
Journal of Computing manuscript No.
(will be inserted by the editor)

Monitoring and Recovery for Web Service Applications

Jocelyn Simmonds · Shoham Ben-David ·
Marsha Chechik

Received: date / Accepted: date

Abstract Web service applications are distributed processes that are com-
posed of dynamically bounded services. In this paper, we give a definitive
description of a framework for performing runtime monitoring of web ser-
vice applications against behavioural correctness properties described as finite
state automata. These properties specify forbidden and desired interactions
between service partners. Finite execution traces of web service applications
described in BPEL are checked for conformance at runtime. When violations
are discovered, our framework automatically proposes adaptation strategies,
in the form of plans, which users can select for execution. Our framework also
allows verification of stated pre- and post-conditions of service partners and
provides guarantees of correctness of the generated recovery plans.

Keywords Web services · LTS · behavioural properties · pre- and post-
conditions · runtime monitoring · planning · SAT solving

J. Simmonds
Departamento de Informática
Universidad Técnica Federico Santa Maŕıa
Santiago, Chile
E-mail: jsimmond@inf.utfsm.cl

S. Ben-David
School of Computer Science
Hebrew University
Jerusalem, Israel
E-mail: shohambd@gmail.com

M. Chechik
Department of Computer Science
University of Toronto
Toronto, Canada
E-mail: chechik@cs.toronto.edu

2 Simmonds et al.

1 Introduction

Web service applications are distributed processes, called orchestrations, com-
posed of dynamically bounded services. Development and maintenance of qual-
ity web service applications presents a major challenge in practice, mostly due
to this dynamic binding, and a variety of failures that can happen when poten-
tially third party partners communicate over the web. Some of the failures are
due to the faulty logic, to invalid input data, to incorrect service invocation,
to hardware problems, and to network failures. Most of these problems are
not detectable statically, and thus a web service needs to dynamically recover
from errors as they are discovered at runtime.

An application is considered to be self-healing [15] if it can detect failures
and diagnose faults, and can adjust itself in response. Error recovery frame-
works omit the diagnosis phase and can thus be classified as simple self-healing
systems.

Since runtime errors are inevitable (and potentially exposed to millions
of users before they are found/fixed), frameworks for running these types of
applications typically include the ability to define faults and compensatory
actions for dealing with exceptional situations. Specifically, the compensation
mechanism is the application-specific way of reversing completed activities.
For example, the compensation for booking a car would be to cancel the book-
ing. These error recovery mechanisms can be used to minimize the impact of
runtime bugs, but the developer must anticipate possible runtime errors since
these mechanisms are statically defined. Moreover, it is hard to determine the
state of the application after executing a set of compensations.

Several works [5, 22, 12, 13, 7] suggest “self-healing” mechanisms for web-
service applications. These approaches vary in applicability and effectiveness;
yet they do not provide guarantees of correctness of the resulting recovery
strategies. A possible such guarantee can be as follows: if the provided service
pre- and post-conditions are valid at runtime, then executing a recovery plan
leaves the application in a non-error state from where regular execution can
continue.

In this paper, we report on a runtime monitoring and recovery framework
for orchestrations expressed in BPEL. Users specify desired and prohibited in-
teractions between partners. We also take advantage of service contracts (pre-
and post-conditions), if they are available, and use compensation – the “stan-
dard” error recovery mechanism built into BPEL. The system then executes
the chosen plan(s) as means of adaptation. To the best of our knowledge, we
are the first to suggest using this method for generating “provably correct”
recovery plans.

1.1 Motivating Example

Consider a simple web-based Trip Advisor System (TAS). In a typical scenario,
a customer either chooses to arrive at her destination via a rental car (and

Monitoring and Recovery for Web Service Applications 3

Fig. 1 Overview of our approach.

Fig. 2 A schematic view on plan generation.

thus books it), or via an air/ground transportation combination, combining
the flight with either a rental car from the airport or a limo.

The TAS system interacts with two partners in order to achieve its business
goals – the Car system (which offers two web services: one to reserve cars and
another to reserve limos) and the Flight system (which offers two web ser-
vices: one to reserve flights and another to check whether the flights are cheap
or expensive). Since the TAS system is a composition of several distributed
services, its correctness depends on the correctness of its partners and their
interactions.

The requirement of the system is to make sure the customer has the trans-
portation needed to get to her destination (this is a desired behavior which
we refer to as P1) while keeping the costs down, i.e., she is not allowed by her
company to reserve an expensive flight and a limo (this is a forbidden behavior
which we refer to as P2).

If the system produces an itinerary that is too expensive, we initiate a
recovery process. In this case, it will consist of either canceling the limo reser-
vation (so that a car can now be booked) or canceling the flight reservation
to see if a cheaper one can be found. In general, recovery from observing an
undesired behavior or violating service contracts entails using compensation
actions to allow the application to “go back” to an earlier state at which an
alternative path that potentially avoids the fault is available. We call such
states “change states”; these include user choices and certain partner calls.

Yet just merely going back is insufficient to ensure that the system can
produce a desired behaviour. For example, the Flight system can go down
while the user attempts to book air transportation, thus preventing the entire
system from getting the user to her destination since the air/ground combina-
tion is no longer available. To adapt from this fault, the system may suggest

4 Simmonds et al.

that the user rent a car for the whole trip instead. More precisely, the recov-
ery plan to the user’s destination (her “goal” state) includes either calling the
flight reservation again or canceling the reserved ground transportation from
the airport, if any, and trying to reserve the rental car from home instead. In
order to achieve such behaviours, we aim to compute plans that redirect the
application towards executing new activities, those that lead to goal satisfac-
tion.

1.2 Overview of the Approach

In our approach, developers supply a BPEL program, a set of service con-
tracts (pre- and post-conditions for partner invocations) and a set of correct-
ness properties (in the form of required and prohibited interactions between
partners) that need to be maintained by the program as it runs. The BPEL
program is enriched, by its developers, with the compensation mechanism,
which allows us to undo some of the actions of the program. Correctness
properties are turned into monitors using techniques described in [38]. In this
paper, we focus on runtime monitoring and generation of recovery plans should
a violation be detected. Availability of service contracts allows us to provide
guarantees of correctness of the recovery plans. Fig. 1 shows a schematic view
of our approach to runtime monitoring and error recovery.

In the Preprocessing phase, a formal model is extracted from the given
BPEL program and enriched with the compensation information. The Runtime
Monitoring phase runs the monitors in parallel with the BPEL application,
stopping when one of the monitors is about to enter its error state, or when
service contracts are about to be violated. The use of high-level properties
and/or service pre- and post-conditions allows us to detect the violation, and
our event interception mechanism allows us to stop the application right before
the violation occurs and begin the Recovery phase.

In the Recovery phase, we identify a set of possible plans that recover from
runtime errors. Given an application path which led to a failure and a monitor
which detected it, our goal is to compute a set of suggestions, i.e., plans, for
recovering from these failures. The overall recovery planning problem is as
follows:

From the current (error) state in the system, find a plan to achieve the
goal that goes through a change state.

This process is shown schematically in Fig. 2.

When there are multiple recovery plans available, we automatically sort
them based on user preferences (e.g., the shortest, the cheapest, the one that
involves the minimal compensation, etc.) and enable the application user to
choose among them.

Monitoring and Recovery for Web Service Applications 5

1.3 Contributions

Parts of this project have been published elsewhere [43, 39, 42, 40, 41]. The
novel contribution of this paper is our ability to give guarantees of correctness
of the generated recovery plans. To do so, we extend our previously published
approach in two ways: (1) we specify service pre- and post-conditions and col-
lect information about select predicates in states of our formal model and (2)
we define a concept of adequate compensation – an ability to correctly com-
pensate an action by returning to the state where this action can be executed
again. The collected information allows us to check correctness of service con-
tracts and adequacy of compensation. We can then prove that recovery from
an undesired behavior leaves the application in a previously observed state
from which an alternative behavior that avoids the violation is possible. We
can also prove that recovery from being unable to produce a desired behavior
correctly returns the application to a previously observed state from which the
generated plan implements the desired behavior.

This paper presents a definitive description of the input, analysis and re-
covery formalism. It also provides experiments measuring the cost and effec-
tiveness of collecting information about program states and checking it for
adequacy of compensation and violations of service contracts. In addition, we
suggest and implement a number of heuristics for improving the quality of
plan computation and reducing the number of unusable plans presented to
the user.

The rest of this paper is organized as follows: In Section 2, we present some
required notation. In Section 3, we describe inputs to our system: BPEL models
(including compensation mechanisms and service contracts) and correctness
properties expressed as monitors. In Section 4, we define the representation of
BPEL models as Doubly Labeled Transition Systems (L2TS), and show how
to use this representation to check that compensation is adequately defined
and to identify change states and goal traces. We discuss runtime monitoring
in Section 5 and describe recovery from violations of behavioral properties in
Sections 6 and 7. Both of these sections also include proofs of correctness of the
generated recovery plans. We report on our implementation in Section 8. We
have tested our framework on various case studies, with full results available in
[38]. Instead, Section 9 focusses on assessing costs and benefits of doing the ad-
equate compensation check, using two web service examples. We also measure
the impact of the optimizations we have implemented to improve the quality of
generated plans. We compare our work with related approaches in Section 10.
Finally, in Section 11, we summarize the article and give suggestions for future
work.

2 Preliminaries

In this work, we formalize BPEL using Doubly Labelled Transition Systems
(L2TS) which we define below.

6 Simmonds et al.

Fig. 3 Example of an L2TS.

Definition 2.1 (LTS [32]) A Labelled Transition System LTS is a quadru-
ple (S,Σ, δ, I), where S is a set of states, Σ is a set of actions, δ ⊆ S×Σ×S is
a transition relation, and I ∈ S is the initial state. We often use the notation
s

a−→ s′ to stand for (s, a, s′) ∈ δ.

An execution, or a trace, of an LTSM is a sequence T = s0a0s1a1s2...an−1sn
such that ∀i, 0 ≤ i < n, si ∈ S, ai ∈ Σ and si

ai−→ si+1.

Definition 2.2 (L2TS [34]) A Doubly Labelled Transition System L2TS is
a quintuple D = (S,Σ, δ, I,L), where (S,Σ, δ, I) is an LTS and L : S → 2AP

is a propositional labelling function that associates a set of atomic propositions
to each state. We denote the substructure (S,Σ, δ, I) of D, i.e., the underlying
LTS associated to an L2TS, by LTS(D).

An example L2TS is shown in Fig. 3, where S = {1, 2, 3}, Σ = {a, b, c},
δ = {(1, a, 2), (2, b, 2), (2, c, 3)}, I = 1, and L = {(1, {p, q}), (2, {q}), (3, {p})}.
The notion of a trace in an L2TS is defined analogously to the notion of a
trace in an LTS.

3 Input

Inputs to our system are a BPEL program enriched with compensation ac-
tions and a set of behavioral correctness criteria specified as simple safety and
liveness properties. We describe these below. More information about the core
BPEL activities and variable definition is given in the appendix.

3.1 BPEL Programs

BPEL [35] is a standard for implementing orchestrations of web services (pro-
vided by partners) by specifying an executable workflow using predefined ac-
tivities, over a set of global variables. Service interfaces, i.e., operations and
their input/output messages and ports, are described using WSDL (Web Ser-
vice Description Language) [46]. These services are then made available to the
BPEL application by defining partner bindings within the BPEL specification.

3.1.1 Process definition

Orchestrations are created by composing different types of activities, such
as service invocations (<invoke>) and variable assignments (<assign>), us-
ing standard control structures. Activities can be logically grouped using

Monitoring and Recovery for Web Service Applications 7

Fig. 4 TAS workflow.

<scope>s. The <pick> activity is used to wait for one of several possible
messages (specified using <onMessage>) to arrive. An <empty> activity does
nothing when executed.

Fig. 4 shows the BPEL-expressed workflow of the Trip Advisor System
(TAS), introduced in Section 1. We use the NetBeans SOA notation [36]. TAS
interacts with four external services: 1) book a rental car (bc), 2) book a limo
(bl), 3) book a flight (bf), and 4) check price of the flight (cf). The result of cf
is then used to decide which local service to invoke, broadcasting whether the
flight is cheap (cheapF) or expensive (expF). Service interactions are preceded
by a symbol.

The workflow begins by<receive>’ing and validating input (ri), followed by

<pick>’ing (indicated by labeled) either the car rental (onMessage onlyCar)
or the air/ground transportation combination (onMessage carAndFlight). The
latter choice is modeled using a <flow> (scope enclosed in bold, blue lines

, labeled) since air (getFlight) and ground transportation (getCar) can
be arranged independently. The getFlight branch sequentially books a flight,
checks if it is expensive, and updates the state of the system accordingly. The
ground branch <pick>’s between booking a rental car and a limo. The end of
the workflow is marked by a <reply> activity, reporting that the destination
has been reached (rd).

BPEL global variables are those accessible throughout the BPEL process;
local variables are only available to the activities within the <scope> in which
they are defined. Allowed variable types are defined using an XSD schema;
these types are then used to define service input and output messages, as well
as global BPEL variables. Fig. 5a shows the definition of the input and output

8 Simmonds et al.

(a)

(b)

Fig. 5 (a) Part of the WSDL file tas.wsdl, showing the definition of the WSDL message
types for the bc service; and (b) partial declaration of TAS’s global variables.

messages of the bc service. For example, in bc, bc’s input message, consists of
three parts: city, fromDate and toDate, where city is a string and both date
fields are integers. Fig. 5b shows the definition of three global variables of the
TAS system: tripData, inputBookCar and outputBookCar. The first variable
is used to maintain the state of the application, while the second two are the
input and output variables of the bc service. The details of how these variables
are defined can be found in the appendix.

Before a service can be invoked, its input message must be initialized by
copying the pertinent variable values from tripData. This is done via an
<assign>ment activity placed right before the service invocation (shown in
Fig. 6a using a symbol). Assignment activities consist of multiple <copy>
rules, each with their own <from> and <to> parts, representing the source
and destination data, respectively. For example, Fig. 6b shows the BPEL defi-
nition of the prep bc input assignment activity, which has three simple <copy>
rules, one for each message part of in bc defined in Fig. 5a.

In a similar fashion, when a service returns a message to the applica-
tion, the application state must be updated to reflect the outcome of the
service invocation. This is done by placing an <assign> activity right after
the service invocation. The post-service invocation <assign> activity for bc
is shown in Fig. 6c. Here, $tripData.carBookingNo, $tripData.carStatus
and $tripData.carType are updated with values extracted from the service’s
output message. In the TAS example, each service invocation is surrounded by
two assignment activities like those described for bc; however, these have been
omitted from Fig. 4 for clarity.

Monitoring and Recovery for Web Service Applications 9

(a) (b)

(c)

Fig. 6 (a) A fragment of Fig. 4, showing the <assign> activities placed before and after
the bc service invocation. The BPEL definitions of (b) prep bc input and (c) save bc output.

(a)

(b)

Fig. 7 (a) BPEL definition of a flight booking service invocation (bf), including its com-
pensation; and (b) LTS translation of the bf activity and its compensation (bold).)

3.1.2 Compensation

BPEL’s compensation mechanism allows the definition of the application-
specific reversal of completed activities. This is done by attaching a compensa-
tion handler (CH) to a <scope> or <invoke> activity: the activities defined in
the CH are executed when compensation is initiated using the <compensate>
activity. For example, the compensation for booking a flight (bf) is to cancel
the booking (cancelF). This is described in BPEL as shown in Fig. 7a.

The default compensation respects the forward order of execution of the
scopes being compensated:

10 Simmonds et al.

If a and b are two activities, where a completed execution before b, then
compensate(a; b) is compensate(b); compensate(a).

If an activity does not provide compensation, or has already been compen-
sated, then attempts to invoke compensation are treated as executing an
<empty> activity, denoted by τ .

3.1.3 Service Pre- and Post-conditions

As mentioned at the beginning of Section 3.1, BPEL service interfaces are de-
fined in WSDL. These service interface definitions are semantically poor: nei-
ther service requirements nor capabilities are specified. One way of improving
these service specifications is to apply the principles of Design by Contract [31]
to web services, where assertions are used to formally specify service contracts
in terms of pre- and post-conditions: conditions that must hold before and af-
ter the execution of the service. Various projects (e.g., [24, 6, 45]) have adopted
this approach for improving the quality of service specifications, each propos-
ing their own specification language. In this work, we specify service contracts
using WSCoL [6] (Web Service Constraint Language).

The grammar of the WSCoL subset used in this article can be found in
the appendix, along with some examples of predicates. BPEL variables are ac-
cessed using XPath expressions, and the typical Boolean, relational and math-
ematical operators, as well as some pre-defined functions and quantifiers are
used to build more complex expressions. Unlike other assertion languages such
as JML [10], WSCoL does not use a special keyword to distinguish between
the value of a variable prior to a service invocation and the value afterwards.
This is because web services are treated as black boxes that expose public
methods, which produce an output while leaving their input unchanged.

We can now define contracts for our services. For example, the bc service
requires a non-empty destination city and a valid range of dates (dates are in
the YYYYMMDD format):

pre bc :
(
($inputBookCar/city) != ””

&& $inputBookCar/fromDate < $inputBookCar/toDate,

and returns a 3-digit car booking number, as well as two messages – the
booking status and rental type. If the booking was successful, these messages
should be set to “booked” and “car”, respectively:

post bc :
(
($outputBookCar/bookingNo) >= 1000

&& ($outputBookCar/status) == ”booked”
&& ($outputBookCar/type) == ”car”

)
3.2 Application Properties

Apart from the system to be monitored, our framework also receives a set
of properties that the application must satisfy. These properties, provided by

Monitoring and Recovery for Web Service Applications 11

the developer, are then used to monitor the run, detect errors and guide the
production of recovery plans. As with any other property-based specification,
it is possible that the property list is incomplete (i.e., some system require-
ments are not captured) or even inconsistent (i.e., satisfying the entire set
of requirements is not possible). In this work, we restrict ourselves to simple
properties describing negative behaviors (that should not appear in the ap-
plication), and properties describing positive, or desired, behaviors (that the
system must have).

For example, property P1 of the TAS system (see Section 1) describes a
positive behavior (the destination must be reached), while P2 describes a neg-
ative scenario that should be avoided (a limousine and an expensive flight are
booked). Negative scenarios are commonly called safety properties, and re-
quire a finite sequence of actions to witness their violations. For property P2,
one such violating witness is “book an expensive flight, and then book a limo”.
For safety properties, no finite sequence of actions can show satisfaction.

Positive behaviors, on the other hand, can also be (locally) satisfied. This
happens when the desired sequence is fully seen even though the property calls
for repeated sequences of desired behaviour. For example, for property P1, if
rd has been seen, and a new ri was not yet initiated, the specification is locally
satisfied. Our notion of local satisfaction of positive behaviours is related to
finitary liveness [2] in which there exists a fixed bound b such that something
good must happen within b transitions. The bound b may be arbitrarily large,
but in our case it is limited by the length of the trace collected at runtime. In
many cases, properties may have both a negative and a positive component,
and thus we refer to such properties as mixed1.

In order to be verified, properties are translated into deterministic finite
automata (DFAs), which we call “monitors”. For example, Fig. 8a shows the
monitor that checks property P1: if the application terminates before rd ap-
pears, the monitor moves to the (error) state 3. State 1 is a good state since
the monitor enters it once the booked transportation reaches the destination
(rd). Monitor A2 in Fig. 8b represents the two execution paths that lead to a
violation of property P2 – it enters its error state (4) when either a limo was
booked and later an expensive flight, or an expensive flight was booked first
and then a limo (violating P2). We formalize (coloured) monitors below.

Definition 3.1 (Monitor) A monitor is a 5-tuple A = (S,Σ, δ, I, F), where
(S,Σ, δ, I) is an LTS and F ⊆ S is a set of final states.

Monitor A accepts a word a0a1a2...an−1 ∈ Σ∗ iff there exists an execution
s0a0s1a1s2...an−1sn of A such that s0 ∈ I and sn ∈ F . In our case, the
accepted words correspond to bad computations, and the set F of accepting
states represents error states.

Let A = (S,Σ, δ, I, F) be a monitor. In order to facilitate recovery, we
assign colours to states in S. Accepting states are coloured red, signalling

1 Formally, mixed properties are either finitary liveness properties or a mixture of finitary
liveness and safety properties.

12 Simmonds et al.

(a) (b)

(c) (d)

Fig. 8 Monitors: (a) A1, (b) A2, (c) A3, and (d) a more permissive version of A3. Red states
are shaded horizontally, green states are shaded vertically, and yellow states are shaded
diagonally.

violation of the property. State 3 of Fig. 8a and state 4 in Fig. 8b are red
states (also shaded horizontally). Yellow states are those from which a red
state can be reached through a single transition. Formally, for a state s ∈ S,

colour(s) = yellow if ∃a ∈ Σ, s′ ∈ F s.t. (s, a, s′) ∈ δ.

State 2 in Fig. 8a, and states 2 and 3 in Fig. 8b are yellow states (also shaded
diagonally).

The green colour is used for states that can serve as good places to which
a recovery plan can be directed. We define green states to be those states that
are not red or yellow, but that can be reached through a single transition from
a yellow state. Formally,

colour(s) = green iff
(colour(s) 6= red) ∧ (colour(s) 6= yellow) ∧
(∃a ∈ Σ, ∃s′ ∈ S s.t. (colour(s′) = yellow) ∧ ((s′, a, s) ∈ δ)).

State 1 in Fig. 8a is coloured green (also shaded vertically). States that are
neither red, yellow or green are white.

Note that not all monitors have green states. For example, in A2 of Fig. 8b
every yellow state (2 and 3) has outgoing transitions only to yellow or red
states. Thus these states are “inescapable”, and the monitor has no green
states. A monitor with no green states is called a safety monitor. Otherwise,
it is called a mixed monitor.

Definition 3.2 (Safety Monitor) A monitor (S,Σ, δ, I, F) is a safety mon-
itor if ∀s ∈ S \ F, colour(s) ∈ {white, yellow} and ∀s ∈ F, colour(s) = red.

Monitoring and Recovery for Web Service Applications 13

Definition 3.3 (Mixed Monitor) A monitor (S,Σ, δ, I, F) is a mixed mon-
itor if ∀s ∈ S\F, colour(s) ∈ {white, yellow, green} and ∀s ∈ F, colour(s) = red.

In this work, we assume that the set A = {A1, ...,An} of monitors is pro-
vided by the application developers. However, we do use the BPEL application
to suggest how to make some of the automata more permissive, to allow se-
quences of events to be recognized in any order. Recall that BPEL’s <flow>
captures the parallel composition of the enclosed activities, allowing their exe-
cution in any order. This allows us to flag the monitors that use these activities
as events, build more permissive automata and suggest that the developers
use them. For example, analyzing the TAS workflow in Fig. 4, we note that air
(getFlight) and ground (getCar) transportation can be arranged in any order.
Thus, if we had a monitor A3 for a mixed property “if air transportation is
arranged, then ground transportation should also be arranged”, depicted in
Fig. 8c, we would suggest to use the monitor in Fig. 8d, which allows processing
of these events in any order.

In [38], we discuss property specification languages and property patterns
for web service applications, as well as provide detailed algorithms for creating
(regular, not more permissive) monitors from these specifications.

4 Preprocessing

The inputs to the Preprocessing stage of our framework are the BPEL pro-
gram B and the set of properties expressed as monitoring automata (see the
previous section). We begin by converting B into a Labelled Transition System
and adding transitions on compensation actions (see Section 4.1). We then en-
rich the LTSs with state information coming from predicates in if statements
and loops and service contracts, resulting in Doubly Labelled Transition Sys-
tems (L2TSs). We use the state information in order to determine whether
compensation is adequately specified (Section 4.2). Finally, in Section 4.3 we
formalize change states and potential goal traces and provide an algorithm for
computing these statically on the resulting L2TS.

4.1 BPEL to LTS

In order to reason about BPEL applications, we need to represent them for-
mally, so as to make precise the meaning of “taking a transition”, “reading in
an event”, etc. Several formalisms for representing BPEL models have been
suggested [21, 25, 37]. In this work, we build on Foster’s [19, 20] approach of
using an LTS as the underlying formalism.

4.1.1 Existing Translation

In [19, 20], Foster specified how to map all BPEL 1.1 activities into LTS. For
example, Fig. 7b shows the translation of the <invoke> activity bf defined

14 Simmonds et al.

in Fig. 7a, which returns a confirmation number. The activity is a sequence
of two transitions: the actual service invocation (invoke bf) and its return
(receive bf)2.

Conditional activities like <while> and <if> are represented as states
with two outgoing transitions, one for each valuation of the condition. The
LTSs for these two activities are shown in Fig. 9a. Note that both LTSs have

two transitions from state 1: 1
expr true−→ 2 and 1

expr false−→ 3. <pick> is also a
conditional activity, but can have one or more outgoing transitions: one for
each <onMessage> branch (there are two of these in the example in Fig. 9a).
<sequence> and <flow> activities result in the sequential and the parallel
composition of the enclosed activities, respectively (see Fig. 9b). Note that
BPEL processes may have multiple <receive> activities. For such processes,
the BPEL engine non-deterministically chooses a creation point in the execu-
tion. In his thesis, Foster assumes that processes have only one creation point,
the first <receive> that appears in the process definition. We make the same
assumption in this work.

Thus, we represent a BPEL program B by its LTS translation L(B). The set
of labels Σ of L(B) is derived from the possible events in B: service invocations
and returns, <onMessage> events, <scope> entries, and condition valuations.
It also includes the new system event TER, modeling termination. The set of
states S in L(B) consists of the states produced by the translation as well
as a new state t, reachable from any state of S via a TER event: ∀s ∈ S \
{t}, (s,TER, t) ∈ δ.

4.1.2 Formalizing Compensation

In order to capture BPEL’s compensation mechanism, we introduce addi-
tional, backwards transitions. For example, the compensation for bf, speci-

fied in Fig. 7a, is captured by adding the transition 3
invoke cancelF−→ 1 as shown

in Fig. 7b. Taking this transition effectively leaves the application in a state
where bf has not been executed. We denote by τ an ‘empty’ action, allowing
undoing of an action without requiring an explicit compensation action.

Note that we have made a major assumption that compensation returns
the application to one of the states that has been previously seen. Thus, given
a BPEL program B and its translation to LTS L(B) = (S,Σ, δ, I), we translate
B with compensation into an LTS LC(B) = (S,Σ ∪ Σc, δ ∪ δc, I), where Σc is
the set of compensation actions (including τ) and δc is the set of compensation
transitions.

Fig. 10a shows LC(TAS). To increase legibility, we do not show the termi-
nation state t and transitions to it. Also, we only show one transition for each
service invocation, abstracting the return transition and state. In this nota-

tion, the LTS in Fig. 7b has two transitions between states 1 and 3: 1
bf−→ 3

2 Foster’s translation includes partner, activity and variable names in the labels, in order
to include traceability information, but we omit these in this paper for simplicity.

Monitoring and Recovery for Web Service Applications 15

(a)

(b)

Fig. 9 (a) BPEL conditional activities and their corresponding LTSs; (b) BPEL structural
activities and their corresponding LTSs.

and 3
cancelF−→ 1. This allows us to visually combine an action and its compen-

sation into one transition, labeled in the form a/ā, where a is the application

activity and ā is its compensation. In other words, each transition s
a/ā←→ t in

Fig. 10a represents two transitions: (s, a, t) ∈ δ and (t, ā, s) ∈ δc.

The <pick> activity (labeled in Fig. 4) corresponds to state 2 of
Fig. 10a. The choice between onlyCar and carAndFlight is represented by two
outgoing transitions from this state: (2, onlyCar, 3) and (2, carAndFlight, 6).
Since these actions do not affect the state of the application, they are com-

pensated by τ . The <flow> activity (labeled in Fig. 4) results in two
branches, depending on the order in which the air and ground transportation
are executed. The compensation for these events is also τ .

16 Simmonds et al.

(a)

(b)

(c)

Fig. 10 (a) LTS LC(TAS): downward and upward arrows show forward and compensation
logic, respectively. 1-step goal transitions are depicted by tiny-dashed transitions and change
states are shaded diagonally in purple. Traces t1 (dotted) and t2 (dashed) are also shown;
(b) A fragment L2TS LC(TAS), showing the predicates collected for states 17 and 23; (c) A
fragment of L(TAS)× A1.

4.2 Adequate Compensation

According to the BPEL standard, compensation for a service is well-defined
if: 1) the compensation activity can be executed after the service has been in-
voked, and 2) the execution of a service’s compensation activity leaves the ap-
plication in a state where the service can be executed again. This corresponds
to our translation of compensation, where compensation for an activity leaves
the application back in its original state. However, we cannot guarantee that
this condition holds at runtime, and thus, some of our recovery plans may fail.

Monitoring and Recovery for Web Service Applications 17

In the future, we plan to improve this result by using information about the
application’s state and service contracts to statically check these conditions.

We begin by defining how we collect state information. Conditional activi-
ties like <if> and <while> generate predicates about the state of the system.
Another source of predicates are service pre- and post-conditions. For example,
the precondition for the booking service, pre bc, defined in Section 3.1.3, gen-
erates two predicates: $inputBookCar/fromDate < $inputBookCar/toDate and
$inputBookCar/city != ””.

Assignment activities can both generate and kill predicates. For example,
in the state before executing bc, we know that $tripData/carType == ””
is true (derived from the BPEL variable initialization). We also know that
$outputBookCar/type == ”car” should hold in the state after invoking bc,
since it is guaranteed by its post-condition. Now, since the <assign> activity
save bc output copies the value of $outputBookCar/type to $tripData/carType,
we can conclude that $tripData/carType == ”car” holds after save bc output
is executed (so $tripData/carType == ”” is killed).

We use standard data-flow analysis techniques to propagate these predi-
cates for the L2TS L(B), constructing L (s) – the set of predicates that hold
in state s. Fig. 10b shows the result of this analysis on states 17 and 23 of the
LTS L(TAS). In the rest of this paper, we will abuse the notation somewhat,
referring to both the LTS and the L2TS of a program B as L(B), and doing
the same for the version with compensation, LC(B). We will explicate its type
if it is not clear from the context.

Now we can define adequate compensation:

Definition 4.1 (Adequate Compensation) Let B be a BPEL application
and LC(B) = {S,Σ ∪ Σc, δ ∪ δc, I,L } be the L2TS of B with compensation.
A transition (s, a, s′) ∈ δ has adequate compensation when used in B if there
is a transition (s′, aC , s) ∈ δC , where aC is the compensation action for a,
and both {postcond(a) ∧L (s′)⇒ precond(aC)} and {postcond(aC) ∧L (s)⇒
precond(a)} hold. Actions compensated by τ (the empty action) are always
adequately compensated.

In the rest of this work, when we refer to the L2TS LC(B), we assume that δc
only contains adequate compensation transitions.

For example, according to Fig. 10b, cancelC is the compensation action for
bc. Suppose the contract for cancelC is as follows:

pre cancelC :
(
($inputCancelCar/bookingNo) >= 1000

)
post cancelC :

(
($outputCancelCar/status) == ””

&& ($outputCancelCar/type) == ””
)
,

and suppose that the corresponding <assign> activities prep cancelC input and
save cancelC output are similar to those defined for bc. Then the compensation
is adequately defined since

post bc ∧L (17)⇒ pre cancelC

18 Simmonds et al.

and
post cancelC ∧L (23)⇒ pre bc

We perform such checks using an SMT solver, such as MathSAT [16].
What happens if an SMT solver is unable to prove that the compensation

is adequate? The reason might be an error in the specification or simply in-
complete state information (since our predicate-collecting approach is pretty
“light”). In such cases, we have to rely on user feedback – they can augment
our automated analysis by either (1) confirming that the compensation is not
adequate and removing it; (2) changing its contract, whereby we would again
try to prove adequacy; or (3) stating that it is adequate, without proof, in
which case we cannot guarantee that plans that use this activity will run to
completion (i.e., the correctness claims we make in Sections 6.2 and 7.4).

4.3 Goal Traces and Change States

The last part of the preprocessing phase statically identifies key states and
transitions of the application L(B), aimed to help find an efficient recovery
plan when a violation is encountered (see Section 6 and Section 7).

4.3.1 Goal Traces

In order to find a good recovery plan, we first need to compute a set of goal
traces, that is, traces which eventually result in the satisfaction of some prop-
erties. We compute these on a per-property basis. Further, recall that only
mixed properties can be satisfied, which is indicated by the monitor reaching
a green state; safety properties can only be violated. Thus, for each mixed
monitor A, we are looking for traces in L(B) = (S,Σ, δ, I,L) which make A
enter its green state(s). We find those using the cross-product between the
model and the automaton, L(B) × A. The traces can vary in length, using a
parameter i: as i gets larger, the analysis gets more precise but more expensive
(see the experiments in Section 9).

Definition 4.2 (i-Step Goal Trace) s0a0 . . . si−1ai−1si is an i-step goal trace
in L(B) iff ∃q0a0 . . . qi−1ai−1qi ∈ A s.t. colour(qi) = green ∧ ∀j, (0 ≤ j < i)⇒
((sj , qj)

aj−→ (sj+1, qj+1) ∈ δL(B)×A) ∧ (colour(qj) 6= green).

That is, the last step of the trace, si−1
ai−1−→ si, corresponds to taking

a transition on ai−1 into a green state of A. si is called a goal state. The
resulting set of goal traces is denoted by Gi(B,A). For example, consider the
fragment of L(TAS)×A1 shown in Fig. 10c. The green state of A1 is state 1, with
a transition on rd leading to it. In this example, the set of 1-step goal traces
is G1(TAS, A1) = {(4, rd, 5)} (depicted by tiny-dashed transitions in Fig. 10a).
The set of two-step goal traces in our example is

G2(TAS, A1) = {(3, bc, 4, rd, 5), (22, cheapF, 4, rd, 5), (21, expF, 4, rd, 5),
(13, bc, 4, rd, 5), (24, bl, 4, rd, 5)}.

Monitoring and Recovery for Web Service Applications 19

Note that while it is computed using L(B)×A, the set Gi(B,A) contains tran-
sitions only of L(B).

Given a set of goal traces Gi(B,A), let Gs
i (B,A) = {(s0, 〈a0, ..., ai−1〉)} s.t.

(s0, a0, . . . , si−1, ai−1, si) ∈ Gi(B,A), i.e., we explicate a source state, i steps
away from a goal state, and an i-step sequence of actions that can be executed
to reach the goal state. In our example,

Gs
2(TAS, A1)) = {(3, 〈bc, rd〉), (13, 〈bc, rd〉), (21, 〈expF, rd〉),

(22, 〈cheapF, rd〉), (24, 〈bl, rd〉)}.

When we compute recovery plans, we need to direct the application towards
executing its goal traces, i.e., towards reaching source states and then executing
the follow-on sequences of actions that would reach the goal state and move
the corresponding monitor to the green state.

4.3.2 Change States

Given an erroneous run, how far back do we need to compensate before re-
suming forward computation? If we want to avoid repeating the same error
again, we need the application to take an alternative path. States of L(B) that
have actions executing which can potentially produce a branch in control flow
of the application are called change states.

Flow-changing actions are user choices, states modelling the <flow> ac-
tivity (since each pass through this state may produce a different interleaving
of actions), and those service calls whose outcomes are not completely deter-
mined by their input parameters but instead depend on the implicit state “of
the world”. Services whose result is fully determined by the input are some-
times referred to as idempotent services, since multiple invocations of the same
service yield the same results. We refer to all other services as non-idempotent.
Thus, non-idempotent service calls also identify change states. For example,
cheapF is a call to determine whether a given flight is cheap and, unless the
specification of what cheap means changes, returns the same answer for a given
flight. On the other hand, bf books an available flight, and each successive call
to this service can produce different results. Non-idempotent service calls are
identified by the BPEL developer as XML attributes in the BPEL program.

Definition 4.3 (Change State) A state is a change state if it is identified
by: 1) a <flow> activity, 2) a <pick> activity, or 3) a non-idempotent service
call.

We denote by C(B) the set of all change states in the L2TS of the applica-
tion B. For example, in the L2TS in Fig. 10a, state 6 corresponds to the <flow>
activity and represents the different serialization order of the branches. States
2, 12 and 15 model user choices. Non-idempotent partner calls are bf, bc, bl,
and thus

C(TAS) = {1, 2, 3, 6, 7, 12, 13, 15, 16, 18, 23, 24},

identified in Fig. 10a by purple diagonal shading.

20 Simmonds et al.

A recovery plan should pass through at least one change state, to allow a
change in the execution. Furthermore, if all paths from a change state lead to
an error, such change states are not useful for recovery and should be removed
from C(B) (the TAS example does not have such states). Candidates for removal
can be easily identified using static analysis. In the remainder of the paper,
we assume that C(B) has already been filtered using this technique.

5 Runtime Monitoring

The runtime monitoring phase uses the set of monitors to analyze the BPEL
program B as it runs on a BPEL-specific Application Server. The runtime mon-
itoring component of our recovery framework is based on that of [43], which
has been implemented within the IBM WebSphere business integration prod-
ucts [26]. We capture events in Σ as they pass between the application server
and the program, and use these events to update the state of the monitors
and store them as part of the execution trace T. By default, service timeouts
trigger application termination. Monitors can be dynamically enabled (e.g., to
monitor new properties) and disabled (e.g., to reduce monitoring overhead).
Since the application properties are specified separately from the BPEL pro-
gram, no code instrumentation is required in this step, enabling non-intrusive
(and scalable) online monitoring.

In our earlier work [43], we have used the interception mechanism based on
eavesdropping – watching events as they pass between partners and updating
monitors accordingly. While adequate for identifying and reporting property
violations, it is insufficient for recovery. For example, we do not want to ex-
ecute a TER event before knowing whether its execution causes any monitor
violations, since we cannot reverse application termination. We also want to
avoid executing other events that may directly lead to monitor violation, since
these events will be inevitably compensated during recovery. Thus, instead of
allowing all events to pass, our monitoring component delays the delivery of
events that cause termination or property violation. If no violation is detected
during analysis, the event is delivered and execution continues as usual. Oth-
erwise, the event is not delivered and recovery is initiated – our framework
computes and presents a set of recovery plans, and the BPEL engine attempts
to execute the plan chosen by the user. Using a <collaboration> scope, the
corresponding compensation handler is updated with the plan chosen by the
user and then activated (<collaboration> scopes can be used to dynamically
modify BPEL applications, see Section 8 for details).

During the execution of the application B, represented as L(B) = (S,Σ, δ, I,L),
we store its trace

T = s0
a0−→ s1

a1−→ ...
an−1−→ sn.

We say that T is a successful trace iff ∀Ai ∈ A, a0a1...an−1 is rejected by
Ai. T is a failure (or an error) trace iff ∃Ai ∈ A s.t. a0a1...an−1 is accepted by
Ai. In such a case, state sn is an error state of the application.

Monitoring and Recovery for Web Service Applications 21

Recall that each state of the L2TS L(B) had information about predicates
harvested from control flow conditions and service contracts. At runtime, we
maintain the exact values of variables over which these predicates were de-
fined, which allows us to check correctness of service contracts. Specifically, if
a step si of the trace T arrives at an invocation of some service svi, we check
that svi’s precondition holds. For example, ($inputBookCar/city!= ””) is
part of bc’s precondition (see Section 3.1.3). During the run, we keep the val-
ues $inputBookCar/city in each state and, if upon reaching state 17 (see
Fig. 10a), its value is ””, then the precondition is violated and we report
an error. In a similar manner, we can check whether service svi leaves the
application in the expected state by checking whether post(svi) holds after
executing svi. These checks are, in effect, application-independent safety prop-
erties (e.g., “the system does not have behaviours which violate stated pre-
and postconditions for service invocations”) that we check without construct-
ing special-purpose automata. We discuss recovery from such violations in
Section 6.

In addition to T, we also store traces TA1 ...TAn that correspond to the
executions of the monitors A1...An, respectively. These are used in the recovery
phase to reverse the state of the monitors. Note that all traces corresponding
to a single execution differ in their states (e.g., application states are different
from states of each monitor) but agree on the events which got executed. In
what follows, traces corresponding to the application have no superscripts,
whereas monitor traces are superscripted.

For example, consider the execution of TAS in which the customer chooses
the air/ground option (carAndFlight), and then tries to book the flight before
the car. In this example, there is a communication problem with the flight
system partner, and the invocation of the cf service times out. This scenario
corresponds to the trace t1, depicted by dotted transitions in Fig. 10a. In
addition to t1, our tool stores tA11 and tA21 – the corresponding traces of the
enabled monitors:

t1 = 1
ri−→ 2

carAndFlight−→ 6
getFlight−→ 7

bf−→ 8
cf−→ 9,

tA11 = 1
ri−→ 2

carAndFlight−→ 2,
getFlight−→ 2

bf−→ 2
cf−→ 2,

tA21 = 1
ri−→ 1

carAndFlight−→ 1
getFlight−→ 1

bf−→ 1
cf−→ 1.

The application server detects that the cf invocation timed out, and sends
a TER event (not shown in Fig. 10a) to the application. Our framework inter-
cepts this TER event and determines that executing it turns t1 into a failing
trace, because the monitor A1 would enter its error (red) state 3. In response,
our framework does not deliver the TER event to the application, and instead
initiates recovery.

In another scenario, the customer attempts to arrive at her destination via
a limo (bl) and an expensive flight (expF). This corresponds to the trace t2,
depicted by dashed transitions in Fig. 10a (the trace corresponding to A1 is
omitted):

22 Simmonds et al.

t2 = 1
ri−→ 2

carAndFlight−→ 6
getCar−→ 15

limo−→ 16
bl−→ 17

getFlight−→ 18
bf−→ 19

cf−→ 20
exp true−→ 21

expF−→ 4.

tA21 = 1
ri−→ 1

carAndFlight−→ 1
getCar−→ 1

limo−→ 1
bl−→ 3

getFlight−→ 3
bf−→ 3

cf−→ 3
exp true−→ 3

expF−→ 4.

Before delivering an event to the application, our framework first checks
whether doing so would cause an error. For example, during the execution
of t2, when the application is in state 21 and the monitor A2 is in state 3,
we note that the monitor has a transition on expF to its error state. Thus,
our framework checks whether the next received event is expF. If so, t2 is
determined to be a failing trace, initiating recovery. Otherwise, the event is
passed to the monitor and the application, and the monitoring continues.

6 Recovery Plans for Safety Property Violations

Once an error has been detected during runtime monitoring, the goal of the
recovery phase is to suggest a number of recovery plans that would lead the
application away from the error.

Definition 6.1 (Plan) A plan is a sequence of actions. A BPEL recovery
plan is a sequence of actions consisting of user interactions, compensations
(empty or not) and calls to service partners.

Recovery plans differ depending on the type of property that failed. We
treat safety properties below, and recovery from mixed properties is described
in Section 7.

6.1 Computing Plans

The recovery procedure for a safety property violation receives LC(B) – the
L2TS of the running application B enriched with compensation (see Sec-
tion 4.1), T – the executed trace ending in an error state e (see Section 5)
and C(B) – the set of change states (see Section 4.3.2). It does not need to
know which monitor discovered a violation and thus works the same way for
violation of application-specific safety properties and service contracts.

In order to recover, we need to “undo” a part of the execution trace, ex-
ecuting available compensation actions, as specified by δc. We do this until
we either reach a state in C(B) or the initial state of LC(B). Multiple change
states can be encountered along the way, thus leading to the computation of
multiple plans.

For example, consider the error trace t2 described in Section 5 and shown
in Fig. 10a. {1, 2, 6, 15, 16, 18} are the change states seen along t2. This leads to
the recovery plans shown in Fig. 11a. We add state names between transitions
for clarity and refer to plans as to mean “recovery to state s”. A given plan

Monitoring and Recovery for Web Service Applications 23

r18 = 4
τ−→ 21

τ−→ 20
τ−→ 19

cancelF−→ 18 r6 = r15
τ−→ 6

r16 = r18
τ−→ 17

cancelL−→ 16 r2 = r6
τ−→ 2

r15 = r16
τ−→ 15 r1 = r2

τ−→ 1

(a)

(b)

Fig. 11 (a) Plans for TAS for recovery from the safety violation of trace t2; (b) XML version
of recovery plan r18.

can also become a prefix for the follow-on one. This is indicated by using the
former’s name as part of the definition of the latter. For example, recovery to
state 16 starts with recovery to state 18 and then includes two more backward
transitions, the last one with a non-empty compensation. Plan r18 can avoid
the error if, after its application, the user chooses a cheap flight instead of
an expensive one. Executing plan r15 gives the user the option of changing
the limousine to a rental car, and plan r2 – the option of changing from an
air/ground combination to just renting a car. Both of these behaviours do not
cause the violation of A2.

Computed plans are then converted to BPEL for presentation to the user.
For example, plan r18 is shown in Fig. 11b. The chosen plan can then be
applied (see Section 8), allowing the program to continue its execution from
the resulting change state.

6.2 Analysis

Let L(B) and LC(B) be L2TSs, as previously defined, and let T = s0
a0−→

s1
a1−→ ...

an−1−→ sn be an execution trace, where sn = e (the error state), and

rl = sn
cn−1−→ sn−1

cn−2−→ ...
cl−→ sl be a safety recovery plan for T that leaves the

application in state sl, where ck compensates ak and sl ∈ C(B). Finally, let
CT(B) be the set of change states that appear in T: CT(B) = {s|(s, a, s′) ∈ T∧
s ∈ C(B)}. Note that we cannot guarantee the correct execution of a recovery
plan if a service that appears in the plan times out during its execution.

Definition 6.2 (Compensated Execution Trace) Let T = s0
a0−→ s1

a1−→
...

an−1−→ sn be an execution trace, where sn = e (the error state), and rl =

sn
cn−1−→ sn−1

cn−2−→ ...
cl−→ sl be a safety recovery plan for T. The compensated

execution trace Trl is the result of applying rl to T, assuming that none of the

participating services timeout. In other words, Trl = s0
a0−→ s1

a1−→ ...
ai−1−→ sl.

Proposition 6.1 Let T = s0
a0−→ s1

a1−→ ...
an−1−→ sn be an execution trace,

where sn = e (the error state), and rl = sn
cn−1−→ sn−1

cn−2−→ ...
cl−→ sl be a

24 Simmonds et al.

safety recovery plan for T. If compensation for actions al, ..., an−1 is adequate,
and the default BPEL compensation order is observed at runtime, then the
compensated execution trace Trl is the l-length prefix of T, i.e., Trl = s0

a0−→
s1

a1−→ ...
al−1−→ sl, where sl ∈ C(B).

This proposition follows from Definitions 4.1 and 6.2. Since the default
BPEL compensation respects the forward execution order during compensa-
tion, compensating the tail of the execution trace leaves the application in the
state from which the tail sequence of actions was executed.

The exact number of plans is determined by the number of change states
encountered along the trace. The maximum number of plans computed by
our tool is set by user preferences either directly (“compute no more than 3
plans”) or indirectly (“compute plans of up to length 20” or “compute plans
with the overall number of compensation actions fewer than 10”).

In the worst case, the maximum number of plans and the maximum plan
length are both at least n, |CT(B)| = n − 1, and each transition in T is com-
pensatable. In other words, each non-error state in T is a change state, and
each one is reachable from the current error state. According to our approach,
we compute one recovery plan for each state in CT(B), so computing recovery
plans for safety violations is linear in the size of the error trace T.

In the average case, we expect that the maximum number of plans will be
smaller than the size of the average execution trace, since execution traces con-
tain many BPEL-induced actions that are not used to identify change states.
We also expect that developers will set the maximum number of plans to be
generated to a relatively small number (e.g., five) thus making recovery plan
generation very feasible in practice.

7 Recovery Plans from Mixed Property Violations

Failure of a mixed monitor during execution means that some required actions
have not been seen before the application tried to terminate, and the recovery
plan should attempt to perform these actions.

The recovery procedure receives:

– A, the monitor that identified the violation,
– LC(B), the L2TS of the application,
– Gi(B,A), the set of i-step goal traces corresponding to A (and its refactored

version, explicating source states and sequences of actions, Gs
i (B,A)),

– T, the executed trace ending in an error state e, and
– C(B), the set of change states.

A recovery plan effectively “undoes” actions along T, starting with e and
ending in a change state (otherwise, the plan would not be executable!) and
then “re-plans” the behaviour to reach the goal (see Fig. 2 for a schematic
view of the overall process). Our solution adapts techniques from the field of
planning [18], described below.

Monitoring and Recovery for Web Service Applications 25

(a) (b)

Fig. 12 (a) a simple LTS and (b) its encoding as a planning graph of size 3.

7.1 Recovery as a planning problem

A planning problem is a triple P = (D, init , G), where D is the domain, init
is the initial state, and G is a set of goal states.

In addition to P , a planner often gets as input k – the length of the longest
plan to search for, and applies various search algorithms to find a plan of
actions of length ≤ k, starting from init and ending in one of the states in G.
Typically, the plan is found using heuristics and is not guaranteed to be the
shortest available. If no plan is found, the bound k can be increased in order
to look for longer plans.

To convert a recovery problem into a planning problem P(B,A,T), we use
LC(B) as the domain and e as the initial state. The third component needed is
a set of goal states. For that, we use source states from Gs

i (B,A). I.e., we aim
to compute a path (of length k) from the initial state to one of the states s s.t.
(s, 〈a0, ..., ai−1〉) in Gs

i (B,A) and then extend it with 〈a0, ..., ai−1〉, resulting
with a plan of length k + i.

For example, consider the trace t1 of Fig. 10a, described in Section 5, in
which monitor A1 fails and assume that we want to use goal traces of length
1. We define the planning problem P(TAS, A1, t1) = (LC(TAS), 9, {4}), where 9
is the initial state (see Fig. 10a) and Gs

1(TAS, A1) = {(4, 〈rd〉)}. The resulting

plan p should than be extended to p
rd−→ 5.

Unfortunately, not every trace returned by solving P(B, A,T) is acceptable:
the recovery plans for mixed violations should go through change states. Thus,
we cannot simply use a planner as a “black box”.

Instead, we look at how planners encode the planning graph and then ma-
nipulate the produced encoding directly, to add additional constraints. Con-
sider the LTS in Fig. 12a, which is the planning domain, with s as both the
initial and the goal state. The planning graph expanded up to length 3 is
shown in Fig. 12b and is read as follows: at time 1 we begin in state s1. If
action a occurs (modelled as a2), then at time 2 we move to state t (modelled
as proposition t2 becoming true); otherwise, we remain in state s (i.e., propo-
sition s2 is true). If action b occurs while we are in state t (modelled as b3),
then at time 3 we move to state s. Two plans of length 2 are extracted from
this graph: a2, b3, corresponding to executing a first, followed by b, and “do
nothing” – a planner-specific treatment of a sequence of no-ops.

26 Simmonds et al.

Several existing planners, such as BlackBox [28], translate the planning
graph into a CNF formula and then use a SAT solver, such as SAT4J [8], to
find a satisfying assignment for it. Such an assignment, if found, represents a
plan. For example, the CNF encoding of the planning graph in Fig. 12b is as
follows:

flts = (¬no-op s2 ∨ s1) ∧ (¬a2 ∨ s1) ∧ (¬no-op s3 ∨ s2)
∧(¬b3 ∨ t2) ∧ (¬s2 ∨ no-op s2) ∧ (¬t2 ∨ a2)
∧(¬no-op s3 ∨ s3) ∧ (¬b3 ∨ s3) ∧ (s1) ∧ (s3).

Note that it explicitly models pre- and post-conditions of the execution of
actions. Such a formula is passed to a SAT solver which produces a satisfying
assignment s, if one exists. The desired plan is extracted from s by taking
propositions that correspond to actions and that are assigned positive values
in s. For the above example, these are a2, b3 and “do nothing”.

Our approach has been inspired by existing work on a related problem –
that of automatically creating new web service compositions that accomplish
non-trivial tasks [29, 33, 30, 44]. In this case, the planning domain is the set
of available web services, the goal is a specification of the desired behaviour,
and plans are service compositions that accomplish the desired behaviour. Re-
search in this area has focused on using different planning techniques to solve
this problem in an efficient manner, dealing with the nondeterministic be-
haviour of web services, the partial observability of their internal status, and
the specification of complex goals expressing temporal conditions and pref-
erence requirements. In this work, we do not use planning to generate new
service compositions, but use it instead to explore existing applications. How-
ever, the approach presented here can be augmented with the work presented
in [33, 30, 44], especially in the case when there is not enough compensation
or redundancy in the application to permit the computation of recovery plans
according to our approach.

In what follows, we first discuss how to produce a single recovery plan
using a SAT-based approach (Section 7.2) and then show how to extend it to
produce multiple plans (Section 7.3).

7.2 Producing a single recovery plan

Let fP be the encoding of the planning problem P(B,A,T) produced by an
existing planner. We augment fP to follow our “compensate until a change
state and then execute” approach by adding conjuncts to fP with the purpose
of restricting its solutions. For efficiency, some additional filtering is done after
all plans have been computed (see Section 7.5).

1. We want to make sure a recovery plan visits at least one of the change
states encountered on the execution trace T. Let S(T) be the set of states on
T. We define C(T) = S(T) ∩ C(B) to be the change states that appear on T
and denote by c1, ..., cn the propositions that correspond to states in C(T). If
k is the maximum length of the plan which is being searched for, propositions

Monitoring and Recovery for Web Service Applications 27

cj1, cj2, ..., cjk correspond to expansions of cj to times 1 ... k. For example,
consider Fig. 12 again. If x is a change state and k = 3, then propositions
x1, x2, x3 in flts correspond to expansions of x to times 1, 2, 3. We define
c = (c11∨...∨c1k∨...∨cn1 ...∨cnk), or, in the case of our example, c = (x1∨x2∨x3).
This formula is true when at least one of the change states in C(T) is part of
the plan.

2. In order to further lead the planner towards the “compensate and exe-
cute” plans, we want to make sure that the only compensations used in the
plan correspond to actions in the original trace T. More formally, let TC be the
set of compensation actions corresponding to the actions in T, and let Σc \TC

be all other compensation actions. Let a be a formula which excludes (timed
versions) of actions in Σc \ TC: i.e., neither of these compensation actions is
true at any step in the plan. For example, to avoid having the compensations
cancelC and cancelF in a plan of length 2, we would define a as

a = ¬cancelC1 ∧ ¬cancelC2 ∧ ¬cancelF1 ∧ ¬cancelF2

We now build a new propositional formula, based on fP:

R0(fP) = fP ∧ c ∧ a

R0(fP) describes the original planning problem for P(B,A,T), and in addition
requires that at least one of the change states is visited and no compensation
actions for events that did not occur in T appear in the plan.

7.3 Producing multiple recovery plans

Let π0 be the plan produced for R0(fP) (see Section 7.2), leading to a state
g (we called it the source state) s.t. (g, 〈a0, ...ai−1〉) ∈ Gs

i (B,A). To give the
user options for recovery, we want to produce other plans, different from π0.
The simplest way to do this is to remove g from the set of desired goal states
and repeat the process described in Section 7.2. The new plan will be different
from π0. However, this method cannot produce multiple plans to the same
destination.

Instead, we constrain R0(fP) to explicitly rule out π0. For example, to rule
out the plan a, b for the LTS in Fig. 12a, we use R0(flts) computed in Section 7.2
and modify it as

R1(flts) = R0(flts) ∧ (¬a2 ∨ ¬b3)

This guarantees that the plan, if found, is different from the previously found
one in at least one action.

We continue this way, restricting Rj(fP) with the set of previously computed
plans to get Rj+1(fP), until the number of desired plans is reached or until no
new plan can be found, that is, Rj(fP) is not satisfiable for some j.

We now apply this method to the TAS problem and the error trace t1 shown
in Fig. 10a and ending in state 9. Looking for plans up to length 10 and using

28 Simmonds et al.

p0 = 9
τ−→ 8

cancelF−→ 7
τ−→ 6

τ−→ 2
onlyCar−→ 3

bc−→ 4

p1 = 9
τ−→ 8

cancelF−→ 7
bf−→ 8

cf−→ 9
exp true−→ 10

expF−→ 11
getCar−→ 12

car−→ 13
bc−→ 4

p2 = 9
τ−→ 8

cancelF−→ 7
bf−→ 8

cf−→ 9
exp false−→ 14

cheapF−→ 11
getCar−→ 12

car−→ 13
bc−→ 4

p3 = 9
τ−→ 8

cancelF−→ 7
bf−→ 8

cf−→ 9
exp false−→ 14

cheapF−→ 11
getCar−→ 12

limo−→ 24
bl−→ 4

(a)

(b)

p′1 = 9
τ−→ 8

cf−→ 9
exp true−→ 10

expF−→ 11
getCar−→ 12

car−→ 13
bc−→ 4

p′2 = 9
τ−→ 8

cf−→ 9
exp false−→ 14

cheapF−→ 11
getCar−→ 12

car−→ 13
bc−→ 4

p′3 = 9
τ−→ 8

cf−→ 9
exp false−→ 14

cheapF−→ 11
getCar−→ 12

limo−→ 24
bl−→ 4

(c)

Fig. 13 (a) Plans for TAS of length ≤ 10 for recovery from the mixed property violation of
trace t1; (b) XML version of recovery plan p0; and (c) plans p′1 − p′3, the result of applying
plan-loop filtering to plans p1 − p3.

goal traces of length 1, we get plans p0 − p3 shown in Fig. 13a. Each of these

is extended with the last transition 4
rd−→ 5.

Plan p0 is the shortest: if unable to obtain a price for the flight, cancel the
flight and reserve the car instead. Plans p1 through p3 also cancel the flight
(since 8 is not a change state whereas 7 is) and then proceed to re-book it and
book a car (p1, p2) or a limo (p3). Increasing the plan length, we also get the
option of taking the getCar transition out of state 6, book the car and then
the flight.

The produced plans are then ordered based on the length of the plan and
the number of compensation actions in it. For example, plan p0 is the shortest
and has only one compensation action, for carAndFlight. Thus, it is the first
plan to be presented.

In addition, we can aim to limit the number of recovery plans computed
by taking two issues into consideration: (a) making sure that the plan goes
through only “relevant” change states, i.e., those that affect the computation
of the violating trace, and (b) removing those plans that result in the violation
of some of the safety properties. These optimizations are described in detail in
[41] and are omitted in this paper. Section 9 includes several small experiments
to show their effectiveness.

Chosen plans are then converted to BPEL for execution. The compensation
part of the plan is similar to the one shown in Fig. 11b, and the re-planning part

Monitoring and Recovery for Web Service Applications 29

consists of a sequence of BPEL <invoke> operations. The XML translation
of plan p0 is shown in Fig. 13b.

7.4 Analysis

In the previous subsections, we described how to compute a plan p which first
compensates the trace until a change state is reached and then computes an
alternative path to a certain goal. Under which conditions can we guarantee
that executing such a plan effectively leaves the system in a desired state?

In what follows, let B be the BPEL application, L(B) = {S,Σ, δ, I,L } be
the L2TS that represents B, and C(B) be the set of change states of application
B. Let LC(B) = {S,Σ ∪ Σc, δ ∪ δc, I,L } be the L2TS of application B with
compensation, where Σc is the set of compensation actions and δc the set of
compensation transitions, computed as described in Section 4.1.

Let T = s0
a0−→ s1

a1−→ ...
an−1−→ sn, where sn = e, be a trace of the program

leading to an error, A be the mixed monitor that detected the violation and
Gs
i (B,A) be the set of (source state, action sequence) pairs corresponding to A.

Let p = (pl, pm, pi) be a mixed recovery plan for T that tries to lead the appli-
cation to the goal state sm through the change state sl. The first part of the
plan, pl, compensates trace T, leaving the application in state sl. The second
part, pm, is a trace that leads to the state sm such that (sm, 〈...〉) ∈ Gs

i (B,A)

when executed from sl. That is, pl = sn
cn−1−→ sn−1

cn−2−→ ...
cl−→ sl, where ck

compensates ak and sl ∈ C(B), and pm = sl
b0−→ sj

b1−→ sj+1
b2−→ ...

bm−1−→ sm.
The third part, pi, is a trace that executes the action sequence associated with
state sm in Gs

i (B,A).
Let Tpl

be the compensated execution trace resulting from the application
of pl to T according to Definition 6.2. If we assume that compensation for
actions al, ..., an−1 is adequate, and that the default BPEL compensation order
is observed at runtime, then, according to Proposition 6.1, the execution of
pl leaves the application in state sl. Again, we cannot guarantee the correct
execution of a recovery plan if a service that appears in the plan times out
during its execution.

Definition 7.1 (Updated Execution Trace) Let T be an execution trace,
p = (pl, pm, pi) be a mixed recovery plan and Tpl

be the compensated execution
trace (as defined above). The updated execution trace Tpi

is the result of
applying the sequence of actions associated with pm, followed by the sequence
of actions associated with pi to the compensated execution trace Tpl

, assuming
that none of the participating services timeout.

In other words, the updated execution trace Tpi is the result of executing
the sequence b0b1...bm from state sl, followed by the i-step sequence associated
with state sm ∈ Gs

i (B,A). Note that BPEL applications considered in this
paper have several sources of non-determinism (from <pick> and <flow>
activities). In these cases, we suggest a valid interleaving of events in the plan.

30 Simmonds et al.

An incorrect interleaving is caught by the monitors during plan execution. In
the proposition below, we define sufficient conditions under which the trace
produced as a result of executing pm followed by pi reaches a goal state.

Proposition 7.1 Let T be an execution trace, p = (pl, pm, pi) be a mixed re-
covery plan and Tpi be the updated execution trace (as defined above). If com-
pensation for actions al, ..., an−1 is adequate, the default BPEL compensation
order is observed at runtime, the user acts as suggested by the plan in the case
of external choices, and the suggested <flow> activity interleavings are exe-
cuted, then the updated execution trace Tpi

is the result of compensating actions
alal+1...an−1, leaving the application in state sl, then executing pm, leaving the
application in state sm, and finally executing pi, leaving the application in a

goal state g, i.e., Tpm
= s0

a0−→ s1
a1−→ ...

al−1−→ sl
b0−→ ...

bm−1−→ sm
c0−→ ...

ci−1−→ g,
where sl ∈ C(B) and (sm, 〈c0, ..., ci−1〉) ∈ Gs

i (B,A).

This proposition follows from Definitions 4.1 and 6.2, as well as the fact
that we expect both the user and the BPEL engine to execute the suggested
actions. Of course, ensuring that a particular execution of the <flow> is cho-
sen is difficult – and in fact, often unnecessary. Our approach, described in
Section 3.2, of using events in the <flow> to make the corresponding moni-
tors more permissive, allows the plan to execute successfully even when the
BPEL engine produces events out of order.

Definition 7.2 (Successful Mixed Recovery Plan) Let T be an execu-
tion trace, p = (pl, pm, pi) be a mixed recovery plan and Tpi

be the updated
execution trace (as defined above). A mixed recovery plan p is successful on an
execution trace T iff the execution of the updated execution trace Tpi on the
mixed monitor A (the monitor that detected the violation) leaves A in a state
whose color is green.

We now discuss the worst case analysis. SAT-based planning is an NP-
hard problem [28]. However, due to advances in the SAT community, checking
satisfiability has a good average case performance, allowing the solution of
problem instances involving tens of thousands of variables and millions of
constraints.

As with violations of safety properties, the maximum number of plans
we compute for mixed violations is controlled by the user either directly or
indirectly, by controlling the maximum plan length. In the latter case, the
maximum number of plans is also indirectly determined by the number of
change states encountered along the trace and the number of source states in
the i-step goal traces reachable from these change states. If nc change states
and ng source states are reachable from the error state within k steps, then
the maximum number of plans of at most length k is nc × ng. We check the
satisfiability of an increasingly larger SAT instance in order to compute each
new plan, since we add a set of constraints for each plan found. This process
continues until all plans of length k are found, or the maximum number of
plans is reached. In the average case, we expect that the maximum number of

Monitoring and Recovery for Web Service Applications 31

plans will be much smaller than the number of application change states and
source states of i-step goal traces. As in the case of safety property violations,
we expect that the application developer will limit the maximum number of
plans to a small number (≤ 5) to avoid overwhelming users with a large number
of plans. The maximum plan length should also depend on how far apart the
application goals are, since we want to ensure that at least one goal is reachable
from each possible error state.

7.5 Controlling Unnecessary Compensations

Plans p1, p2 and p3 (see Fig. 13a) seem to be doing an unnecessary compen-
sation: why cancel a flight and then re-book it if the check flight service call
failed? The reason is that our approach first goes back to a change state and
then goes forward to a goal. To circumvent this problem, we implemented
plan-loop filtering which can remove the loop that goes from an application
state to a change state and then back. Plan-loop filtering turns plans p1 − p3

into p′1− p′3, respectively (see Fig. 13c). This is done semi-automatically: once
plan-loops are identified, they are presented to the user, and, if the user re-
quests it, the unnecessary compensations are removed, making the plans more
usable but not affecting the overall number of computed plans.

This step cannot be done automatically because we do not know a priori
how the output of non-idempotent service calls affects the rest of the execution.
If, for example, the execution of cf failed because it received an invalid booking
number from bf, then we must cancel the existing flight and book a new one,
since cf would keep on failing otherwise.

As plan lengths get large, the planner can generate plans with compensation
loops which involve doing an action and then immediately undoing it. For
example, in recovering from a violation in trace t1 in L2TS LC(TAS), shown in
Fig. 10a, the plan may include booking a flight and then cancelling it several
times (i.e., going between states 7 and 8 of LC(TAS)). Clearly, such situations
should be avoided.

To circumvent such a problem, we implemented compensation-loop filter-
ing. The idea is based on the notion that desired plans “go back” only once, and
then start going forward. Thus, a plan where a compensatory action follows
some non-compensatory one can be removed. Our compensation-loop filtering
is implemented as a simple script. Instead, we could have encoded the negation
of the above condition as a SAT formula, conjoining it with R0(fP), so plans
with compensation loops are not generated at all. Since this encoding would
mean propositionalizing two universal quantifiers (ranging over all compen-
satory and all non-compensatory actions in the system), it might make the
SAT computation less efficient. We plan to experiment with it in the future.

32 Simmonds et al.

Fig. 14 Architecture of the framework.

8 Tool Support

In this section, we describe the implementation of the monitoring and recovery
framework described in this paper. Our tool is called RuMoR, which stands
for RUntime MOnitoring and Recovery. We have implemented RuMoR on
top of the IBM WebSphere product suite, using a series of publicly available
tools and several short (200-300 lines) new Python or Java scripts. It takes
as input the target BPEL application, enriched with the compensation mech-
anism allowing us to undo some of the actions of the program, and a set of
properties (specified as desired/forbidden behaviours) that need to be main-
tained by the application as it runs. We discuss the architecture of our tool in
this section, implementation details are available in [38]. When runtime vio-
lations are discovered, RuMoR automatically proposes recovery plans which
users can then select for execution.

We show the architecture of our framework in Fig. 14. In this diagram,
rectangles are components of our framework, and ovals are artifacts. We have
also grouped the components and artifacts by phase: preprocessing – green,
with a symbol; runtime monitoring – brown, with a symbol; and recovery
– blue, with a symbol. Artifacts with a thick border are the initial inputs
to our framework. The preprocessing and runtime monitoring phases of our
framework are the same for both safety and mixed properties, but different
components are required for generating plans from the two types of properties.

Developers create properties for their web services using property patterns
and system events. During the preprocessing phase, the Property Translator
(PT) component receives the specified properties and turns them into moni-
tors (this process is out of scope of this paper and is described in [38]). The
LTS Extractor (LE) component extracts an LTS model from the BPEL pro-

Monitoring and Recovery for Web Service Applications 33

gram and augments it with compensation links (see Section 4.1). The L2TS
Builder (LB) component collects predicate information and service contracts
to augment the resulting LTS with state information, resulting in an L2TS
(see Section 4.2). The L2TS Analyzer (LA) uses the SMT solver MathSAT to
check which compensation links are adequate (see Section 4.2), and computes
goal links and change states using the techniques described in Section 4.3.

During the execution of the application, the Event Interceptor (EI) com-
ponent intercepts application events and sends them to the Monitor Manager
(MM) for analysis (see Section 5 for details). MM stores the intercepted events
for recovery, updates values of state variables of the application, checks pre-
and post-conditions of service partners, and updates the state of each active
monitor. This process continues until an error has been found, which activates
the recovery state, or all partners terminate.

During the recovery phase, artifacts from both the preprocessing and the
runtime monitoring phases are used to generate recovery plans. In the case
of safety properties, the Safety Plan Generator generates recovery plans that
can only compensate executed activities (see Section 6). For mixed proper-
ties, plans can compensate executed activities and execute new activities. In
this case, the Mixed Plan Generator (MPG) first generates the corresponding
planning problem and then modifies it in order to generate as many plans as
required (see Section 7). The MPG also uses a simple script to identify plan-
loops, as well as remove compensation loops from the computed plans (see
Section 7.5).

In addition, we have implemented two heuristics aimed to reduce the num-
ber (and improve the quality) of generated plans. These are: 1) remove plans
that require going through unnecessary change states, where re-executing the
partner call cannot affect the (negative) outcome of the trace, and 2) remove
plans that attempt to satisfy a mixed property at the expense of violating
some safety properties. The details of these optimizations are available in [41].

All computed plans are presented to the application user through the Vi-
olation Reporter (VR), and the chosen plan is executed by the Plan Executor
(PE). VR generates a web page snippet with violation information, as well as
a form for selecting a recovery plan. These recovery plans may include plan-
loops, depending on the user’s choice. For example, the plans in the snippet
in Fig. 15a generated for a violation of P1 have plan-loops. Developers must
include this snippet in the default error page, so that the computed recovery
plans can be shown when an error is detected. Fig. 15b shows the (simplified)
source code of such an error reporting page, where the bolded line has the
instruction to include the snippet. After the recovery plans have been com-
puted, the snippet is displayed as part of the application, and the user must
pick a plan to continue execution. Fig. 15c shows a screen shot of error.jsp
after recovery plans for P1 have been computed. The PE receives as input a
BPEL plan. Statically, we add a <collaboration> scope to each process be-
fore execution, and the BPEL plan chosen by the user is set as the logic of
this scope. As the chosen plan gets executed, MM updates the states of the

34 Simmonds et al.

(a)

(b)

(c)

Fig. 15 Violation reporting: (a) snippet.jsp, automatically generated snippet that contains
recovery plans; (b) error.jsp, the application error handling page; (c) error.jsp displayed
on a browser.

active monitors; if none are violated, the framework switches back to runtime
monitoring.

Monitoring and Recovery for Web Service Applications 35

Table 1 Results of adding filtering and the adequate compensation check to our framework.

Trace k |CT(B)| Baseline Adequate Compensation (AC) AC + Optimizations [41]

Plans Time (s) Plans Plans Time (s) Plans Plans Time (s) Plans

(filtered) (filtered) (filtered)

t1 6 4 1 0.01 1 1 0.15 1 1 0.27 1

8 4 5 0.13 5 5 0.27 5 5 0.41 5

13 4 13 0.27 13 13 0.41 13 13 0.54 13

t2 6 2 2 0.01 2 2 0.15 2 2 0.27 2

8 4 4 0.01 4 4 0.15 4 4 0.27 4

13 6 6 0.01 6 6 0.15 6 6 0.27 6

t3 5 2 2 0.01 2 2 0.55 2 0 0.81 0

10 5 5 0.02 5 5 0.56 5 2 0.82 2

15 8 8 0.02 8 8 0.56 8 5 0.82 5

20 12 12 0.02 12 12 0.56 12 8 0.82 8

25 13 13 0.02 13 12 0.56 12 8 0.82 8

30 13 13 0.02 13 12 0.56 12 8 0.82 8

t4 5 4 0 0.01 0 0 0.55 0 0 0.82 0

10 7 2 0.14 2 2 0.68 2 2 1.13 2

15 10 8 1.37 8 8 1.91 8 5 3.73 5

20 10 18 4.72 11 13 3.95 11 8 6.84 8

25 10 60 29.16 32 42 20.95 24 23 29.62 18

30 10 68 61.34 38 42 38.43 24 23 47.08 18

9 Experience

We have applied our framework on various case studies with full results avail-
able in [38]. In this section, we focus on assessing the cost and effectiveness of
the adequate compensation check introduced in Section 4.2. Since this check
may remove compensation transitions from a L2TS, we expect that including
this step in our framework does not generate plans which are infeasible at
runtime and thus result in fewer plans altogether. We are also interested in
the overhead that this analysis adds in practice.

To study this, we compare the results of applying three different configura-
tions of our framework to two of our case studies – TAS and the Travel Booking
system (TBS). TBS was described in [38]. Its L2TS model has 52 states (35 iden-
tified as change states) and 67 transitions, and |Σ| = 33. We ran these two
case studies using three different framework configurations: 1) Baseline – 1-
step goal traces, without the adequate compensation check and without extra
optimizations, 2) Adequate Compensation (AC) – the basic framework
with only the adequate compensation check, and 3) AC + Optimizations
– includes both the adequate compensation check and extra optimizations,
described in Section 8 and in [41].

Table 1 summarizes our results. Traces t1 and t2 are those described in
Section 5; traces t3 and t4 correspond to the TBS system and are described in
[38]3. Traces t1 and t4 violate mixed properties, while t2 and t3 violate safety
properties. In the case of safety property violations, no SAT instances are
generated, and the running time for the plan generation is trivial. We report
the number of plans computed for each framework configuration as well as
the time it took to compute them. For TAS, we generated plans starting with
length k = 6 and going to k = 13, while we started with length k = 5 and
went to k = 30 for TBS. For example, at k = 25, a total of 13 plans were

3 In [38], t3 and t4 are called tTBS1 and tTBS2 , respectively.

36 Simmonds et al.

initially generated for t3; this total was reduced to 12 plans after we checked
for adequate compensation, and if we also considered other optimizations to
our framework, this total was further reduced to 8. In this case, our filtering
techniques did not help reduce the number of plans. However, it was effective
for t4.

We have included the data for the TAS traces for completeness: since all of
its compensation transitions are adequate and all its change states are relevant,
neither of the new framework configurations produce a reduction in the num-
ber of computed plans. On the other hand, the adequate compensation check
indicated that in TBS, the service used to hold a hotel reservation (hh) was not
adequately compensated. Since hh appears in both t3 and t4, the Adequate
Compensation framework configuration computes fewer recovery plans for
both traces (in both cases, there are no new plans after k = 25). Also, since
there is no compensation transition for hh, the third framework configuration
results in a further reduction in the number of plans, since fewer change states
are reachable from the error state.

The total time reported for both the second and third framework configu-
rations includes the time it took to do the required static analyses. In practice,
most of these analyses are only carried out once per L2TS, so most of the extra
analysis cost should be amortized as we increase k. For example, in the case of
t4, we see that after k = 15, the total time required by the second framework
configuration is lower than the time required by the basic framework – even
though the adequate compensation check is initially expensive, it effectively
prevented the computation of about a third of the initially generated plans.
The analyses included in the third framework configuration are a bit more
expensive, but we see an even bigger reduction of number of plans for large
values of k.

Our initial experience shows that the adequate compensation check is both
feasible and effective, resulting in a relatively small number of relevant plans.
This is important, since the plans are presented to the user who must pick one
in order to continue execution.

We also studied the impact of varying i, the parameter in i-step goal traces
used for computing plans (see Section 4.3.1). Specifically, we generated recov-
ery plans of length 13 for trace t1 of TAS, starting with i = 1 and going up to
i = 5. For each goal trace, we measured the number of plans generated and
the time it took to do so (using the Baseline framework configuration with
filtering). Table 2 summarizes our results. For example, there were five 4-step
goal traces (gt12-gt16). Using gt13, we computed two plans for t1, taking 0.548
s, and overall, we computed 11 plans of length 13 (e.g., using plans of length
9 followed by a four-event sequence), taking 1.194 s. Note that the time we
report in the first row of Table 2 is larger than that for k = 13 in Table 1 since
it also includes filtering.

Fig. 16 summarizes the results in the table. As expected, as i increases,
the number of generated plans decreases since there are fewer valid “suffixes”
for mixed recovery plans. However, as i increases, the time to compute mixed
plans increases as well, due to the increased preprocessing, planning and fil-

Monitoring and Recovery for Web Service Applications 37

Table 2 Results of varying i when generating recovery plans of length k = 13 for trace t1.

i Goal trace Plans (filtered) Time (s) Total plans Total time (s)

1 gt1 13 0.364 13 0.364

2 gt2 2 0.194

gt3 4 0.254

gt4 1 0.264

gt5 2 0.260

gt6 2 0.222 11 1.194

3 gt7 2 0.248

gt8 2 0.269

gt9 1 0.277

gt10 4 0.306

gt11 2 0.318 11 1.418

4 gt12 1 0.112

gt13 2 0.548

gt14 1 0.560

gt15 3 0.352

gt16 2 0.300 9 1.872

5 gt17 2 0.564

gt18 1 0.560

gt19 2 0.218

gt20 2 0.242

gt21 2 0.248

gt22 0 0.236 9 2.068

Fig. 16 Summary of the data in Table 2.

tering. Ideally, the value of i should be determined experimentally for each
application. We plan to continue studying this issue in future case studies.

10 Related Work

In this section, we survey current work on error recovery and adaptation and
compare it with our approach.

Existing infrastructures for web services, e.g., the BPEL engine [35], include
mechanisms for fault definition, for specifying compensation actions, and for

38 Simmonds et al.

dealing with termination. When an error is detected at runtime, they typi-
cally try to compensate all completed activities for which compensations are
defined, with the default compensation being the reversal of the most recently
completed action.

Since these standard error recovery mechanisms are statically defined, one
relatively simple way of improving error recovery is to statically analyze the
application and suggest changes that improve the application’s fault tolerance.
In [17], Dobson defined a library of fault tolerance patterns, which are used
to transform the original BPEL process into a fault-tolerant one at compile
time. This is done by adding redundant behaviour to the application, but this
may result in a significantly bigger, and slower, program.

The work proposed by Baresi et al. [5] also enables recovery through the
standard error recovery mechanisms, but by attaching BPEL exception han-
dlers to properties that are checked at runtime. The advantage to this approach
is that the new exceptions are triggered by the violation of high-level proper-
ties which can help debugging. If such an exception handler is not provided,
execution terminates when a property is violated.

Several works have suggested self-healing mechanisms for web service ap-
plications. The Dynamo framework [4] uses annotation rules in BPEL in order
to allow recovery once a fault has been detected. Such rules need to be stat-
ically defined by the developers before the system can function. Fugini and
Mussi [22] propose a framework for self-healing web services, where all pos-
sible faults and their repair actions are pre-defined in a special registry. This
approach relies on being able to identify and create recovery from all available
faults.

The framework proposed by Carzaniga et al. [12] is the closest to ours in
terms of error recovery, as the authors also attempt to automatically com-
pute recovery plans for runtime errors. This framework exploits redundancy
in web applications to find workarounds when errors occur, assuming that the
application is given as a finite-state machine (without compensation), with an
identified error state as well as the “fallback” state to which the application
should return (one per error).

A workaround is a path in the finite-state machine starting at the er-
ror state and ending at a fallback state. Before computing all the possible
workarounds for an error, the current error transitions are removed from the
application model. In some cases, this makes the fallback state unreachable,
and additional system events must be inserted to make the model connected
again. The approach then exhaustively generates all possible workarounds,
prioritizing them solely by length. Fallback states are manually identified by
the developer, whereas our method attempts to compute an approximation
of these states using user-specified properties of the system (goal transitions).
Our framework also attempts to filter out unusable recovery plans (those that
do not include change states) and ranks the remaining ones.

The work in [11] addresses some of the above limitations by generating
workarounds using general code-rewriting rules specified by the API develop-
ers instead of the full model of the API behavior. The rules specify which

Monitoring and Recovery for Web Service Applications 39

operations have no side-effects, which reverse effects of others, and which can
serve as alternatives to others. Upon discovery of an API error, the frame-
work generates workarounds that change the structure of the webpage being
rendered, until one is accepted by the user. Our use of compensations and
idempotent service calls is similar to rule-based specification of operations,
but our framework does not use alternatives. Furthermore, the work in [11]
does filtering based on different criteria from the ones presented here.

AI planning has been successfully used to automatically generate web ser-
vice compositions (WSC) [29, 33, 30, 44]. Replanning when an error occurs
can be expensive, so Yan et al. [47] propose a heuristic for repairing planning
graphs, using service pre- and post-conditions to add new transitions to the
existing planning graph. This heuristic stops when a new path to a goal state
is found. This approach relies on the existence of detailed service contracts,
does not consider the possibility of compensation, and limits repairs to service
compositions.

Baresi and Pasquale [7] work at the requirements level, allowing the def-
inition of adaptive goals and strategies which are used to provide support
for adaptation at runtime. The adaptation goals are specified using a goal
model, where LTL formulas and adaptation strategies are associated with in-
dividual goals. If a goal’s LTL formula is violated at runtime, the associated
adaptation strategy is triggered. These strategies include adding/removing
goals from the goal model, modifing the LTL formula associated to a goal,
adding/removing/modifying operations (which changes future goal operational-
ization). Like Yan et al. [47], this approach relies on the availability of detailed
service contracts, and also does not explicitly consider compensation.

Charfi et al. [13] propose a plug-in architecture for self-adaptation, based
on the aspect-oriented programming paradigm. The two types of aspects they
allow to define are monitoring, used to detect problems, and adaptation, used
to hot deploy (i.e., apply as the application runs) self-adaptation logic. This
work extends the AO4BPEL [14] language, allowing dynamic generation, ac-
tivation and deactivation of these aspects at runtime. It is the developer’s re-
sponsibility to write the self-adaptation logic of the adaptation aspects, adding
compensation manually if needed.

Unlike the above approaches, our framework does not explicitly check
whether services comply with their specified contracts – we use these con-
tracts to help establish our correctness guarantees. Our work does not require
the definition of static recovery strategies; furthermore, plans are generated
using the already specified behavior, i.e., we do not add transitions to our
formal model. We also maintain an explicit relationship between actions and
their compensations (unlike the AI-based systems) and take full advantage of
the predefined recovery mechanism – compensation. Yet we enrich the stan-
dard compensation mechanism since runtime errors are defined w.r.t. high-level
partner interaction properties, and we can prove that the suggested recovery
from safety and bounded liveness property violations leaves the system in a
desired state. Finally, some of the above approaches [47, 7] are complementary

40 Simmonds et al.

to ours and can be applied in order to improve performance and/or quality of
our plans.

11 Summary and Future Work

In this paper, we described our framework for runtime monitoring and recov-
ery of web service conversations. The monitoring portion is non-intrusive, run-
ning in parallel with the monitored system and intercepting interaction events
during runtime. It does not require any code instrumentation and enables rea-
soning about partners expressed in different languages. We have then used
BPEL’s compensation mechanism to define and implement an online system
for suggesting, ranking and executing recovery plans. Furthermore, through
collecting state information, we are able to check that partners fulfill their
posted service contracts and that compensation is adequately defined. Finally,
we are able to prove correctness of the generated plans. Our experience has
shown that this approach computes a small number of highly relevant plans,
doing so quickly and effectively, and in this paper we show that our framework
remains feasible even with the additional static analysis that checks adequacy
of compensation.

In what follows, we discuss limitations of our approach and venues for
future research. A limitation of our approach is that we model compensations
as going back to states visited earlier in the run. While this model is simple,
clean and enables effective analysis, the compensation mechanism in languages
like BPEL allows the user to execute an arbitrary operation and thus end up in
a principally different state. For example, if we model the amount of money the
user has as part of the state, then booking and then canceling a flight brings
her to a different state – the one where she has less money and no flight. In such
examples, we may not be able to prove adequacy of compensation because of
insufficient state information. We intend to experiment with program analysis
techniques such as abstraction refinement [3, 23] to try to derive additional
information that should be kept in the state of our L2TSs. To the best of our
knowledge, such techniques have not been applied to web services.

In our framework, recovery is initiated only after an error has been dis-
covered. An alternative approach might be to use the available properties to
generate plans a priori and then re-plan if the user decides to deviate from
the prescribed course of action or something in the environment changes, in
the GPS-like plan recalculation. This should reduce the need for compensation
and rework.

Finally, our work so far has assumed that all partners operate within the
same process server and thus a centralized monitoring and recovery is a viable
option. In practice, most web services are distributed, requiring distributed
monitoring and recovery. Techniques for turning a centralized monitor into a
set of distributed ones, running in different process servers, have been inves-
tigated by the DESERT project [27], but we leave the problem of distributed
plan generation and execution for future work.

Monitoring and Recovery for Web Service Applications 41

Acknowledgements Several people contributed to the ideas presented in this paper: Shiva
Nejati, Yuan Gan and Jonathan Amir were involved in various aspects of defining and build-
ing the runtime monitoring framework. Various people at IBM CAS Toronto, specifically,
Bill O’Farrell, Julie Watermark, Elena Litani and Leho Nigel, have been working with us
over the years, and Bill is responsible for shaping this project into its present form, including
the suggestion that we work on recovery from runtime failure. We are also grateful to mem-
bers of the IFIP Working Group 2.9 for their helpful feedback on this work. This research
has been funded by NSERC, IBM Toronto, MITACS Accelerate, UTFSM DGIP and by the
Ontario Post-Doctoral Fellowship program. We also thank reviewers of this special issue for
many helpful comments.

References

1. van der Aalst, W.M.P., Weske, M.: Case Handling: a New Paradigm for Business Process
Support. Data Knowledge Engineering 53(2), 129–162 (2005)

2. Alur, R., Henzinger, T.A.: Finitary Fairness. ACM Trans. Program. Lang. Syst. 20,
1171–1194 (1998)

3. Ball, T., Rajamani, S.: The SLAM Toolkit. In: Proceedings of 13th International Con-
ference on Computer-Aided Verification (CAV’01), LNCS, vol. 2102, pp. 260–264 (2001)

4. Baresi, L., Guinea, S.: Dynamo and Self-Healing BPEL Compositions (research demon-
stration). In: Proceedings of the 29th International Conference on Software Engineering
(ICSE’07), pp. 69–70. IEEE Computer Society (2007). Companion Volume

5. Baresi, L., Guinea, S.: Self-Supervising BPEL Processes. IEEE Transactions on Software
Engineering 37(2), 247–263 (2011)

6. Baresi, L., Guinea, S., Plebani, P.: WS-Policy for Service Monitoring. In: 6th VLDB
International Workshop on Technologies for E-Services, LNCS, vol. 3811, pp. 72–83.
Springer (2006)

7. Baresi, L., Pasquale, L.: Adaptive Goals for Self-Adaptive Service Compositions. In:
Proceedings of the 2010 IEEE International Conference on Web Services (ICWS ’10),
pp. 353–360. IEEE Computer Society, Washington, DC, USA (2010)

8. Berre, D.L., Parrain, A.: SAT4J. http://www.sat4j.org/ (2012)
9. Biancullia, D., Ghezzi, C.: DynamoAOP - User Manual. http://plastic.isti.cnr.

it/download/tools/dynamo-aop/dynamoaop-manual.p%df (2012)
10. Burdy, L., Cheon, Y., Cok, D.R., Ernst, M.D., Kiniry, J.R., Leavens, G.T., Leino,

K.R.M., Poll, E.: An overview of JML tools and applications. Int. J. Softw. Tools
Technol. Transf. 7, 212–232 (2005)

11. Carzaniga, A., Gorla, A., Perino, N., Pezzè, M.: Automatic Workarounds for Web Ap-
plications. In: Proceedings of Eighteenth International Symposium on the Foundations
of Software Engineering (FSE’10), pp. 237–246 (2010)

12. Carzaniga, A., Gorla, A., Pezzè, M.: Healing Web Applications through Automatic
Workarounds. Int. J. Softw. Tools Technol. Transf. 10(6), 493–502 (2008)

13. Charfi, A., Dinkelaker, T., Mezini, M.: A Plug-in Architecture for Self-Adaptive Web
Service Compositions. In: Proceedings of the 2009 IEEE International Conference on
Web Services (ICWS ’09), pp. 35–42. IEEE Computer Society, Washington, DC, USA
(2009)

14. Charfi, A., Mezini, M.: AO4BPEL: An Aspect-oriented Extension to BPEL. World
Wide Web 10, 309–344 (2007)

15. Cheng, B.H.C., de Lemos, R., Garlan, D., Giese, H., Litoiu, M., Magee, J., Müller, H.A.,
Taylor, R.: SEAMS 2009: Software Engineering for Adaptive and Self-Managing Sys-
tems. In: 31st International Conference on Software Engineering, (ICSE’09), Companion
Volume, pp. 463–464 (2009)

16. DISI-UniTN/FBK-IRST: The MathSAT 5 SMT Solver. http://mathsat.fbk.eu (2012)
17. Dobson, G.: Using WS-BPEL to Implement Software Fault Tolerance for Web Services.

In: 32nd EUROMICRO Conference on Software Engineering and Advanced Applications
(EUROMICRO-SEAA’06), pp. 126–133 (2006)

18. Fikes, R., Nilsson, N.J.: STRIPS: A New Approach to the Application of Theorem
Proving to Problem Solving. Journal of Artificial Intelligence 2(3/4), 189–208 (1971)

42 Simmonds et al.

19. Foster, H.: A Rigorous Approach to Engineering Web Service Compositions. Ph.D.
thesis, Imperial College (2006)

20. Foster, H., Emmerich, W., Kramer, J., Magee, J., Rosenblum, D., Uchitel, S.: Model
Checking Service Compositions under Resource Constraints. In: Proceedings of the
the 6th Joint Meeting of the European Software Engineering Conference and the ACM
SIGSOFT Symposium on the Foundations of Software Engineering (ESEC-FSE ’07),
pp. 225–234. ACM (2007)

21. Fu, X., Bultan, T., Su, J.: Analysis of Interacting BPEL Web Services. In: Proceedings
of the 13th International Conference on World Wide Web (WWW’04), pp. 621–630
(2004)

22. Fugini, M.G., Mussi, E.: Recovery of Faulty Web Applications through Service Discov-
ery. In: Proceedings of the 1st SMR-VLDB Workshop, Matchmaking and Approximate
Semantic-based Retrieval: Issues and Perspectives, 32nd International Conference on
Very Large Databases, pp. 67–80 (2006)

23. Gurfinkel, A., Wei, O., Chechik, M.: Yasm: A Software Model-Checker for Verification
and Refutation. In: Proceedings of 18th International Conference on Computer-Aided
Verification (CAV’06), LNCS, vol. 170-174, p. 4144. Springer, Seattle, WA (2006)

24. Heckel, R., Lohmann, M.: Towards Contract-based Testing of Web Services. Electronic
Notes in Theoretical Compututer Science 116, 145–156 (2005)

25. Hinz, S., Schmidt, K., Stahl, C.: Transforming BPEL to Petri Nets. In: Proceedings of
the 3rd International Conference on Business Process Management (BPM’05), LNCS,
vol. 3649, pp. 220–235 (2005)

26. IBM: WebSphere Integration Developer. http://www-01.ibm.com/software/

integration/wid/ (2012)
27. Inverardi, P., Mostarda, L., Tivoli, M., Autili, M.: Synthesis of Correct and Distributed

Adaptors for Component-Based Systems: an Automatic Approach. In: Proceedings of
the 20th International Conference on Automated Software Engineering (ASE’05), pp.
405–409. ACM (2005)

28. Kautz, H.A., Selman, B.: Unifying SAT-based and Graph-based Planning. In: Proceed-
ings of the 16th International Joint Conference on Artificial Intelligence (IJCAI’99), pp.
318–325 (1999)

29. McDermott, D.V.: Estimated-Regression Planning for Interactions with Web Services.
In: Proceedings of the Sixth International Conference on Artificial Intelligence Planning
Systems (AIPS ’02), pp. 204–211. AAAI (2002)

30. McIlraith, S.A., Son, T.C.: Adapting Golog for Composition of Semantic Web Services.
In: Proceedings of the 8th International Conference on Principles and Knowledge Rep-
resentation and Reasoning (KR ’02), pp. 482–496. Morgan Kaufmann (2002)

31. Meyer, B.: Applying “design by contract”. Computer 25, 40–51 (1992)
32. Milner, R.: Communication and Concurrency. Prentice-Hall, New York (1989)
33. Narayanan, S., McIlraith, S.A.: Simulation, Verification and Automated Composition

of Web Services. In: Proceedings of the 11th International Conference on World Wide
Web (WWW ’02), pp. 77–88. ACM (2002)

34. Nicola, R.D., Vaandrager, F.: Three Logics for Branching Bisimulation. Journal of the
ACM (JACM) 42(2), 458–487 (1995)

35. OASIS: Web Services Business Process Execution Language Version 2.0. http://docs.
oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html (2012)

36. Oracle: Welcome to NetBeans. http://netbeans.org (2012)
37. Ouyang, C., Verbeek, E., van der Aalst, W.M.P., Breutel, S., Dumas, M., ter Hofstede,

A.H.M.: Formal Semantics and Analysis of Control Flow in WS-BPEL. Science of
Computer Programming 67(2-3), 162–198 (2007)

38. Simmonds, J.: Dynamic Analysis of Web Services. Ph.D. thesis, University of Toronto,
Toronto (2011)

39. Simmonds, J., Ben-David, S., Chechik, M.: Guided Recovery for Web Service Applica-
tions. In: Proceedings of Eighteenth International Symposium on the Foundations of
Software Engineering (FSE’10), pp. 247–256 (2010)

40. Simmonds, J., Ben-David, S., Chechik, M.: Monitoring and Recovery of Web Service
Applications. In: J.W. Ng, M. Chignell, J.R. Cordy (eds.) Smart Internet, Lecture Notes
in Computer Science, pp. 250–288. Springer (2010)

Monitoring and Recovery for Web Service Applications 43

41. Simmonds, J., Ben-David, S., Chechik, M.: Optimizing Computation of Recovery Plans
for BPEL Applications. In: Proceedings of 2010 Workshop on Testing, Analysis and
Verification of Web Software (TAV-WEB’10), pp. 3–14 (2010)

42. Simmonds, J., Chechik, M.: RuMoR: Monitoring and Recovery of BPEL Applications.
In: Proceedings of 25th IEEE/ACM International Conference on Automated Software
Engineering (ASE’10), pp. 345–346 (2010)

43. Simmonds, J., Gan, Y., Chechik, M., Nejati, S., O’Farrell, B., Litani, E., Waterhouse,
J.: Runtime Monitoring of Web Service Conversations. IEEE Transactions on Service
Computing 2(3), 223–244 (2009)

44. Traverso, P., Pistore, M.: Automated Composition of Semantic Web Services into Exe-
cutable Processes. In: Proceedings of the International Semantic Web Conference (ISWC
’04), pp. 380–394 (2004)

45. W3C: Semantic Web. http://www.w3.org/standards/semanticweb/ (2012)
46. W3C: Web Services Description Language (WSDL). http://www.w3.org/TR/wsdl

(2012)
47. Yan, Y., Poizat, P., Zhao, L.: Self-Adaptive Service Composition Through Graphplan

Repair. In: IEEE International Conference on Web Services (ICWS ’10), pp. 624–627
(2010)

A Appendix

This appendix gives additional background information on BPEL’s activities and variables.
We also provide an overview of the WSCoL subset used in this article.

A.1 BPEL activities and variables

The basic BPEL activities for interacting with partner web services are <receive>, <invoke>
and <reply>, which are used to receive messages, execute web services and return values,
respectively. Conditional activities are used to define the control flow of the application:
<while>, <if> and <pick>. The <while> and <if> activities model internal choice, as
conditions are expressions over process variables. The <pick> activity is used to model
external choice: the application waits for the first occurrence of one of several possible events
(specified using <onMessage>), executing the activities associated to the corresponding
event. The <pick> activity completes once these activities are completed.

The structural activities <sequence> and <flow> are used to specify sequential and
parallel composition of the enclosed activities, respectively. <scope> is used to define
nested activities. In IBM WebSphere Integration Developer v7, developers can also add
<collaboration> scopes, inspired by the work on dynamic workflows [1], which can be used
to alter the application logic at runtime.

The <assign> activity is used to update the values of variables. Assignment activities
consist of multiple <copy> rules, each with their own <from> and <to> parts, representing
the source and destination data, respectively. <copy> rules can include data modification
expressions, e.g., <copy> <from> $i + 1 </from> <to> $i </to> </copy> increments
the value of $i by one, but can also be simple assignments.

BPEL has both global and local variables. Global variables are available throughout
the process, while local variables are only available within the <scope> in which they are
defined. Variable types can be simple or complex XSD (XML Schema Definition) types,
schema elements, or WSDL message types, declared using the keywords type, element and
messageType, respectively. Multiple schema elements can refer to the same complex XSD
type.

Fig. 17a shows the definition of the simple and complex XSD types used by the TAS

application. For example, fromDate and sourceCity are of the simple XSD types xsd : int
and xsd : string, respectively. On the other hand, tTripData is a complex XSD type and
includes a reference to every simple type declared in the same figure. These type definitions

44 Simmonds et al.

(a)

(b)

(c)

Fig. 17 (a) Part of the schema file tas.xsd, showing the definition of the TAS simple and
complex XSD types; (b) part of the WSDL file tas.wsdl, showing the definition of the WSDL
message types for the bc service; and (c) the declaration of various BPEL global variables.

are then available from the BPEL process by importing the XSD file in which they are
defined.

WSDL message types define abstract messages that can serve as the input or output of
an operation, and are thus defined in the corresponding WSDL file. WSDL messages consist
of one or more <part> elements, where each <part> is associated with an existing XSD
element. For example, as shown in Fig. 17b (copy of Fig. 5a), the message type in bc, which
is the input message for the bc service, consists of three parts: city, fromDate and toDate.

Once the necessary variable types are defined and imported, we can declare the required
BPEL variables. Fig. 17c (copy of Fig. 5b) shows the definition of three variables of the TAS

system: tripData, inputBookCar and outputBookCar. The first variable is used to maintain
the state of the application, while the second two are the input and output variables of the

Monitoring and Recovery for Web Service Applications 45

rules ::= sub rule ((==>|<==|<==>) sub rule)∗

sub rule ::= and expr (|| and expr)∗

and expr ::= equals expr (&& equals expr)∗

equals expr ::= relational expr ((==|!=) relational expr)?

relational expr ::= op expr ((>|>=|<|<=) op expr)?

op expr ::= basic expr ((+ | − | ∗ | / |%) basic expr)∗

basic expr ::= variable | quant expr | true | false | number | string value

quant expr ::= (quantifier $ identifier in variable ; sub rule)
quantifier ::= \forall | \exists | \avg | \sum | \product | \min | \max

variable ::= ((ivar | evar)) | (ivar | evar)
ivar ::= $ identifier xpath expr?

evar ::= return type (string value, string value, string value, xpath expr)
return type ::= \returnInt | \returnBool | \returnString

string value ::= substring value (+ substring value)∗

substring value ::= identifier | literal | variable
literal ::= LIT
number ::= NUM

Fig. 18 Grammar of the subset of the WSCoL language used in this work.

bc service. We have defined similar input and output variables for the rest of the services
used by the TAS application.

A.2 WSCoL

The grammar of the WSCoL subset used in this article is given in Fig. 18, where identifier

represents a valid BPEL variable identifier and xpath expr represents a valid XPath expres-
sion. LIT and NUM are sets of BPEL literals and numbers, respectively, while true, false,
\forall, \exists, \avg, \sum, \product, \min, \max, \returnInt, \returnBool, and
\returnString are terminal symbols. The full WSCoL grammar is available in [9].

In WSCoL, we can write predicates about the state of a BPEL process by accessing its in-
ternal variables using XPath expressions. For example, the expression $tripData/carBookingNo
retrieves the car booking number for the current trip, where tripData is the associated
BPEL identifier and /carBookingNo is the XPath expression pointing to the XSD type to
be queried.

External data is accessed by invoking other web services. For example, the expression

\returnInt(′WSDL′,′ subtractDates′,
($tripData/fromDate, $tripData/toDate),
′//parameters/subtractDatesResult/days′)

returns the difference between the trip start and end dates as an integer. This is done by in-
voking the subtractDates service with parameters $tripData/fromDate and $tripData/toDate,
corresponding to the trip start and end dates, respectively. The difference is stored in the
variable //parameters/subtractDatesResult/days, and the subtractDates service defini-
tion is available in a preconfigured WSDL file.

The typical Boolean, relational and mathematical operators, as well as some pre-defined
functions, are used to build more complex expressions. For example, the assertion

($tripData/carBookingNo) >= 1000

&& $tripData/fromDate < $tripData/toDate

checks that the car booking number is at least four digits long and that the trip end date
occurs after the trip start date.

46 Simmonds et al.

Predicates on sets of variables are defined through the use of general quantifiers of
the form (Q $V in R; C), where Q is one of the quantifiers listed in Fig. 18, R is an XPath
expression that represents a set of finite nodes, $V is the identifier used to access each node,
and C is a WSCoL predicate.

For example, the predicate

(\forall $L in ($outputGF/flights/flight/);
($L/destCity) == ($tripData/destCity))

checks that all the flights returned by a getFlights service have the same destination city as
the one stored in $tripData.

