformations, an additive
and a deleting transformation. In this section, we draw from
this experience to outline the major challenges that we have
identified and discuss future steps.

In Section IV, we used the correctness criterion to test the
lifting of our example transformations, using SAT. Certain
important limitations arose from these examples:

1) Testing the production, e.g. M1
R1 ∗=⇒ M2 requires the

construction of the formula ΦU
2 that encodes the indi-

vidually transformed concretizations of M1. Essentially,
this amounts to the explicit construction and enumera-
tion of all the concretizations of M2. This corresponds
to thorough checking [7] and can be very expensive,
especially if the set of concretizations of M1 is large or
if there are many possible matching sites.

2) The criterion can only be used to test the application of a
lifted transformation for specific input and output mod-
els. We should be able to verify that a transformation is
correctly lifted, regardless of specific inputs and outputs.

We are currently working on alternative approaches to
verifying lifted transformations compositionally. For this, we
aim to use an approach centered on proving transformations
correct, based on identifying proof obligations, similar to the

5



approach we developed in [10] for verifying the special class
of uncertainty-reducing partial model refinements.

A logic-based lifting semantics for partial model transfor-
mation was introduced in Section III and illustrated on our
two examples. Our preliminary attempts point us to identify
the following challenges:

1) We manually constructed the transfer predicates for the
particular examples we presented. Similarly, rule appli-
cation was also done manually (matching and propo-
sitionalization of the transfer predicates). We are cur-
rently working on systematizing the creation of transfer
predicates using First-Order Logic. Given a classical
transformation, we want to create the transfer predicate
using a predefined set of reusable modular predicates,
such as MatchNode() AddNode(), DeleteEdge(), etc.
This will allow us to support more sophisticated features
of model transformation, such as Negative Application
Conditions. At the same time, this will help streamline
the lifting process and form the basis for effective tool
support for automatic matching and propositionaliza-
tion.

2) In our examples, we required knowledge of the vo-
cabulary of the output model prior to rule application,
especially in the case of additive transformations. This
is, naturally, not always the case in real-world set-
tings. A similar problem occurs with deleting trans-
formations: deleted elements remain in the vocabulary,
albeit negated. We are working on a more systematic
approach to expand and contract vocabularies and, more
specifically, on ways to treat transformations that affect
changes to the vocabulary.

3) Applying transformations using the transfer predicate
results in a formula that is in terms of the original model
in the form of “unprimed variables”. Converting this to
a representation that is useful to the user requires us to
construct an expression that is solely expressed in terms
of the resulting model. To do this, unprimed variables
need to be factored out, which can be expensive.

An alternative approach, that would address the last concern,
but also provide a more general solution, would be to define
partial model transformations in terms of the Double Pushout
(DPO) approach [2]. In [3], it is proven that the DPO can be
applied to any Adhesive High-Level Replacement Category

(AHLR) [4]. We have made some initial attempts at formal-
izing partial models as an AHLR, with the biggest challenge
being the identification of the proper morphisms.

In conclusion, in this paper we have outlined the prob-
lem of partial model transformation and identified its main
parameters in terms of correctness and mechanics. We have
illustrated our preliminary approach in two examples of basic
additive and deleting transformations. Using this experience
we were able to identify the main challenges and outline next
steps.

REFERENCES

[1] R. Bruttomesso, A. Cimatti, A. Franzen, A. Griggio, and
R. Sebastiani. The MathSAT 4 SMT Solver. In Proceedings of
CAV’08’, pages 299–303, 2008.

[2] A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, and
M. Lowe. Algebraic approaches to graph transformation. Part
I: Basic concepts and double pushout approach. In Handbook
of graph grammars and computing by graph transformation,
pages 163–245. World Scientific Publishing Co., Inc., 1997.

[3] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals
of Algebraic Graph Transformation. EATCS. Springer, 2006.

[4] H. Ehrig, A. Habel, J. Padberg, and U. Prange. Adhesive
High-Level Replacement Categories and Systems. Graph
Transformations, 3256:144–160, 2004.

[5] M. Famelis, S. Ben-David, M. Chechik, and R. Salay. “Partial
Models: A Position Paper”. In Proceedings of MoDeVVa’11,
pages 1–6, 2011.

[6] M. Famelis, M. Chechik, and R. Salay. “Partial Models:
Towards Modeling and Reasoning with Uncertainty”. In
Proceedings of ICSE’12, 2012. To appear.

[7] A. Gurfinkel and M. Chechik. “How Thorough Is Thorough
Enough?”. In Proceedings of CHARME’05, pages 65–80,
2005.

[8] K. G. Larsen and B. Thomsen. “A Modal Process Logic”. In
Proceedings of LICS’88, pages 203–210, 1988.

[9] M. Petre. “Insights from Expert Software Design Practice”. In
Proceedings of FSE’09, 2009.

[10] R. Salay, M. Chechik, and J. Gorzny. “Towards a Methodology
for Verifying Partial Model Refinements”, 2012. submitted.

[11] R. Salay, M. Famelis, and M. Chechik. “Language Indepen-
dent Refinement using Partial Modeling”. In Proceedings of
FASE’12, 2012.

6


