
A Relationship-Based Approach to Model Integration

Marsha Chechik† Shiva Nejati‡ Mehrdad Sabetzadeh‡

†Department of Computer Science
University of Toronto, Toronto, ON, Canada

chechik@cs.toronto.edu

‡Simula Research Laboratory
Oslo, Norway

{shiva,mehrdad}@simula.no

Abstract

A key problem in model-based development is integrat-
ing a collection of models into a single, larger, specification
as a way to construct a functional system, to develop a uni-
fied understanding, or to enable automated reasoning about
properties of the resulting system.

In this article, we suggest that the choice of a particular
model integration operator depends on the inter-model re-
lationships that hold between individual models. Based on
this observation, we distinguish three key integration op-
erators studied in the literature – merge, composition and
weaving – and describe each operator along with the notion
of relationship that underlies it.

We then focus on the merge activity and provide a de-
tailed look at the factors that one must consider in defining
a merge operator, particularly the way in which the rela-
tionships should be captured during merge. We illustrate
these factors using two merge operators that we have devel-
oped in our earlier work for combining models that origi-
nate from distributed teams.

Keywords: Model-Based Development, Model Integra-
tion, Merge, Composition, Weaving.

1 Introduction

During any large-scale development, engineers in-
evitably have to deal with large collections of models rep-
resenting different perspectives, different versions across
time, different variants in a product family, different system
components, different development concerns, and so on. A
key problem is then to integrate these models into a sin-
gle, larger, specification that can be used to operationalize
the system under development, to arrive at a unified under-
standing about the system, or to enable automated end-to-
end reasoning about properties that the system must satisfy.

For example, consider a simple Hospital Information
System (HIS), designed to manage the clinical and admin-
istrative functions of a hospital. An HIS has to meet the
needs of multiple stakeholders. These include the medical
staff, technicians, administrators, and so on. These people
have different areas of concern, and model the system from
different perspectives. Figure 1 shows a few possible per-
spectives in an HIS: those of a doctor, two nurses, and a
computer system administrator.

The doctor contributes two models, a UML class dia-
gram (M1) and a UML sequence diagram (M2). M1 captures
the concepts and associations relevant to the doctor, and M2
describes a scenario concerning the doctor’s regular visit
to the patients and updating the patients’ medical records.
Nurse I contributes three models: M3 is a class diagram
expressing the concepts and associations in the nurse’s do-
main; M4 is a sequence diagram capturing the patients’ daily
check in a hospital ward where a nurse evaluates each pa-
tient individually and notes her observations in the patient’s
medical chart; and M5 captures the different states a nurse
could be in (resting, ready, in patient’s room) and the pos-
sible transitions between them. Figure 1 depicts a second
state machine model, M6, attributed to Nurse II, whose view
on how a nurse can tend to a patient is finer-grained. Fi-
nally, the computer systems administrator, who is in charge
of ensuring the integrity and performance of the HIS, ex-
presses a requirement that any update made to the persis-
tent data of the system should be logged in a file, so that
problems can be tracked in case of a system failure. This
requirement is modelled as a rewrite rule for sequence dia-
grams, shown in model M7. If the left hand side of the rule
(denoted L) matches a fragment of a sequence diagram, then
that fragment is rewritten with the right hand side of the rule
(denoted R).

The models built for a proposed system such as the HIS
described above are not stand-alone objects but instead are
inter-related and dependent on one another. Some possible
relationships include:

1

getAllPatients()
Ward

getChart()
Patient

works at

update()
Chart

getWard()
Nurse

Doctor getRecord()
Patient

update()
MedicalRecord

M1

:Doctor :Patient :MedicalRecord

getRecord()

medicalRecord
update()

M2

Doctor

M3

loop

:Nurse :Patient :Ward:Chart

getAllPatients()

getWard()

[more patients]

patients

getChart()

chart update()

M4

Nurse I

System Administrator

=⇒

M7

Object1 <<persistent>>
Object2

update*()

L

update*()

:SystemLog

append()
R

<<persistent>>
Object2

Object1

Resting

Ready

In Patient's
Room

to Com
m

on Rmto
 W

ar
d

to
 W

ar
d

to
 P

at
ie

nt
 R

m

to Com
m

on Rm

to
 P

at
ie

nt
 R

m

M5

Nurse II

Available Ready

Check Temperature
and Blood Pressure

to Common Rm

to Ward
to Ward

to Patient Rm

to Common Rm

Bath Change

to Common Rm

to Patient Rm

to Ward

M6

Off Duty

sh
ift

 c
ha

ng
e

sh
ift

 c
ha

ng
e

Figure 1. Example models originating from different sources.

2

Table 1. Model integration.
Relationships Integration operator
Interact Compose
Cross-cut Weave
Overlap Merge

• the models may overlap with one another as informa-
tion about same or closely associated concepts may ap-
pear in multiple models. For example, the Patient class
in M1 is likely to be the same as in M3; and Medical-
Record in M1 is likely to be the same as Chart in M3. In
the same vein, M5 and M6 have overlaps, but Nurse II
distinguishes between medical and room service, and
differs from Nurse I on whether a nurse is responsible
for tending to patients while at rest.

• the models may interact (communicate) at run-time.
For example, it is possible for a doctor and a nurse to
both want to update an individual patient’s chart simul-
taneously. Hence, M2 and M4 may be interacting, in
this case, to synchronize accesses to a patient’s chart.

• the models may be cross-cutting, with some describ-
ing ways to alter the behavior or structure of others,
in response to different overarching concerns such as
safety, security, and performance. For example, M7
cross-cuts M2 and M4, as both models involve updates
to persistent objects (MedicalRecord and Chart), hence
altering the behaviour of M2 and M4.

Despite the lack of a well-defined terminology, the lit-
erature broadly distinguishes three core types of model in-
tegration activities, called merge [35, 28, 43, 41, 8, 3, 7],
composition [5, 13, 17, 25] and weaving [26, 40, 12, 11].
Given a particular integration context, which of the activi-
ties is appropriate? We suggest that the choice of integra-
tion activity is determined by the relationship which holds
between the models – see Table 1. Merge is used to build
a global view of a set of overlapping models that capture
different angles on the same functionality. Composition is
used to assemble a set of autonomous but interacting fea-
tures that run sequentially or in parallel. Weaving is used
in aspect-oriented development to incorporate cross-cutting
concerns into a base system.

To emphasize making the complex relationships between
the models explicit, we propose an integration process in
which relationships are treated as first-class artifacts. The
process is shown in Figure 2: Given a set of models, we
begin with specifying the relationships between the mod-
els. Then, using Table 1, we choose an appropriate integra-
tion operator based on the type of the relationships. This
produces an integrated model that can be used for further

Figure 2. Model integration process.

analysis and development. In Section 2, we instantiate this
process to composition, weaving and merge.

In our HIS example, we may decide that we need to (1)
merge M1 and M3 to build a complete view on the concepts
and relationships in the system; (2) merge M5 and M6 to
explicate the commonalities and variabilities between the
models; (3) compose M2 and M4 in parallel, so that we can
check that composition preserves mutual exclusion to the
patient’s chart; and (4) weave M7 into M2 and M4 to insert
logging behavior for updating persistent objects.

Yet, just explicating the type of relationships may be in-
sufficient to property apply the integration operator using
the process in Figure 2. Operationalizing this process for
each integration operator requires a close investigation of
several other factors, including assumptions about the na-
ture of models, the specific details of the relationships be-
tween models, and also the usage and intention of the in-
tegration process. In the remainder of the article, we look
at the factors that one must consider in defining a merge
operator, and specifically, at identifying and capturing over-
lap relationships (see Section 3). We describe two specific
instances of the merge operator that we have developed in
our earlier work [35, 28] in response to different contextual
needs. We use these operators to provide concrete examples
of the influence of the different considerations on the defi-
nition of the merge operator (see Section 4). In Section 5,
we describe the tool that we have developed in support of
these two operators and discuss our experience applying it
to combining and reasoning about models coming from dis-
tributed teams. We conclude the article in Section 6 with a
summary and avenues for future work.

2 Model Integration Operators

In Sections 2.1–2.3, we provide an overview of compo-
sition, weaving and merge, respectively, alongside the no-
tion of relationship underlying each of these activities. We
use the HIS models in Figure 1 for illustration. In the re-
mainder of the article, M1-M7 refer to the models in that
figure. Our goal here is to provide a general understanding
of these three different integration operators, without elab-
orating their details. In Section 2.4, we present a number of
important factors that one needs to carefully consider and
elaborate when defining an integration operator. We provide

3

a detailed discussion of these factors for the merge activity
in Section 3.

2.1 Compose

Composition refers to the process of assembling a set
of autonomous but interacting models that capture different
components of a system. While the term “composition” is
overloaded, in this article we use it to represent integration
of models which are treated as black-box artifacts, so the
model relationships are established between the interfaces
that the models expose to the outside world. The composi-
tion is typically sequential or parallel (e.g., [5, 13, 17, 25]),
and we focus on the latter [5], describing how it can be ap-
plied to components represented by state machines.

For example, assuming that MedicalRecord and Chart are
the same objects in Figure 1, M2 and M4 can access and mod-
ify shared objects. Specifically, it is possible for a doctor
and a nurse to both want to update an individual patient’s
Chart (MedicalRecord) simultaneously. Hence, M2 and M4
may need to interact, to synchronize on accesses to shared
objects. To build a complete picture of this interaction and
ensure that it is performed in a desired way, we need to cre-
ate a composition of the scenarios in M2 and M4.

Figure 3 shows a simple component diagram, expressed
in the visual modelling notation of the Darwin architectural
description language [23]. The diagram describes the inter-
connections between three concurrent processes in the hos-
pital system. These processes capture fragments of the sce-
narios in sequence diagrams M2 and M4 dealing with access
to the patient’s chart. C1 is the process representing a doc-
tor adding a prescription to a patient’s chart (as shown by
the update message in M2); C2 is the process representing a
nurse updating a patient’s chart after a checkup (as shown
by the update message in M4); and C3 is the process repre-
senting a patient’s chart which is accessed via a semaphore
protocol.

The relationships between components in Figure 3 are
defined between their interfaces, describing how the transi-
tion labels of each pair of components are mapped to one
another. For example, the relationship between C1 and C3

is
acquire in C1 maps to lock in C3

release in C1 maps to unlock in C3

Similarly, the relationship between C3 and C2 is

acquire in C2 maps to lock in C3

release in C2 maps to unlock in C3

The behaviors of C1–C3, expressed in Labelled Tran-
sition Systems (LTSs) [25], are shown in Figure 4(a)–(c),
respectively. To make sure that patients’ charts are pro-
tected against concurrent changes, accesses to C3 by C1

and C2 need to be mutually exclusive. This property can

doctor:DOCTOR

nurse:NURSE

chart: CHART
lock
unlock

acquire
release

acquire
release

acquire / lock
release / unlock

acquire / lock
release / unlock

C1

C2

C3

Figure 3. Interconnections between pro-
cesses running in parallel.

(a)

(d)

(b)

(c)

Figure 4. Specification of processes and their
parallel composition.

be checked by computing the parallel composition of C1–
C3 (see Figure 4(d)). In the composed model, an update
made by the doctor is preceded by doctor.chart.lock (i.e., doc-
tor’s request to acquire access to the chart), and followed
by doctor.chart.unlock (i.e., doctor’s request to release the
chart). The same is true for the nurse: her update is pre-
ceded by nurse.chart.lock and followed by nurse.chart.unlock.
The checking of such properties is often automated. For
example, we used LTSA [22] to express and compute the

4

parallel composition and to check it for mutual exclusion.

2.2 Weave

In Aspect-Oriented Software Development (AOSD),
weaving is used to incorporate cross-cutting concerns into
a base system. Weaving operators may be implemented
in various ways depending on the nature of the base sys-
tem and the concerns involved, and whether weaving is per-
formed statically (at compile time) or dynamically (at run-
time). Aspect-oriented languages usually include built-in
constructs for weaving. For example, they provide point-cut
constructs by which programmers specify where and when
additional code (i.e., an aspect) should be executed in place
of, or in addition to, an already-defined behavior (i.e., the
base program). In aspect-oriented modelling, weaving is
usually defined by patterns, selected either manually or au-
tomatically, using pattern matching techniques.

A classic example of a cross-cutting concern is logging,
affecting all logged activities in a system. The perspective
of the Computer Systems Administrator (model M7) in Fig-
ure 1 illustrates this concern for sequence diagrams. M7 is
essentially a rewrite rule: if the left hand side of the rule
(denoted by L) matches a fragment of a sequence diagram,
then that fragment is rewritten using the right hand side of
the rule (denoted by R). L matches if update*() (i.e., an oper-
ation whose name begins with the “update” prefix) is called
on a persistent data object. If a match is found, the sequence
diagram in question is modified as prescribed by R, result-
ing in SystemLog.append() being called after the update to
append an entry to the system log.

The rewrite rule in M7 cross-cuts M2 and M4, as both M2
and M4 involve updates to persistent objects (MedicalRecord
and Chart). Hence, it identifies the relationships between M7
and M2 and between M7 and M4. Specifically, the relation
between M7 and M2 is

Object1 in M7 maps to :Doctor in M2
Object2 in M7 maps to :MedicalRecord in M2
update*() in M7 maps to update() in M2

And the relationship between M7 and M4 is:

Object1 in M7 maps to :Nurse in M4
Object2 in M7 maps to :Chart in M4
update*() in M7 maps to update() in M4

Figure 5 shows the result of weaving M7 into M2 and M4. In
this example, weaving is performed statically, and the weav-
ing operator can be most conveniently implemented using
graph rewriting [42].

2.3 Merge

Merge is used to build a global view of a set of over-
lapping models that capture different perspectives on a cer-
tain functionality (e.g., [35, 28, 43, 8, 3, 7]). The goal of

loop

:Nurse :Patient :Ward:Chart

getAllPatients()

getWard()

[more patients]

patients

getChart()

chart update()

M4 with M7 woven in

:SystemLog

append()

:Doctor :Patient :MedicalRecord

getRecord()

medicalRecord
update()

M2 with M7 woven in

:SystemLog

append()

Figure 5. Weaving model M7 into M2 and M4.

model merging is to combine the input models by unifying
their overlaps. In some cases, the overlapping aspects of
the input models may be conflicting. Existing merging ap-
proaches differ in handling such cases: some approaches
require that only consistent models be merged, implying
that inconsistent models must be repaired prior to or during
merge [20, 8]. Others tolerate inconsistencies by explic-
itly representing them in the resulting merged model (e.g.,
[7, 35, 28]).

To illustrate merge, consider models M1 and M3. M1 and
M3 can overlap in several ways: the Patient class in M1 is
likely to be the same as that in M3, and MedicalRecord in
M1 is likely to be the same as Chart in M3. Consequently,
(1) the update() operations of MedicalRecord and Chart are
perhaps the same; (2) the aggregation between Patient and
MedicalRecord in M1 is likely to be the same as the aggre-
gation between Patient and Chart in M3; (3) the getRecord()
and getChart() operations of Patient (in models M1 and M3,
respectively) are likely to be the same as well. Assuming
that all of these likely correspondences hold, the following
is the mapping between M1 and M3:

Patient in M1 maps to Patient in M3
MedicalRecord in M1 maps to Chart in M3
Aggregation in M1 maps to Aggregation in M3
update() in M1 maps to update() in M3
getRecord() in M1 maps to getChart() in M3

“Aggregation in M1” refers to the relation between Patient
and MedicalRecrod in M1, and “Aggregation in M3” refers
to the relation between Patient and Chart in M3. Figure 6
shows the resulting merge of M1 and M3 with respect to the
above overlap relationship between the models. As seen
from the figure, the merge has only one copy of the common
parts. When the source models have different vocabularies,
we have two choices for naming the shared elements in the
merge: either to define new terms, or to give preference to

5

One copy of
the common part

Doctor getRecord()
Patient

update()
MedicalRecord

works at
getAllPatients()

Ward
getWard()
Nurse

Merge

Figure 6. Merge of models M1 and M3.

the terminology in one of the source models. In the exam-
ple of Figure 6, we chose to give terminological preference
to the doctor’s model (i.e., M1).

2.4 Important Considerations

Our exposition of composition, weaving and merge in
earlier sections was meant to establish some general famil-
iarity with these operators and how they are applied in prac-
tice. Yet, merely being explicit about the type of relation-
ships between a set of models is insufficient for defining a
new integration operator, or for choosing amongst a set of
existing operators. In addition, we need to consider several
other important factors, in particular:

1. What notation(s) are the source models expressed in?

2. What assumptions are made about the application con-
text, the nature of the models, and their intended use?

3. What are the exact details of the relationships that need
to be established (in terms of the level of granularity,
semantics, representation)?

4. And, what quality and correctness criteria do we ex-
pect of the result of the integration?

In the past several years, we have been studying the
merge operation in different domains. In the rest of this arti-
cle, we elaborate on the factors outlined above, instantiating
them to the model merging problem.

3 Model Merging Frameworks

We now focus on the merge activity and take a detailed
look at the considerations, identified in Section 2.4, for de-
signing a merge operator.

3.1 Merge Input

Merge operators are typically defined over a single no-
tation [6]. This may necessitate some transformation over
the source models, particularly when the source models are

heterogeneous (i.e., represented in different notations), in
which case they need to be translated into a common nota-
tion first. For example, merging a sequence diagram with
a state machine may require a pre-processing translation of
both models into a more detailed notation such as an LTS.
Alternatively, the source models may be homogeneous (i.e.,
represented in the same notation), but it is advantageous to
merge them after translation into an intermediate notation,
e.g., to simplify the definition of the merge operator. For
example, merge operators for hierarchical data definition
languages such as nested-relational and XML schemas first
translate the source models into flat schemas [24]. Another
example is the resolution of parallelism in state machine
merging, where parallel states are translated into their se-
mantically equivalent non-parallel structures [28].

A key step in defining a merge operator is formalizing
the notation for the input models, based either on their struc-
ture or their semantics. In a structural formalization, the
models are often represented as graphs. This allows one
to define generalizable merge solutions that apply to a va-
riety of modeling languages, but this approach can compli-
cate reasoning about the semantic properties of the merged
model. In contrast, a semantics-based formalization of the
models, e.g., trace-based, token-based, or tree-based [5],
restricts the application of the developed merge operator
to a specific modeling language, but provides a direct ba-
sis for reasoning about preservation of semantic properties
during merge. In choosing between a graph-based versus a
semantics-based formalization of merge, one must also con-
sider the fact that level of formality and hence the emphasis
on the semantics of the models increase as the development
proceeds. Therefore, a graph-based approach is often more
suitable in earlier stages of development, and a semantic-
based one – in later stages.

Another factor that can affect how a merge operator is
defined is the assumption that the developers make about
the information that they do not explicitly capture in their
individual models. For example, a model may intend to
give a closed-world semantics, i.e., the missing informa-
tion is regarded as false. In such a case, the merge operator
needs to differentiate between the information discrepan-
cies in the source models, e.g., by treating them as incon-
sistencies or as variations. Alternatively, a model may in-
tend to give an open-world view, where the information not
explicitly stated may still exist and be non-false. In such
a case, the merge operator is additive, combining informa-
tion available in the individual models. Examples of model
merging under open- and closed-world assumptions are pro-
vided in Sections 4.1 and 4.2, respectively.

6

Company Part
supplies

purchases

Figure 7. Associations with same endpoints.

3.2 Overlap Relationships

Before a merge can be applied, the exact nature of the
overlap of the concepts between the two models needs to be
explicated. Our experience indicates that often the analyst is
not entirely sure about the exact nature of such an overlap,
as there can be several reasonable alternatives. Each rela-
tionship should therefore be seen as a “hypothesis” about
the overlap [35], and if a merge yields an unacceptable re-
sult, the reason might be because the models are genuinely
inconsistent or because the correct nature of the overlap was
not properly understood.

Table 2 lists some of the common ways in which con-
cepts in different models may overlap. Each overlap is il-
lustrated using models captured as graphs and as state ma-
chines with trace-based semantics [5]. We discuss the over-
laps below:

Equivalence: An equivalence mapping between two ele-
ments means that they refer to exactly the same con-
cept in the real world. For models with informal or
semi-formal semantics, determining which concepts
are equivalent is a choice to be made by the user be-
cause the precise meaning of the elements in the mod-
els relies heavily on the tacit beliefs, perceptions, and
assumptions of the people who built them. In cell 1 of
Table 2, the relationship states that the concept referred
to as StaffMember in model P1 is the same as MedTeam-
Member in model P2. Similarly, it indicates that Doctor
in P1 and Physician in P2 are equivalent and so are the
inheritance links between the concept pairs.

Even when the two endpoints are equivalent, links be-
tween them may not be so. For example, consider the
model in Figure 7 which says that a Company plays a
role of a supplier for some Parts and a role of a con-
sumer for some others. Thus, we expect the equiva-
lence of links between equivalent elements, such as the
inheritance links between the concept pairs in models
P1 and P2, to be determined manually.

In a semantic-based formalization, two elements are
equivalent if they exhibit exactly the same semantic
properties. In the case of state machines, states A and
B are equivalent iff the behavior exhibited by A is ex-
hibited by B and vice versa, meaning that A and B are
bisimilar [25] – see the example in cell 2 of Table 2.
Since bisimilarity relates states with precisely the same
set of behaviors, this notion is often too strict for relat-

ing models with behavioural variations. Hence, a more
flexible notion for capturing partial behavioural equiv-
alence might be appropriate (see “similarity” discussed
below).

Similarity: Two elements might be similar in some re-
spects but not necessarily equivalent. For example, in
cell 3 of Table 2, the concepts of Room (in P1) and
Bay1 (in P2) are determined to be similar. The point
of similarity is that both Room and Bay are used for
housing patients, but the two concepts are not equiva-
lent as they differ in other respects, including patient
amenities, available medical equipment, level of pa-
tient privacy, and staffing of medical care providers. In
cell 3, we have used the “≈” notation to distinguish
the similarity mappings from the equivalence mapping
that relates Ward in P1 and Ward in P2.

Similarity relations are also very useful for relating
models with formal semantics. Instead of consider-
ing pairs of states to be either bisimilar or dissimi-
lar, one can introduce a quantitative similarity value
for measuring how close the behaviors of one state are
to those of another [28]. For example, in cell 4 of Ta-
ble 2, states Resting and Idle have transitions to bisimi-
lar states Ready and Responsive via identically labelled
transitions, but they are not equivalent as their behav-
iors differ on the transition labelled to Patient Rm. The
quantitative similarity value, adapted from [39], yields
a number between 0 and 1, and when this number is
above a given threshold, the states are considered to be
similar.

Two useful heuristics that one can use to distinguish
similarity from equivalence relations are as follows:

1. As we explain in Section 3.3, a criterion for
merge is to not have duplicate elements (non-
redundancy). Therefore, if two elements a and b
are related via an equivalence relation, they will
be unified and collapsed into a single element
by the merge. If this outcome is intended, an
equivalence relation should be used. Otherwise,
a similarity relation should be considered, pro-
vided that more specific types of overlaps, e.g.,
generalization or aggregation elaborated later in
this section, do not apply.

2. Equivalence is a transitive notion, whereas sim-
ilarity is not. Specifically, a = b and b = c
implies that a = c. In contrast, a ≈ b and
b ≈ c does not imply a ≈ c. For a simple ex-
ample, the cities of Vancouver and Toronto may
be deemed similar as both are metropolitan cities

1A bay at a hospital is an area where multiple patient beds are set up,
often with the beds separated from one another using partitions.

7

Table 2. Different types of overlapping relationships.

Equivalence

Generalization

Aggregation

Overriding

Information
Gap

Graph-Based (Class Diagrams) Semantics-Based (State Machines)

!"# !$#

Not Applicable

Similarity

Ward

Room

Ward

Bay

≈
≈

Critical Care
Unit

Ward

Special
Unit

!"#
!$# !%#

!"#
!$# !%#

O
ve

rla
p

Ty
pe

Ready

Bath
Change

Blood
Pressure

In Patient's
Room

Ready

Resting

Ready

Idle

Responsive

to Ward to Ward

1 2

4

6

7

10

3

9

8

5

11 12

Resting

Ready

Idle

Responsive

to Ward to Ward

In Patient's
Room

to Patient Rm

P1 P2 P1 P2

P1 P2

P2

P1

P2P1

P2P1

P2P1

!"# !$#

!%#

P2P1

P3

Ready

Ready
In Patient's

Room

Resting

to Ward

Idle

In Patient's
Room

to Common Rm

to Patient Rm

P2P1

P3

!"#
!$#

!
!
P2

P1

Resting

In Patient's
Room

In Patient's
Room

Resting
to Ward

to Patient Rm

P2

P1

(Vancouver ≈ Toronto). Toronto and Brampton
too may be deemed similar in that they are in the
same province, are closely located, and offer ac-
cess to virtually the same amenities and services
(Toronto≈Brampton). However, we cannot con-
clude from the above that Vancouver ≈ Bramp-
ton, because the link, Toronto, overlaps with Van-
couver and Brampton in different ways. This dis-
tinction leads to a second heuristic: For a and b
to be related via equivalence, it is necessary that

any relationship that any element x has towards a
should transit over to b, and vice versa. If this is
not the case, a similarity relation should be con-
sidered, again provided that one cannot be more
specific about the type of overlap.

Generalization: An element in one model can be a gen-
eralization or specialization of elements in another
model. For example, in cell 5 of Table 2, Special Unit
is a generalization of Critical Care Unit because a Hospi-
tal’s special unit can be either a critical care unit or a

8

surgery unit.

Generalization can also be used in a semantic-based
domain. For state machines, the behavior of a state
in one model can refine (generalizes) the behaviors of
other states in another model. In the example in cell 6
of Table 2, the trace in model P2 describes the detailed
steps that a nurse should follow during the daily con-
trol routine: first doing a bath change and then check-
ing the blood pressure. The trace in model P1 abstracts
these steps via a single state, In Patient’s Room. Hence,
the trace in model P1 is more general than the trace
in P2, with state In Patient’s Room refining the sequence
Bath Change and Blood Pressure, and the relationship be-
tween the two models is behavioural generalization.

Aggregation: A pair of elements can be related through a
has-a or is-part-of relationship. For example, in cell 7 of
Table 2, Room is declared as having Equipment pieces
as sub-parts. Aggregation relationships are most use-
ful for capturing the structural decomposition of the
elements in a domain. Such decomposition does not
apply to state machine models.

Overriding: Another interesting relationship is retrench-
ment, or override, which allows developers to with-
draw from their positions as their knowledge evolves
or to avoid inconsistency with other developers. For
example, when comparing P1 and P2 in cell 9 of Ta-
ble 2, we determine that Inpatient and Outpatient are
ill-defined concepts: these characteristics are deter-
mined by the nature of a patient’s visit to the hospital
rather than being invariantly associated with a patient.
Therefore, we may want to refute the concepts Inpa-
tient and Outpatient in model P2 and override (replace)
them with InpatientVisitRecord and OutpatientVisitRecord
of model P1, respectively. In Table 2, refuted informa-
tion is denoted by the 8 symbol.

Override relationships are applicable to the semantic-
based case as well. For example, the state machine P1
in cell 10 of Table 2 indicates that a nurse may go from
the nurses’ resting area to a patient’s room whenever
the patient needs help. But according to the state ma-
chine P2, nurses that are resting do not respond to pa-
tients’ requests as the transition from the Resting state
to the In Patient’s Room state is marked as refuted (8).
Thus, the two models disagree on whether nurses in
the resting area should respond to patients’ requests,
which is captured by the override relationship between
the behavior of P1 and P2. This relationship, unlike
others, is not monotonic – the resulting merge will
not necessarily have more information than both of the
original models.

Information Gaps: Elements in different models can have

more complex relationships than those described
above. In particular, there may be information gaps
(discontinuities) between the source models that need
to be bridged first, before meaningful relationships can
be defined. For example, in cell 11 of Table 2, to relate
CriticalCareUnit and SurgeryUnit, we first need to intro-
duce a more abstract concept, such as SpecialUnit, and
then declare CriticalCareUnit and SurgeryUnit to be spe-
cializations of that concept. Another example of infor-
mation gaps is when a concept in one model is derived
from concepts in other models through a computation.
For example, one model may have a single attribute,
name, for the full name of StaffMember, while another
model may have two attributes, firstName and lastName,
for the same purpose. To relate these two models, we
need to account for the fact that one’s full name is com-
puted by concatenating their first and last names.

Information gaps can exist in the semantic-based case
as well. For state machines, information gaps relations
can be used to combine pieces of behavior from dif-
ferent models to generate a more complete descrip-
tion. For example, cell 12 in Table 2 presents a case
where the behaviors in models P1 and P2 are con-
nected through the sub-trace in P3. Specifically, by
concatenating the behaviors in these models, we obtain
a full behavioural description indicating that a nurse
can move from her resting area to the ward where she
may go to patients’ room to respond to their requests
and can return to the resting area afterwards.

3.3 Desirable Criteria for Merge

Depending on the goals to be achieved by model merg-
ing,e.g., allowing inspections or consistency checking, the
merge result may be expected to meet various criteria. Most
common of these are given below.

• Completeness: If a concept appears in one of the
source models, it is represented in the merged model
as well [1]. This is to ensure that no information is lost
in the merge process.

• Non-redundancy: If a concept appears in more than
one source model, only one copy of it is included in
the merged model [1].

• Minimality: Merge does not introduce new informa-
tion, which is neither present nor implied by the source
models.

• Totality: Merge is computable for an arbitrary set of
models. This property is of particular importance if
one wants to tolerate inconsistency between the source
models [32, 30].

9

• Soundness: Merge supports the expression and preser-
vation of semantic properties. For example, if mod-
els are expressed as state machines, one may want to
preserve their behaviors, expressed as temporal logic
properties, to ensure that the intended meaning of the
source models is properly captured in the merge. If
soundness is required, a merge framework needs a ca-
pability to express desired properties and guarantee
that they are preserved.

Of course, not all of the above criteria may be desir-
able, or even applicable, to all merge operators. For ex-
ample, completeness and minimality may be undesirable if
model merging also involves conflict resolution, in which
case the final merge can potentially add or delete informa-
tion [31]. Semantic preservation may be undesirable when
one wants to induce design drift or perform an abstrac-
tion during merge, since such manipulations are usually not
semantics-preserving [18]. Finally, totality may be undesir-
able when the source models are expected to seamlessly fit
together. In such a case, the source models should be made
consistent before they are merged [8].

In Section 4, we describe two different merge opera-
tors developed in our earlier work in response to different
needs and in different application domains. Our discussion
is guided by and structured around the range of considera-
tions outlined in the current section.

4 Two Example Merge Operators

We describe two instantiations of the merge operator: Al-
gebraic Merge (Section 4.1) and State Machine Merge (Sec-
tion 4.2). We apply both operators to models M5 and M6 in
Figure 1. In model M5, a nurse tends to a patient in a state
In Patient’s Room. This perspective also includes a transition
between Resting and In Patient’s Room modeling the fact that
a nurse can move from the nurses’ common room to a pa-
tient’s room without needing to register herself in a ward as
an available nurse. Model M6 distinguishes two separate ac-
tivities that a nurse may carry out while in a patient’s room:
Check Temperature and Blood Pressure and Bath Change. This
perspective also assumes that a nurse can tend to a patient
only when she is registered in a specific ward, i.e., there is
no transition from state Available to either of the above two
states. Finally, M6 includes a nurse going Off Duty when the
shift changes. She can then remain in the common room
but cannot go to the ward or to a patient’s room until she
becomes available during the next shift change.

For each of the merges, we present the underlying as-
sumptions, using the framework presented in Section 3.

4.1 Algebraic Merge

Our algebraic merge is a generic operator that works
over graph-based models. Relationships between models
are captured by sub-graphs, also referred to as connectors.
The outcome of merge is characterized by an algebraic con-
cept called colimit – an operation for gluing objects together
with nothing essentially new added and nothing left out [9].

Algebraic merge is typically used during early phases of
development where the most important goals are exploring
the ontological relationships between the terms used in dif-
ferent models, aligning the conceptual structures of differ-
ent stakeholders, and producing an abstract perspective of
the entire system being developed. We now illustrate the
steps of algebraic merge of models M5 and M6 in Figure 1.
In the first step, the user creates a connector model, which
includes just the overlaps between M5 and M6, and specifies
how the connector maps onto each of the two models. Fig-
ure 8 shows the equivalence (cell 1 of Table 2) mappings
between the connector model and M5 and M6.

The second step is to compute the merge of M5 and M6
with respect to their overlaps as described by the connector.
The result is shown in Figure 9. As can be seen from the
figure, algebraic merge unifies into a single element any set
of source model elements that have been mapped through
the connector. For example, the Ready states in M5 and M6
are unified into a single state in the merge because they are
mapped through the connector model. More interestingly,
states Bath Change and Check Blood Pressure and Temperature,
both from M6, and In Patient’s Room from M5 are all unified
into a single state of the merged model (In Patient’s Room).
As we describe in Section 4.2, our state machine merge op-
erator differs from our algebraic merge operator in a number
of respects, most notably, in that it never collapses different
states of the same model into a single state.

Using colimits ensures that the syntactic structure of the
source models is maintained in their merge. Specifically,
for any source model M and any graph edge r from node
x to y (denoted r : x → y) in M , if r is represented in
the merge by r′ : x′ → y′, then x and y must be repre-
sented by x′ and y′, respectively. For example, the tran-
sition to Ward : Available → Ready in M6 is represented by
to Ward : Resting → Ready in the merge. Colimits then en-
sure that Available and Ready in M6 are respectively repre-
sented by Resting and Ready in the merge.

Table 3 summarizes the main characteristics of algebraic
merge with regard to the factors described in Section 3. We
discuss the columns of the table below.

Input Models. The operator applies to homogeneous
graph-based models and takes an open-world (additive)
approach for handling the information that is not explic-
itly captured in individual models. For example, the shift
change scenario is present only in model M6 and not M5,

10

Table 3. Characteristics of algebraic and state machine merge operators.
Merge operators Input Models Relationships

Algebraic Merge

State Machine Merge

Homogeneous,
graph-based

Open-world
assumption

Applies to all
overlap relations in

Table 2

Homogeneous,
state machines

with trace-based
semantics

Closed-world
assumption

Applies to the
overlap relations (2),
(4), (6), and (12) in

Table 2

Preserves positive existential LFP
properties and one level of

universal quantification

Preserves all
LTL properties

Soundness Properties

Complete,
Non-Redundant,

Minimal,
Total

Complete,
Total

and yet it is included in the resulting merge. Similarly, the
merge also includes the behavior that enables the nurse to
go straight from the common room to a patient’s room – this
behavior is expressed only in M5.

Relationships. Algebraic merge has the flexibility to in-
corporate all notions of overlap described in Table 2. For
instance, in the example of Figure 8, we could choose not
to equate states Bath Change and Check Temperature and Blood
Pressure in M6 with state In Patient’s Room in M5. Instead,
we could use similarity mappings to say that Bath Change
and Check Temperature and Blood Pressure are similar but not
equivalent to In Patient’s Room. With such similarity map-
pings, we would obtain the merged model shown in Fig-
ure 10. In this merge, the three states in question and their
incident transitions are kept distinct, and the similarity rela-
tions between the states are explicitly recorded in the merge.
This is in contrast to the merge of Figure 9, where the three
states collapsed into a single one, and the incident transi-
tions with a common label were unified.

Soundness. As we discussed earlier, colimits ensure that
the syntactic structure of the source models is preserved in
the merge. However, preservation of syntax does not allow
one to directly argue about the preservation of semantics,
for which we typically need to reason about logical proper-
ties. Specifically, given a property ϕ expressed in a partic-
ular logic, one cannot readily determine from the definition
of colimit whether ϕ carries over from the source models to
the merged model. In [36], we use techniques from finite
model theory [21] to enable such type of reasoning for col-
imits. Specifically, we show that colimits preserve a frag-
ment of Least Fixpoint Logic (LFP) – the extension of First
Order Logic with a least fixpoint operator. The preserved
fragment of LFP consists of all positive existential proper-
ties (i.e., properties with no negation or universal quantifica-
tion) plus one level of universal quantification over positive
existential properties (i.e., properties of the form ∀x. ϕ(x),
where ϕ is positive existential).

For state machines, an interesting consequence of these
preservation results is the preservation of reachability. For
example, knowing that there is a path from Available to Bath
Change in M6, we can guarantee that there is path from Rest-
ing to In Patient’s Room in the merges shown in Figures 9 and
10. For a detailed discussion about the connection between
the preserved fragment of LFP and some common sound-
ness constraints, see [36].

Properties. The use of colimits for merge ensures that the
outcome is complete (in the sense that it fully contains all
the source models), minimal, redundancy-free, and total. In
addition, using colimits has the advantage that the merge
operator directly applies to systems, rather than pairs, of
models [35]. That is, the operator works for any number of
models and relationships.

4.2 State Machine Merging

Our second merge operator is specifically aimed at state
machine models and is motivated by the need to preserve
the semantic properties of these models in their merges.
These properties are typically expressed in variants of tem-
poral logic formulas. Overlaps between state machines are
specified using binary relations over their state spaces. The
merge is defined as a common refinement of a set of state
machines with respect to their relationships [19]. Basing
the notion of state machine merge on refinement is stan-
dard [41, 15]. Refinement captures the process of combin-
ing behaviors of individual models while preserving all of
their agreements. This guarantees that semantic properties
of the source models carry over to their merge.

State machine merge operator is more suitable for late
stages of development where the goal is to obtain a sound
and operational model of the system under development. In
this kind of merge, it is assumed that all “real” disagree-
ments between stakeholders have been resolved, and thus
the remaining discrepancies between the behaviors of the

11

Resting

Ready

In Patient's
Room

to Com
m

on Rmto
 W

ar
d

to
 W

ar
d

to
 P

at
ie

nt
 R

m

to Com
m

on Rm

to
 P

at
ie

nt
 R

m

M5

connector

Resting Ready

Check Temperature
and Blood Pressure

to Common Rm

to Ward to Ward

to Patient Rm

to Common Rm

Bath Change

to Common Rm

to Patient Rm

to Ward

Available Ready

Check Temperature
and Blood Pressure

to Common Rm

to Ward
to Ward

to Patient Rm

to Common Rm

Bath Change

to Common Rm

to Patient Rm

to Ward

M6

Off Duty
sh

ift
 c

ha
ng

e

sh
ift

 c
ha

ng
e

Figure 8. Mappings between the connector
model and models M5 and M6.

input models can be treated as variabilities in the models
intended functionality. These variabilities are represented
as conditional behaviors in the merge [28].

Below, we illustrate the steps of state machine merging.
First, the user identifies a relationship between the input
state machines using a binary relation over their states. Fig-
ure 11 shows a mapping between the states of the input state
machines M5 and M6. Unlike the algebraic merge, mappings
in state machine merge are limited only to states. The rea-
son is that bisimilarity does not distinguish between multi-
ple parallel transitions with the same label, always treating
them as a single transition. Therefore, to indicate mappings
between transitions, it is sufficient to map their endpoints
and assume that the transitions with similar labels are simi-
lar.

The next step is to compute the merge with respect to

Resting

Ready

In Patient's
Room

to C
om

m
on R

mto
 W

ar
d

to
 W

ar
d

to
 P

at
ie

nt
 R

m

to C
om

m
on R

m

to
 P

at
ie

nt
 R

m

Algebraic Merge I

shift change

Off Duty

shift change

Figure 9. Algebraic merge of state machines
M5 and M6 with respect to the mappings in
Figure 8.

the binary relation defined above. The result is shown in
Figure 12. As can be seen from the figure, non-shared be-
haviors are guarded by conditions denoting the originating
view that exhibits those behaviors. Further, unlike the al-
gebraic merge, state machine merge does not collapse dis-
tinct states. For example, the states Check Temperature and
Blood Pressure and Bath Change of model M6 remain intact
in the merge, although these two states are mapped to a
single state in model M5. This is necessary for preserving
the common behaviors of the input state machines in their
merge [28]. For example, the property

Prop1:“whenever the nurse is in ward, she can tend to a patient”

holds in both models M5 and M6 and is preserved in their
merge. However, the property

Prop2: “a nurse not registered in a ward can tend to a patient”

which holds in model M5 but not in M6, is represented as a
parameterized behavior in the merge and is preserved only
when the guard [in M5] holds. This guard indicates the
origin of the transition and becomes true only when the as-
sumptions under which M5 is applicable hold.

Table 3 summarizes the main characteristics of the state
machine merge with regard to the factors described in Sec-
tion 3. The columns of the table are discussed below:

Input Models. The operator applies to state machine mod-
els and takes a closed-world approach for handling the in-
formation that is not explicitly captured in individual mod-
els. For example, the shift change process which is mod-
elled only in M6, and the behavior in M5 that enables the
nurse to go straight from the common room to a patient’s
room are both included in the merge in Figure 12, but as pa-
rameterized behaviors, indicating that these have not been

12

Resting

Ready

In Patient's
Room

to Com
m

on Rmto
 W

ar
d

to
 W

ar
d

to Patient Rm

to
 C

om
m

on
 R

m

to
 P

at
ie

nt
 R

m

Algebraic Merge II

shift change
Off Duty

shift change

Bath ChangeCheck Temperature
and Blood Pressure

to W
ard

to Patient Rm

to Ward
to Patient Rm

to Common Rm

to Common Rm

≈

≈

Figure 10. Algebraic merge of state machines
M5 and M6 with respect to the mappings in
Figure 8 but with In Patient’s Room related to Bath
Change and Check Temperature and Blood Pressure via
similarity relations.

Resting

Ready

In Patient's
Room

to Com
m

on Rmto
 W

ar
d

to
 W

ar
d

to
 P

at
ie

nt
 R

m

to Com
m

on Rm

to
 P

at
ie

nt
 R

m

M5

Available Ready

Check Temperature
and Blood Pressure

to Common Rm

to Ward
to Ward

to Patient Rm

to Common Rm

Bath Change

to Common Rm

to Patient Rm

to Ward

M6

Off Duty

sh
ift

 c
ha

ng
e

sh
ift

 c
ha

ng
e

Figure 11. Binary relation between the state
machines M5 and M6.

present in both input models.

Relationships. The state machine merge can incorporate
four notions of overlap presented in Table 2, namely, equiv-
alence, similarity, generalization, and override. Aggrega-
tion is not applicable to the state machine notation. In-
formation gap requires a merge operator that can concate-
nate behaviors, potentially generating new behaviors in the
merge – those that did not come from either of the input
models. This operator is principally different from the state
machine merge described here.

Soundness. The state machine merge operator is sound [29]
for linear time temporal logic properties (LTL) [33]. That
is, true behavior properties of the models expressed as LTL
formulas also hold in their merge. For example, both Prop1

and Prop2 discussed above can be expressed as LTL formu-
las, and the state machine merge operator preserves both of
them: Prop1, which refers to shared behavior between M5

Available,
Resting

Ready,
Ready

In Patient's Room,
Check Temperature
and Blood Pressure

to Common Rm

to Ward
to Ward

to Patient Rm

to Common Rm

In Patient's Room,
Bath Change

to Common Rm

to Patient Rm

to Ward

Off Duty

sh
ift

 c
ha

ng
e

sh
ift

 c
ha

ng
e

[in
 M

6]

to Patient Rm [in M5]

to Patient Rm [in M5]

Behavioural Merge

Figure 12. State machine merge of the state
machines M5 and M6 with respect to the map-
ping in Figure 11.

and M6, is preserved as a non-parameterized behavior in the
merge, and Prop2, which refers to a non-shared behavior, is
preserved as parameterized one. In short, the state machine
merge includes, in either guarded or unguarded form, every
behavior of the input models. The use of parameterization
for representing behavioural variabilities allows us to gen-
erate behavior-preserving merges for models that may even
be inconsistent.

Properties. Finally, state machine merge is always com-
plete, since it preserves all behaviors of the input models.
It is also minimal and total, i.e., information not present in
the input models does not appear in the merge, and further,
this merge operator can be applied to every pair of state ma-
chines. Non-redundancy property, however, may not hold.
For example, the states Check Temperature and Blood Pressure
and Bath Change of model M6 remain separate in the merge
even though they are mapped to the same state in model M5.

In this section, we used the merge framework in Sec-
tion 3 to compare two different merge operators: algebraic
and state machine. We applied these operators to the same
example to show how the same models can be merged in
completely different ways when the factors triggering the
need for merge are different. The state machine merge,
while it allows for careful analysis of semantic properties
of the merged model, is applicable only to state machine-
based notations. The algebraic merge, however, is applica-
ble to any graphical notation.

5 Tool Support

We have implemented the two merge operators described
in Section 4 as part of a tool called TReMer+ [37]. Au-
tomated assistance for matching the elements of different
models is available for our state machine merge operator

13

User
Interface

Model Merging
Library

Consistency Checking
Interface

Traceability Link
Generator

External Relational Checker
CrocoPat

TReMer+

Figure 13. Architecture of TReMer+.

as an external tool described in [28]. The architecture of
TReMer+ is shown in Figure 13. Its main blocks are as
follows:

User Interface. TReMer+ provides a visual user interface
for editing models, building relationships between
models, and defining systems made up of multiple
models and relationships. TReMer+ currently supports
entity-relationship diagrams, state machines, and sim-
ple UML domain models. In the future, we plan to
extend the tool to support other notations, such as goal
models and detailed class diagrams.

Merge Library. TReMer+ defines a plugin interface for
the merge operation and can work with any merge al-
gorithm that realizes this interface. Currently, we pro-
vide implementations for the two merge algorithms
discussed in Section 4.

Traceability Link Generator. TReMer+ provides facili-
ties for maintaining traceability between the merged
models and their sources. The traceability links are
generated automatically during the merge computation
and can be accessed through the user interface for easy
navigation from a merged model back to its source
models and relationships.

Consistency Checking Interface. TReMer+ provides
support for checking the consistency of the rela-
tionships and the merged models. Our consistency
checking approach, described in [38], uses an existing
relational checker, CrocoPat [2], for verification of
consistency properties expressed in first order logic.
TReMer+ interacts with CrocoPat through an interface
responsible for (1) translating graphical models into
CrocoPat’s predicate language; (2) invoking CrocoPat
with a user-defined set of consistency rules; and (3)

communicating the inconsistency diagnostics gener-
ated by CrocoPat to the user interface for presentation
to the user.

TReMer+ is written in Java and uses around 15,000
lines of code, of which 8,500 implement the user interface,
5,500 implement the tool’s core functions (model merg-
ing, traceability, and serialization), and 1000 implement
the interface for interacting with CrocoPat. The most re-
cent version of the tool along with the material used in
our previous studies with the tool are freely available at
http://se.cs.toronto.edu/index.php/TReMer+.

TReMer+ has been applied in two real case studies, both
dealing with independently-developed models. The first
study, used for evaluating our algebraic merge operator, in-
cluded a set of UML domain models for a health care sys-
tem developed by the students of an advanced undergrad-
uate course on object-oriented modelling. These models
were roughly equal in size, each with 60 to 70 elements
(nodes and edges), but with remarkable discrepancies in the
way the models were structured. The second study, used
for evaluating our state machine merge operator, was based
on a set of variant telecommunication features from AT&T.
These features were expressed as Statecharts [10] and had
50 to 90 elements (states and transitions).

These two studies were motivated by different research
questions relevant to the context and purpose of each study.
In the first study, the main question was whether algebraic
merge was useful for aligning the vocabularies and struc-
tures of different models and arriving at a unified, consistent
domain model. In the second study, the main question pur-
sued was whether state machine merge could facilitate the
maintenance of variant features by constructing a single pa-
rameterized model. TReMer+ was applied successfully in
both studies for construction of models and relationships,
generating merged models, visualizing and inspecting the
results, and automatic consistency checking. For full de-
tails of the first study, see [34]. For the second, see [27].

6 Discussion and Conclusion

In this article, we argued that complexity of integration
of a set of models can be reduced by explicating the type
of relationships which hold between these models. Specif-
ically, we showed that application of key integration ac-
tivities studied in the literature – merge, composition and
weaving – is completely induced by different relationship
types, thus giving us reasons to believe that relationships
should be treated as first-class artifacts during the integra-
tion process. Yet, even when the choice of the integration
activity is made, there can be a variety of considerations as
to which particular version of the operator is most appli-
cable. We described factors that determine the definition

14

of the merge operator: details of relationships, assumptions
on input models, and desired soundness properties of the
merged model. We illustrated the flexibility and generality
of the resulting merge framework by systematically com-
paring two very different merge operators developed in our
previous work.

We believe that results of this article would provide a
useful guide for the development of new model integration
operators. Particularly, with the recent interest in Global
Software Engineering (GSE) [14], there is now an increas-
ing demand for flexible integration techniques for consol-
idating models that are built by geographically distributed
teams. We anticipate GSE to spur new research on model
integration in general, and model merging in particular.
This underscores the importance of developing conceptual
frameworks, similar to the one we developed in this arti-
cle, for classifying and systematizing the research on model
integration.

There are several topics that provide fruitful directions
for future research. With regards to model merging, it is im-
portant to develop a more thorough classification of the pur-
poses for which merge is applied, and subsequently study
the applicability and tradeoffs between different merge op-
erators for a given purpose. Particularly, there is a tradeoff
between (1) the degree of flexibility in the specification of
inter-model relationships and (2) the degree to which logical
soundness constraints are preserved by merge. For example,
for merging state machines, the algebraic merge operator in
Section 4.1 offers a lot of flexibility in terms of the types of
overlap relationships used, but at the cost of providing only
limited guarantees on soundness. In contrast, the merge op-
erator in Section 4.2 supports fewer types of overlap rela-
tionships; but the operator provides strong guarantees on
soundness. For developers to be able to choose between dif-
ferent merge operators with ease, a clearer mapping needs
to be developed between the purpose of merge and the types
of soundness guarantees required for that purpose.

Improving tool support for merge also warrants future
research. Specifically, existing modelling platforms, e.g.,
the Rational Software Architect [16], are primarily aimed
at centralized development, where all developers contribute
to a single holistic model. These platforms lack support for
important distributed development activities such as con-
structing explicit relationships between models, and defin-
ing and navigating systems of inter-related models. We in-
tend to build on the experience gained through the develop-
ment of our prototype merge tool (Section 5), and augment
popular modeling tools such as RSA with features for facil-
itating distributed development.

Another important topic for future work is to study how
different integration operators can be built to work together.
In particular, we would like to investigate how one can com-
bine a collection of models that are interconnected via not

just one but multiple relationship types, i.e., the situation
where some models are overlapping, some models are in-
teracting, and some models are cross-cutting others. Fur-
ther, we plan to extend our conceptual framework to en-
compass other model management operations such as con-
sistency checking and change propagation [3, 4].
Acknowledgments. Many ideas presented here have been
developed over the years together with our collaborators:
Steve Easterbrook, Pamela Zave, Sebastian Uchitel, Rick
Salay, Anthony Finkelstein, Zinovy Diskin, Greg Brunet,
and Nan Niu. The first author is grateful to the organizers
of MOMPES’09 for their invitation to give a keynote ad-
dress, and for excellent discussions that took place at the
workshop. We further thank the ISSE reviewers for their
insightful comments. Financial support was provided by
the Natural Sciences and Engineering Research Council of
Canada, IBM, and the Research Council of Norway.

References

[1] C. Batini, M. Lenzerini, and S. Navathe. A comparative
analysis of methodologies for database schema integration.
ACM Computing Surveys, 18(4):323–364, 1986.

[2] D. Beyer, A. Noack, and C. Lewerentz. Efficient relational
calculation for software analysis. IEEE Transactions on
Software Engineering, 31(2):137–149, 2005.

[3] G. Brunet, M. Chechik, S. Easterbrook, S. Nejati, N. Niu,
and M. Sabetzadeh. A manifesto for model merging.
In Workshop on Global Integrated Model Management
(GaMMa’06) co-located with ICSE’06, 2006.

[4] M. Chechik, W. Lai, S. Nejati, J. Cabod, Z. Diskin, S. East-
erbrook, M. Sabetzadeh, and R. Salay. Relationship-based
change propagation: A case study. In ICSE Workshop on
Modeling in Software Engineering (MiSE’09), 2009.

[5] E. Clarke, O. Grumberg, and D. Peled. Model Checking.
MIT Press, 1999.

[6] P. Darke and G. Shanks. Stakeholder viewpoints in require-
ments definition: A framework for understanding view-
point development approaches. Requirements Engineering,
1(2):88–105, 1996.

[7] S. Easterbrook and M. Chechik. A framework for multi-
valued reasoning over inconsistent viewpoints. In ICSE’01:
Proceedings of the 23rd International Conference on Soft-
ware Engineering, pages 411–420, 2001.

[8] D. Fischbein, G. Brunet, N. D’Ippolito, M. Chechik, and
S. Uchitel. Weak alphabet merging of partial behaviour
models. ACM Transactions on Software Engineering and
Methodology, 2010. To appear.

[9] J. Goguen. A categorical manifesto. Mathematical Struc-
tures in Computer Science, 1(1):49–67, 1991.

[10] D. Harel and M. Politi. Modeling Reactive Systems With
Statecharts : The Statemate Approach. McGraw Hill, 1998.

[11] W. Harrison, H. Ossher, and P. Tarr. General composition of
software artifacts. In 5th International Symposium Software
Composition (SC’06), co-located with ETAPS’06, volume
4089 of Lecture Notes in Computer Science, pages 194–210.
Springer, 2006.

15

[12] W. Harrison, H. Ossher, P. Tarr, V. Kruskal, and F. Tip.
CAT: a toolkit for assembling concerns. Technical Report
RC22686, IBM Research, 2002.

[13] J. Hay and J. Atlee. Composing features and resolving in-
teractions. In SIGSOFT’00/FSE-8: Proceedings of the 8th
ACM SIGSOFT International Symposium on Foundations of
Software Engineering, pages 110–119, 2000.

[14] J. Herbsleb. Global Software Engineering: The Future of
Socio-Technical Coordination. In Future of Software Engi-
neering Track of the 29th International Conference on Soft-
ware Engineering, pages 188–198, 2007.

[15] A. Hussain and M. Huth. On model checking multiple hy-
brid views. In Proceedings of 1st International Symposium
on Leveraging Applications of Formal Methods, pages 235–
242, 2004.

[16] IBM Rational Software Architect. http://www.
ibm.com/software/awdtools/architect/
swarchitect/.

[17] M. Jackson and P. Zave. Distributed feature composi-
tion: a virtual architecture for telecommunications services.
IEEE Transactions on Software Engineering, 24(10):831–
847, 1998.

[18] Y. Kalfoglou and M. Schorlemmer. Ontology mapping: The
state of the art. In Y. Kalfoglou, M. Schorlemmer, A. Sheth,
S. Staab, and M. Uschold, editors, Semantic Interoperability
and Integration, number 04391 in Dagstuhl Seminar Pro-
ceedings. IBFI, 2005.

[19] K. Larsen and B. Thomsen. A modal process logic. In
LICS’88: Proceedings of 3rd Annual Symposium on Logic
in Computer Science, pages 203–210. IEEE Computer Soci-
ety Press, 1988.

[20] K. Letkeman. Comparing and merging UML models in IBM
rational software architect. Technical report, IBM, 2006.

[21] L. Libkin. Elements Of Finite Model Theory. Texts in
Theoretical Computer Science. An EATCS Series. Springer,
2004.

[22] J. Magee and J. Kramer. Concurrency: State models and
Java Programming: 2nd Edition. Wiley, 2006.

[23] J. Magee, J. Kramer, and D. Giannakopoulou. Analysing
the behaviour of distributed software architectures: A case
study. In Proceedings of 5th IEEE Workshop on Future
Trends of Distributed Computing Systems, pages 240–247,
1997.

[24] S. Melnik, E. Rahm, and P. Bernstein. Rondo: a program-
ming platform for generic model management. In SIG-
MOD’03: Proceedings of the 2003 ACM SIGMOD Interna-
tional Conference on Management of Data, pages 193–204,
2003.

[25] R. Milner. Communication and Concurrency. Prentice-Hall,
New York, 1989.

[26] A. Moreira, A. Rashid, and J. Araújo. Multi-dimensional
separation of concerns in requirements engineering. In
RE’05: Proceedings of the 10th IEEE International Sympo-
sium on Requirements Engineering, pages 285–296, 2005.

[27] S. Nejati. Behavioural Model Fusion. PhD thesis, University
of Toronto, 2008.

[28] S. Nejati, M. Sabetzadeh, M. Chechik, S. Easterbrook, and
P. Zave. Matching and merging of Statechart specifications.
In ICSE’07: Proceedings of the 29th International Confer-
ence on Software Engineering, pages 54–64, 2007.

[29] S. Nejati, M. Sabetzadeh, M. Chechik, S. Easterbrook, and
P. Zave. Matching and merging of variant feature specifica-
tions. Submitted for publication, 2010.

[30] C. Nentwich, W. Emmerich, A. Finkelstein, and E. Ellmer.
Flexible consistency checking. ACM Transactions on Soft-
ware Engineering and Methodology, 12(1):28–63, 2003.

[31] N. Noy and M. Musen. PROMPT: Algorithm and tool for
automated ontology merging and alignment. In Proceedings
of the 17th National Conference on Artificial Intelligence
and 12th Conference on Innovative Applications of Artificial
Intelligence, pages 450–455, 2000.

[32] B. Nuseibeh, S. Easterbrook, and A. Russo. Making incon-
sistency respectable in software development. The Journal
of Systems and Software, 58(2):171–180, 2001.

[33] A. Pnueli. The temporal logic of programs. In Proceedings
of 18th Annual Symposium on the Foundations of Computer
Science, pages 46–57, 1977.

[34] M. Sabetzadeh. Merging and Consistency Checking of Dis-
tributed Models. PhD thesis, University of Toronto, 2008.

[35] M. Sabetzadeh and S. Easterbrook. View merging in the
presence of incompleteness and inconsistency. Require-
ments Engineering Journal, 11(3):174–193, 2006.

[36] M. Sabetzadeh, S. Nejati, M. Chechik, and S. Easterbrook.
Reasoning about consistency in model merging. In Work-
shop on Living With Inconsistency in Software Development
(LWI’10) co-located with ASE’10, 2010.

[37] M. Sabetzadeh, S. Nejati, S. Easterbrook, and M. Chechik.
Global consistency checking of distributed models with
TReMer+. In ICSE’08: Proceedings of the 30th Interna-
tional Conference on Software Engineering, pages 815–818,
2008.

[38] M. Sabetzadeh, S. Nejati, S. Liaskos, S. Easterbrook, and
M. Chechik. Consistency checking of conceptual models
via model merging. In RE’07: Proceedings of 15th IEEE
International Requirements Engineering Conference, pages
221–230, 2007.

[39] O. Sokolsky, S. Kannan, and I. Lee. Simulation-based graph
similarity. In TACAS’06: Proceedings of 12th International
Conference on Tools and Algorithms for the Construction
and Analysis of Systems, volume 3920 of Lecture Notes in
Computer Science, pages 426–440. Springer, 2006.

[40] P. Tarr, H. Ossher, W. Harrison, and S. Sutton Jr. N degrees
of separation: Multi-dimensional separation of concerns. In
ICSE’99: Proceedings of the 21st International Conference
on Software Engineering, pages 107–119, 1999.

[41] S. Uchitel and M. Chechik. Merging partial behavioural
models. In SIGSOFT’04/FSE-12: Proceedings of the 12th
ACM SIGSOFT International Symposium on Foundations of
Software Engineering, pages 43–52, 2004.

[42] J. Whittle, A. Moreira, J. Araújo, P. Jayaraman,
A. Elkhodary, and R. Rabbi. An expressive aspect compo-
sition language for UML state diagrams. In MoDELS’07:
Proceedings of the 10th International Conference on Model
Driven Engineering Languages and Systems, pages 514–
528, 2007.

[43] J. Whittle and J. Schumann. Generating Statechart designs
from scenarios. In ICSE’00: Proceedings of 22nd Interna-
tional Conference on Software Engineering, pages 314–323.
ACM Press, May 2000.

16

