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Abstract—In this paper, we suggest a method for refactor-
ing UML structural and behavioral models of closely related
individual products into product lines. We propose to analyze
duplications in the models of individual products using a hetero-
geneous match algorithm which takes into account structural
and behavioral information to identify identical and similar
model elements. Identical elements (exact matches) are refactored
to common parts of the product line, similar elements are
refactored to variable alternative parts, and unmatched elements
are refactored to variable optional parts. We further propose
to adjust the quality of the match by analyzing quality of the
resulting refactoring. We evaluate UML comprehensibility before
and after the change using prediction models that are based on
static metrics, and use the results to set the optimal thresholds
for identity and similarity between model elements. We illustrate
our proposed approach on an example.

I. INTRODUCTION

A software product line (SPL) is a set of software-intensive
products sharing a common, managed set of features that
satisfy the specific needs of a particular market segment [1].
SPL commonalities represent artifacts that are part of each
product of the product line, while SPL variabilities represent
artifacts that are specific to one or more (but not all) individual
products [2].

There are different approaches to SPLs implementation,
such as aspect weaving, conditional compilation, code gener-
ation and more [2], [3], [4], [5], [6], all aiming to implement
variability in SPLs in a maintainable way. In reality, SPLs of-
ten emerge from experiences in successfully addressed markets
with similar, yet not identical needs. It is difficult to foresee
these needs a priori and hence to design an SPL upfront.
To address the different marketing needs, software developers
often create new products ad-hoc, by using one or more
of the available techniques such as duplications (the clone-
and-own approach), inheritance, source control branching,
componentization and more.

In a production environment, the use of the ad-hoc methods
does not provide sufficient management. In many cases, even
when a more mature reuse technique, such as inheritance or
componentization [7], [8] is chosen, software artifacts are used
by different products, each with its own release schedule.
In such cases, duplication is the fastest possible solution
often undertaken. For embedded and resource constrained

environments, where deployed resources should be kept to
a minimum, inheritance is not desired, as it requires fine-
grained fragmentation to support feature-based modularization
and results in an undesired executable blow up. Moreover,
most of the reuse techniques are inapplicable to software
development artifacts other than code, which, again, results
in duplications of these artifacts. As the number of variants
increases, the effort for maintaining them increases, too as
changes in the shared artifacts must be repeated in all variants.

Modern SPL techniques, such as the approaches described
by Pohl et al. [2] and Gomaa [3], support handling of a col-
lection of similar software development artifacts through the
entire development life-cycle and enable efficient variability
management and reuse. In order to take advantage of these
techniques, we need to refactor legacy product lines into the
suggested representations. The first step towards obtaining
a product line model with common and variable parts is
comparison of existing products and determination of their
commonalities and variabilities. We consider two separate
cases of consolidation: where the variants are maintained
independently and are being refactored into one product line
model, and where refactoring is performed on a single model
that uses suboptimal variability mechanisms. In the latter
case, the goal is to transform the model into a product
line with common and variable parts, while preserving its
expressiveness.

In this paper, we propose to support refactoring by analyz-
ing duplications in the models of individual products using
a heterogeneous match algorithm which takes into account
structural and behavioral information to identify identical and
similar model elements. Identical elements map to common
SPL artifacts, similar elements map to variable alternative
SPL artifacts, and unmatched elements map to variable op-
tional SPL artifacts.

We further propose to perform a refactoring of the original
model(s) into a model with commonalities and variabilities,
and to use static metrics of model comprehensibility to eval-
uate the quality of the resulting refactoring. The refactoring
process is performed iteratively and interactively, identifying
the optimal thresholds for identity and similarity between
model elements, until a model of a desired quality is produced.

The remainder of this paper is organized as follows. Sec-



tion II describes related research. Section III introduces the
motivating example. In Section IV, we outline the proposed
heterogeneous match and refactoring algorithm, illustrating it
on the motivating example in Section V. Section VI concludes
the paper and discusses future work.

II. BACKGROUND

Several UML match and merge algorithms [9], [10], [11],
[12], [13], [14], [15], [16] exist. Of particular importance
are those among them that are able to find not only fully
identical but also approximate matches [9], [13], [14], [15].
However, all these algorithms are designed for a particular type
of UML diagrams and do not take into account heterogeneous
information obtained by analyzing several types of diagrams
together. Both similarity detection algorithms and model-level
clone-detection techniques for other model types, such as
Matlab/Simulink models [17], [18], also consider a single
system perspective. Code-level clone-detection techniques [19]
are not applicable to models.

UML model refactoring [20], [21], [22], as well as code
refactoring techniques [23], [24] largely focus on improving
the internal structure of a software system. These techniques
usually add, move, remove, rename, generalize, specialize or
modularize software elements to improve software design,
rather than focusing on identifying and managing its common
and variable parts.

Several approaches aim at building product lines out of
legacy artifacts, e.g., [25], [26], [27], [28]. These approaches
mainly discuss guidelines, methodologies and lessons learned,
without providing details on software artifact analysis and
tool support. Code-level refactoring techniques that reconstruct
product lines from legacy code systems are proposed in [29],
[30], [31]. Kosche et. al [32] introduce a method to reconstruct
the static architecture of variants using the reflection method.
While the motivation of this work is close to ours, it focuses on
the extension of the Murphy’s reflection method from single
systems to software variants and uses code clone detection
techniques to identify matching variants.

Our work is different from the above as it operates on the
level of UML models and considers more than a single UML
diagram type to identify matching variants.

III. MOTIVATING EXAMPLE

Our work is motivated by a real-life UML model of a
partner. Since the details of that model cannot be made public,
we constructed a representative example that allows us to
demonstrate the nature of the model without revealing any
partner-specific details.

Figure 1 presents a UML2 class diagram depicting the
main classes of a Washing Machine which has several
Wash programs. Gentle Wash program is further sepa-
rated into Wool, Hand and Cold washes. The Wash pro-
gram controls Spinner, Water Heater and Program
Sequence components of the washing machine. This wash-
ing machine can perform three wash sequences: Regular,
No Spin and Double Rinse.

Fig. 1. Structure of the Washing Machine example.

Fine-grain separation into different wash programs and
sequences allows the vendor to produce multiple washing
machine models with different combination of features. For
example, it can offer consumers a washing machine that
performs the Regular wash sequence for the Wool and
Cold programs, and the No Spin wash sequence for the
Hand program. This configuration is depicted in Figure 2.
The vendor can also choose to produce washing machines
without the Hand wash program or those without the Double
Rinse wash sequence.

Since the software of the washing machine is installed in a
resource-constrained environment, a requirement is not to ship
systems with extra software. That is, a washing machine model
without the Double Rinse wash sequence should not have
the code for that feature physically present. The modularity
of the solution, however, results in a large set of duplications,
since the components of the solution should be deployed and
function independently.

Fig. 2. A Model of the Washing Machine.

The behavior of the washing machine components is de-
picted in Figures 3-4. Figure 3(a) shows the behaviour of the
Wool and the Hand washes, which are identical. Figure 3(b)
shows the behaviour of the Cold wash, which differs from
the Wool and the Hand washes in the set wash tempera-
ture. Figures 4(a), 4(b) and 4(c) show Regular, No Spin
and Double Rinse program sequences, respectively. Wash
programs communicate with wash sequences using signals.
After a wash program statechart completes the LockDoor
state, it sends out the SigStart signal. Wash sequence



statecharts wait for that signal and start to operate upon its
reception. When the entire wash sequence is completed, the
wash sequence statechart sends out a SigDone signal, which
indicates that the wash program can proceed to the Unlock
state.

(a) Behaviour of Wool and Hand Washes.

(b) Behaviour of Cold Wash.

Fig. 3. Wash Program Statecharts.

The washing machine model in the described example
essentially represents a product line of control software for
different washing machines. The software can be built by
selectivity including and excluding some of the model’s com-
ponents. Our goal is to refactor the model by explicating its
common and variable part, while eliminating duplication and
reducing complexity. At the same time, our goal is to maintain
modularity and minimal size of the deployed code.

IV. THE PROPOSED APPROACH

Our main objective is to define and implement the
3-Valued heterogeneous Match and Refactoring algorithm
(ThreeVaMaR). The algorithm accepts as input a model with
duplications which represent multiple product variants. The
algorithm then produces as output the model of a product line,
while explicating product line commonalities and variabilities,
following the approach in [2], [3]. For the cases when the
algorithm is used to merge two or more product variant
models, the input model is constructed by computing the
union of these variant models, without any merging. The
algorithm works iteratively, by repeating the sequence of four
basic steps: measuring the quality of the input model, finding
duplications and near duplications via matching, refactoring
and comparing the quality of the refactored model to that of the
original one. After each iteration, the threshold of the match is
decreased, which results in an increased number of matches.
The algorithm stops when a model of the desired quality is

(a) Regular.

(b) No Spin.

(c) Double Rinse.

Fig. 4. Wash Sequence Statecharts.

produced. These basic steps are outlined in Algorithm 1 and
further elaborated below.

Algorithm 1 ThreeVaMaR(M : model)
1: Qref ← quality(M )
2: Ti ← initTi //initial identity threshold
3: Ts ← initTs //initial similarity threshold
4: repeat
5: Qorig ← Qref

6: matches ← match(M , Ti, Ts)
7: Mref ← refactor(M , matches)
8: Qref ← quality(Mref )
9: decrease Ti

10: decrease Ts

11: until Qref > Qorg

A. Evaluation of Model Quality

Lines 1 and 8 of the algorithm use static metrics proposed
in the literature to assess comprehensibility of UML class
diagrams (quality).

Specifically, the work in [33] suggests that an increased
number of classes, inheritance and aggregation mechanisms
results in an increased cognitive complexity of a UML class di-
agram. A quantitative assessment of the complexity is made by



two different prediction models: the first, which is proposed in
[34] and [35], is based on Fuzzy Deformable Prototypes [36],
[37]. This model allows predicting understandability time, and
thus maintainability, of a diagram by calculating a triangular
fuzzy number for each new diagram and assessing its affinity
with predefined prototypes that were obtained from responses
given by humans during controlled experiments. Each trian-
gular fuzzy number represents the degrees of membership in
three prototype groups – easy, medium, and difficult.

Another prediction model for UML class diagram under-
standability time is suggested in [38]. This model is based on
the Multivariate Linear Model [39] which includes dependant
and independent variables (metric values) in the prediction
model, as long as they fulfil predefined statistical criteria.

The authors of [40] suggest that the number of states,
actions and transitions of a statechart diagram correlates with
its increased cognitive complexity. A prediction model that
quantitatively confirms this finding, by assessing the under-
standability times, is proposed in [41]. The model is based on
the Individual Regression Equations [42] – a technique similar
to the Multivariate Linear Model.

We propose to use all three of the above-mentioned metrics:
the first two for comparing class diagrams (see Table I), and
the third one – for statechart diagrams (see Table II). It should
be noted that low values of quality calculations (lines 1 and
8) are associated with high model understandability and vise-
versa.

B. Match

By examining the example in Section III, we can see that
classes Wool and Hand, depicted in Figure 1, could be
matched because they have the exact same behavior, shown
in Figure 3(a). The behaviour of the class Cold, on the other
hand, is not identical to that of the classes Wool and Hand.
Thus, the similarity between Cold and the other two classes
is lower. Yet such difference between the three classes cannot
be detected if only the structural information, presented in the
class diagrams, is considered: all three classes have the same
static structure, the same set of methods (not shown) and the
same set of relationships to other model elements.

This means that in order to determine the similarity of
UML model elements, it is essential to consider the collective
information captured in different UML diagrams and views:
the heterogeneous match algorithm should weigh structural,
behavioral and, if available, code snippet similarity when
calculating the similarity degree between model elements. That
is, the similarity between classes should take into account the
similarity between their corresponding statecharts and/or ac-
tivity diagrams; the similarity between states should take into
account the similarity between their actions’ code snippets,
etc.

We are not aware of heterogeneous match algorithms pro-
posed in the literature and thus intend to implement such
an algorithm as part of our work (line 6 of Algorithm 1).
Furthermore, since we intend to detect exact and near dupli-
cations in the input models for the purpose of refactoring those

into models with commonalities and variabilities, Algorithm 1
defines two thresholds – identity degree threshold (Ti in line
2) which specifies elements that are considered identical for
the purpose of the refactoring, and similarity degree threshold
(Ts in line 3) which specifies elements that are considered
similar. While many heuristic matching techniques define
identity threshold experimentally, we suggest to adjust both
thresholds dynamically during the refactoring process, by
measuring quality of the resulting refactored model. As long
as the complexity of the resulting model does not exceed
the complexity of the model in the previous iteration, we
proceed with the process of lowering the thresholds (lines 9-
10). We stop when additional refactoring does not lead to an
improvement in the model.

C. Refactoring
Model refactoring (line 7 of the Algorithm 1) is performed

top-down, starting from the high-level model elements, such
as packages or classes. It is built upon the idea that identical
elements are transformed into product line common artifacts,
which requires a recursive merge of their internal structure.
When the internal structure of these elements is merged, iden-
tical, similar and unmatched elements are recursively handled:
similar elements are transformed into product line variable
alternative artifacts, unmatched elements are transformed into
variable optional artifacts, while identical elements are merged
and the process continues. For example, when two packages
depicted in Figure 5(a) are identified as identical, their cor-
responding internal elements – classes, interfaces and sub-
packages – are to be composed. In this case, both classes A1
and B1 are marked optional, classes A3 and B3 are marked as
alternatives, while classes A2 and B2 are recursively merged.
The result is shown in Figure 5(b).

(a) Before the Refactoring.

(b) After the Refactoring.

Fig. 5. Identity and Similarity Relationships.



V. ILLUSTRATION

In this section, we illustrate the use of the ThreeVaMaR al-
gorithm for the example described in Section III. Specifically,
we instantiate the algorithm on the model in Figure 1, while
manually simulating the match and refactoring capabilities.
Below, we propose and analyze three possible refactorings of
the example model.

A. Refactoring #1

Combining Wool and Hand classes together results in a
model presented in Figure 6. Following [33], decreasing the
number of classes, inheritance and aggregation mechanisms
results in a decreased cognitive complexity; thus, the refac-
tored model is slightly simpler than the original one.

Fig. 6. Washing Machine Structure After Refactoring.

The quantitative complexity assessment of the original
model in Figure 1 and the refactored model in Figure 6
is shown in Table I. In Fuzzy Deformable Prototypes-based
prediction model, the original class diagram has 45% affinity
with the easy case and 29% with the medium case, while the
refactored class diagram has 48% affinity with the easy case
and 26% with the medium case. The change is statistically
insignificant because the changes between these two class
diagrams are minor, but we are able to demonstrate stability of
the metrics. The prediction model that is based on Multivariate
Linear Model does not differentiate between the original and
the refactored class diagrams at all.

Prediction Method Original Model Ref#1 Ref#2 Ref#3
Fuzzy Deformable 0.292 0.285 0.163 0.089
Prototypes (0.45,0.29,0) (0.48,0.26,0) (0.92,0,0) (0.99,0,0)
Multivariate Linear
Model 215.17 215.17 91.3 91.3

TABLE I
PREDICTED UNDERSTANDABILITY FOR WASHING MACHINE CLASS

DIAGRAM.

While the complexity of each individual statechart in the
refactored UML model did not change, the new washing
machine has fewer statecharts, and thus its complexity is
reduced.

In addition, in the refactored washing machine UML model
there is no need to create a composite structure diagram for
each combination of washing machine features that define
a washing machine model (like the one in Figure 2). All
configurations can be represented in one diagram and be
controlled by a set of washing machine features (similarly to
the method suggested in [2] and [3]). Figure 7 depicts such
a diagram, where Wool and Hand features are attached to
UML model elements. The Wool feature corresponds to the
combination in which HandWool uses the Regular Spin
sequence, as in the Wool wash of the model in Figure 2;
the Hand feature corresponds to the combination in which
HandWash uses the No Spin sequence, as in the Hand
wash of the model in Figure 2.

Fig. 7. A Washing Machine Model After Second Refactoring.

B. Refactoring #2

By decreasing the identity degree threshold, Hand, Wool
and Cold classes can all be matched together. In addition, all
three program sequence classes – Regular, No Spin and
Double Rinse – are matched together as well. The class
diagram of the refactored model is shown in Figure 8.

Fig. 8. Washing Machine Structure After Refactoring #2.

Statechart diagrams of the Wash program and Program
Sequence are depicted in Figure 9 and 10, respectively.
For each of these diagrams, elements that passed the iden-
tity degree threshold were merged; elements that passed the
similarity degree threshold were defined as alternatives (e.g.,
transitions from the Weight state in Figure 9), and all



other elements were defined as optional (e.g., 2ndRinse
state in Figure 10). The diagrams are again controlled by
features. WoolHand and Cold features control different wash
programs, while Regular, No Spin and Double Rinse
features control different wash sequences.

Fig. 9. Wash Program Statechart After Refactoring #2.

Fig. 10. Wash Sequence Statechart After Refactoring #2.

With respect to the complexity metrics, we obviously re-
duced the number of classes, inheritance and aggregation
mechanisms, which, following [33], results in a decreased
cognitive complexity. Calculated understandability measures
shown in Table I confirm that the refactored class diagram is
significantly simpler than both the original one and the one
we obtained after the first refactoring iteration.

Following [40], the number of states, actions and transi-
tions correlates with an increased cognitive complexity for
a statechart diagram. Even though each refactored diagram
has more transitions than the original one, we reduced the
total number of statechart diagrams from five to just two,
which leads to a decreased complexity. This is quantitatively
confirmed using the prediction model in [41]. Since the metrics
and the prediction model that we used do not take into account
associations of state machine elements with features, and since
in statecharts a guard on a transition is the closest semantic
equivalent to the association of a transition with a feature, we
adapted the metrics to count these associations as additional
guards. The result of the calculations is summarized in Ta-
ble II. As expected, the statechart diagrams after the second
refactoring are easier to understand and thus to maintain.

C. Refactoring #3

By setting the identity degree threshold even lower than in
Refactoring #2, Hand, Wool, Cold, as well as Regular,
No Spin and Double Rinse classes can all be matched
together. The class diagram of the refactored model is depicted
in Figure 11.

Fig. 11. Washing Machine Structure After Refactoring #3.

The statechart diagram of the new Wash/Program
Sequence class is shown in Figure 12. This diagram is again
controlled by features. WoolHand and Cold features control
different wash programs, while Regular, No Spin and
Double Rinse features control different wash sequences.
Wash program statecharts (Figure 3) do not match with the
wash sequence statecharts (Figure 4). Thus, they are placed in
orthogonal regions of the refactored statechart diagram, with
a fork pseudostate selecting which region to execute based
on features (which are omitted for simplicity).

With respect to the metrics, while we further reduced the
number of classes when comparing to Refactoring #2, the
calculated understandability measures shown in Table I did not
substantially change. Statechart-related calculations shown in
Table II show a slight improvement in the statechart under-
standability time. However, the metrics that we used for this
calculation were not designed to take into account orthogonal
statechart regions as well as the fork and the join pseudo-
states. Thus, we attribute the observed improvement to the
lack of appropriate measures, as opposite to a real complexity
benefit. We conclude that the improvement gained by this
additional refactoring is minor, if it exists at all, and thus the
refactoring is not essential.

Overall, we conclude that the second refactoring was the
most effective. The ability to specify different feature combi-
nations and thus to easily create software for new washing
machine models is an additional benefit of the resulting
refactored model, comparing to the original one.

Prediction Method Original Model Ref#1 Ref#2 Ref#3
Individual
Regression Equations 746.175 617.462 282.852 187.112

TABLE II
PREDICTED UNDERSTANDABILITY FOR WASHING MACHINE STATECHART

DIAGRAMS.



Fig. 12. Wash Program Statechart After Refactoring #3.

VI. DISCUSSION AND FUTURE WORK

In this paper, we outlined the proposed heterogenous match
and refactor algorithm (ThreeVaMar), which we intend to
employ for refactoring individual product variants into product
line models with common and variable parts. Our algorithm
uses two thresholds: the identity degree threshold which spec-
ifies elements that are considered common in the product line,
and the similarity degree threshold which specifies elements
that are considered alternatives. We propose to perform the
refactoring of individual product variants into product line
models iteratively, by dynamically setting the thresholds that
determine common and alternative elements, and proceed with
the process of decreasing thresholds until a model of the
desired quality is produced.

The quality of the match and subsequent refactoring in our
proposed algorithm relies on being able to measure complexity
of the resulting model. Part of our goals is to evaluate the
feasibility of using the complexity prediction model that is
based on static metrics of the UML model complexity in order
to measure quality. The initial evaluation shows promising
results. However, the stability and reliability of the prediction
model are yet to be determined. We also plan to investigate
the usage of alternative prediction models, or develop our own
prediction model adjusted to the unique needs of the product
line domain.

Our work aims at optimizing the input model by creating its
refactoring of the lowest possible complexity. The suggested
algorithms gradually decreases the identity and similarity
thresholds, and stops when the complexity of the resulting
refactoring stops deceasing or starts to grow. We still need to
see whether alternative search techniques are more effective
in finding the desired optimal refactoring.

Our next obvious step is to define a matching algorithm with
the desired heterogeneous characteristics and the three-way

outcome and build the iterative refactoring platform around it.
We then intend to validate the effectiveness of our technique
on real-life models from our industrial partner.
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