
CSSL: A Logic for Specifying Conditional Scenarios

Shoham Ben-David Marsha Chechik Arie Gurfinkel Sebastian Uchitel
University of Toronto University of Toronto SEI/CMU University of Buenos Aires, Argentina

Toronto, Canada Toronto, Canada Pittsburgh, USA Imperial College London, UK
shoham@cs.toronto.edu chechik@cs.toronto.edu arie@cmu.edu suchitel@dc.uba.ar

ABSTRACT
Scenarios and use cases are popular means of describing the in-
tended system behaviour. They support a variety of features and,
notably, allow for two different interpretations: existential and uni-
versal. These modalities allow a progressive shift from examples to
general rules about the expected system behaviour. The combina-
tion of modalities in a scenario-based specification poses technical
challenges when automated reasoning is to be provided. In par-
ticular, the use of conditional existential scenarios, of which use
cases with preconditions are a common example, require reasoning
in branching time. Yet, formally grounded approaches to require-
ments engineering and industrial verification approaches shy away
from branching-time logics due to their relatively unintuitive se-
mantics.

In this paper, we define an extension of an (industry standard)
linear-time logic with sufficient branching expressiveness to allow
capturing conditional existential statements. The resulting logic,
called CSSL (Conditional Scenario Specification Language), has
an efficient model-checking procedure. It supports reasoning about
heterogeneous requirements specifications that include universal
and existential statements in the form of use cases and conditional
existential scenarios, and other sequence chart variants, in addition
to general (linear) liveness and safety properties. We report on two
industrial case studies in which the logic was used to specify and
verify scenarios and properties.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification—
Model checking

General Terms
Design,Verification

1. INTRODUCTION
Scenarios, use case and user stories are popular means of de-

scribing intended system behaviour [20, 31, 17, 1, 26]. They pro-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEC/FSE’11, September 5–9, 2011, Szeged, Hungary.
Copyright 2011 ACM 978-1-4503-0443-6/11/09 ...$10.00.

(a)

BankUser ATM

pwd
verify

nok
pwd

verify

nok
pwd

verify

nok

retainCard

(b)

BankUser ATM

pwd
verify

ok
reqCash

cash

(c)

BankUser ATM

pwd
verify

ok

reqCash

cash

Figure 1: Several ATM scenarios: (a) P2: a universal condi-
tional scenario; (b) P3: an existential scenario; (c) P4: an exis-
tential conditional scenario.
vide an intuitive framework for describing examples of how the
system-to-be, its environment and users are expected to interact.

Languages for formally describing scenario-based specifications
have extended preliminary and widespread notations such as the
ITU 1992 standard Message Sequence Charts (MSCs) [16] to al-
low for a variety of features. One important extension, embodied in
Live Sequence Charts (LSCs) [9], is the possibility of distinguish-
ing between existential and universal scenarios to allow a progres-
sive shift from examples to general rules about the expected system
behaviour [12], within one specification framework.

The combination of modalities in a scenario-based specification
poses technical challenges when automated reasoning is to be pro-
vided. In particular, the use of conditional existential scenarios,
of which use cases [17], when used with preconditions, are a no-
table example, require reasoning in branching time. Yet, formally
grounded approaches to requirements engineering [30, 33] (and

Name Description Logical Expression Exp.
(Type) Res.
P1 A non-authenticated user may never LTL: G(logout→ (¬cash U (verify ∧X(ok)))) T
(U) withdraw cash PSL, CSSL: G(logout→ (¬cash U verify · ok)) T
P2 Three consecutive unsuccessful login LTL: G(pwd→ X(verify→ X(nok→ X(pwd→ ...→ X(nok→ XretainCard)))) T

(UC) attempts must lead to retaining the user’s card PSL, CSSL: G((pwd · verify · nok)3 7→ nok · retainCard) T
P3 It is possible for the user to be authen- LTL: G(pwd→ X(verify→ X(ok→ X(reqCash→ G(¬cash))))) F
(E) ticated, and then request and obtain cash PSL: G((pwd · verify · ok · reqCash) 7→ G(¬cash)) F

CSSL: true (pwd · verify · ok · reqCash · cash) T
P4 Whenever a user successfully logs LTL, PSL : N/A N/A

(EC) into an ATM, it should be possible for her CSSL: G((pwd · verify · ok) X(reqCash · cash)) T
to request and obtain cash

P5 After login, it should be possible to LTL, PSL : N/A N/A
(EC) withdraw money before changing the pin CSSL: G((pwd · verify · ok) (¬changePin U (reqCash · cash))) T
P6 After login, it should be possible to LTL, PSL : N/A N/A

(EC) change the pin before withdrawing money CSSL: G((pwd · verify · ok) (¬(reqCash · cash) U changePin)) T
P7 A legitimate user should not be limited LTL, PSL : N/A N/A

(EC) in the number of operations she is allowed CSSL: G((pwd · verify · ok) (G ¬logout) ∧ (GF (reqCash ∨ . . . ∨ changePin))) T

Table 1: Several properties of the ATM system. The column “Type” lists the scenario type: universal conditional (UC), existential
conditional (EC), existential (E) or universal(U).

changePin
okverifypwd

cash

logout

topUp

newBalance

requestCash

logout

logoutchangePin

logoutcashrequestCash

Figure 2: A collection of behaviors of an ATM system.

industrial verification researchers [35]) shy away from branching-
time logics due to their relatively unintuitive semantics.

In this paper, we define an extension of a linear-time logic with
sufficient branching expressiveness to allow expressing conditional
existential statements. The resulting logic, called CSSL (Condi-
tional Scenario Specification Language), has an efficient model-
checking procedure and therefore supports reasoning about hetero-
geneous requirements specifications that include universal and ex-
istential statements in the form of use cases and conditional exis-
tential scenarios, LSCs, MSCs, and other sequence chart variants,
in addition to general (linear) liveness and safety properties.

Conditional Existential and Universal Scenarios. An existential
scenario specifies behavior that the system is expected to exhibit,
among others which are yet to be specified or are specified else-
where. For example, an existential scenario P3 of the ATM system
is depicted in Figure 1(b) using a notation in the style of MSCs.
The interpretation of the scenario is: “it is possible for the user to
be authenticated, and then request and obtain cash”. We denote
that the scenario is to be interpreted existentially using a dashed
line around the sequence chart.

Conditional scenarios are, loosely, statements of the form “if x
then y”, where x and y are scenarios. For instance, a conditional
universal scenario P2 is depicted using an LSC notation in Fig-
ure 1(a). The top part, enclosed in a dashed bracket, is a condi-
tional, called a prefix (or, in the LSC terminology, a pre-chart).
The bottom part, enclosed in a solid rectangle, is the suffix (or, in
the LSC terminology, a main chart).

Conditional universal scenarios are interpreted as follows: when-
ever the prefix holds, then the suffix must follow. Hence, the sce-

nario of Figure 1(a) states that when three consecutive authentica-
tion failures occur, the ATM must retain the user’s card.

Conditional existential scenarios, although syntactically very
similar to their universal counterparts, are interpreted differently.
In Figure 1(c), we depict an conditional existential scenario P4 in
the notation style of eTS [29]. The suffix is enclosed in a dashed
rectangle to distinguish it from universal conditional scenarios. The
interpretation of conditional existential scenarios is that when the
prefix occurs, then the suffix should be possible. Thus, the con-
ditional existential scenario of Figure 1(c) states that whenever a
user successfully logs into an ATM, it should be possible for her to
request and obtain cash.

Unlike conditional universal statements, conditional existential
statements do not forbid behaviour. That is, there can be an exe-
cution of the system where the prefix is true but the suffix is not.
For example, it is possible to have an execution of the ATM sys-
tem where a user successfully logs in and then tops up her mobile
phone rather than withdrawing cash. However, conditional exis-
tential statements require that every time the prefix holds, some
continuation where the suffix holds must exist. This semantics, al-
beit with a different syntax, is frequently found in the form of use
cases with a preconditions: [17] When the precondition holds, it is
expected (but not mandatory) that the user be able to “execute” the
use case.

Thus, conditional existential statements refer to the possibilities
or branches of behaviour that are available. When the current state
of the system is that the user has logged in, a number of possibilities
may exist, but obtaining cash must be one of them (see Figure 2).
Table 1 shows three other existential conditional scenarios, P5, P6

and P7, capturing possible interactions between the user and the
ATM system, once she logs in. Several other examples of existen-
tial conditional scenarios are described in the TV controller case
study in Section 5.1.

Reasoning about System Behaviour. Automated reasoning about
specifications is an important software engineering task that can
help identify problems early and thus result in cheaper fixes. Rea-
soning requires representing statements about system behaviour in
some formal language – a logic. Temporal logics have been used to
reason about software system behaviour extensively. Specifically,
linear temporal logics such as LTL [23] and its more recent exten-
sion, Property Specification Language (PSL) [14, 10], which adds

regular expressions, are strongly favoured for describing require-
ments [30, 33] as they have a relatively intuitive semantics.

For example, properties P1-P3 are expressed in LTL as shown
in Table 1: P1 is a (non-conditional) universal statement, P2 a con-
ditional universal statement and P3 is a non-conditional existential
statement. Note that to verify that a system satisfies P3 described
as a scenario in Figure 1(b), it is necessary to check that the LTL
formalization of P3 does not hold. A counterexample to the prop-
erty acts as a witness of the existential statement. We indicate this
by putting “F” as the expected result (Exp. Res.) in Table 1. In
addition, note that for P2 (and other properties), we assumed that
events occur consecutively. Relaxing this assumption would result
in a more complex LTL formula (with lots of “until”s).

Table 1 also lists properties P1−P3 in PSL. These show that PSL
can be more compact and more convenient for capturing sequences
of events, commonly found in scenarios. The properties use a fa-
miliar regular expression syntax, with “·” expressing concatenation
and “xn” or “x∗” – finite repetition of string x. For example, in the
PSL expression of property P2 in Table 1, the entire string of pwd,
verify and nok repeats three times. The PSL formalization of
P3 uses the suffix implication operator (7→) which captures the in-
tended semantics of conditional universal scenarios: when the left
hand side holds, the right hand side must follow.

Conditional existential scenarios, on the other hand, cannot be
expressed using linear logics, since their combination of universal
and existential fragments requires branching (and has, in fact, been
formalized using CTL and CTL* [28]).

CSSL: Conditional Scenario Specification Language. In this
paper, we define and study an extension of PSL with sufficient
branching expressiveness to allow us to capture conditional existen-
tial statements by enriching PSL with a top-level branching opera-
tor called “branching suffix implication”, and denoted by a symbol
 . The resulting logic, called CSSL, allows us to compose “true”
linear fragments specifying prefix and suffix. For example, the pre-
fix of the existential conditional scenario P4 in Table 1 is expressed
as (pwd·verify·ok), i.e., a regular expression consisting of concate-
nation of three individual events. Its suffix is X(reqCash · cash),
describing that in the next state, reqCash should happen, followed
by cash. Thus, the entire scenario is required “globally” and is ex-
pressed in CSSL as P4 = G((pwd · verify · ok) X(reqCash ·
cash)). CSSL expressions for scenarios P5, P6, and P7 are shown
in Table 1 as well. Moreover, while only the negation of the exis-
tential property P3 can be expressed in PSL or LTL, the property
can be easily expressed in CSSL, with the prefix true (see Table 1).

The resulting logic is strictly more expressive than PSL and is
in fact a fragment of CTL* extended with regular expressions. Yet,
unlike the full CTL*, this language has an efficient model-checking
procedure. CSSL is not the only tractable fragment of CTL*. Lin-
ear tractable fragments include LTL and PSL (which, as we said
earlier, are not expressive enough for conditional existential state-
ments). A branching logic CTL is also tractable; yet it is not an op-
tion because it does not extend PSL (specifically, its regular expres-
sions) and does not support expressing sequences of events com-
monly present in scenarios. Our approach contributes a tractable
linear logic with regular expressions and limited branching.

Contributions. This paper makes the following contributions:

• We introduce a new operator, called branching suffix implica-
tion, extending PSL, and show that this operator is useful for
expressing existential conditional scenarios. Therefore, het-
erogeneous specifications that include use cases, sequence
chart variants and general (linear) safety and liveness prop-

erties can now be expressed in the same “linear with a bit of
branching” language CSSL.
• We show that CSSL is not more computationally complex

than PSL. We then develop a model-checking algorithm for
CSSL, implemented on top of NuSMV [7].
• We report on our experience using CSSL to specify and ver-

ify properties of two industrial examples.

The rest of the paper is organized as follows: In Section 2, we
give the technical background; introduce the new logic CSSL in
Section 3 and, in Section 4, describe how to model-check this logic,
including our implementation on top of NuSMV. We report on two
case studies in Section 5. After comparing our approach to related
work in Section 6, we conclude in Section 7 with a summary and
an outline of future research directions.

2. BACKGROUND
In this section, we present the necessary definitions and notation.

Models and Properties.

DEFINITION 1 (KRIPKE STRUCTURE). LetAP be a finite set
of atomic propositions. A Kripke structure K over AP is a tuple
K = (S, I,R, L), where S is a finite set of states, I ⊆ S is the set
of initial states, R ⊆ S×S is a total transition relation, that is, for
every state s ∈ S there is a state s′ ∈ S such that R(s, s′), and L
is a labeling function L : S → 2AP that labels each state with the
set of variables true in that state.

We say that π = s0, s1, ... is a path in K iff s0 ∈ I and ∀i,
(si, si+1) ∈ R. We denote by πk the suffix of π starting at sk.

DEFINITION 2 (LINEAR TEMPORAL LOGIC (LTL) [23]).
Given a finite set AP of atomic propositions, formulas of LTL are
recursively defined as follows:

• Every atomic proposition is an LTL formula.
• If ϕ and ψ are LTL formulas, then so are ¬ϕ, ϕ ∧ ψ, Xϕ

and [ϕUψ],

where X and U stand for the “next” and the “until” operators,
respectively.

Additional operators “future” and “globally” are defined as syntac-
tic sugar using the ones above:

Fϕ = [true Uϕ] Gϕ = ¬F¬ϕ

The formal semantics of an LTL formula is defined with respect
to an infinite path π = s0, s1, ... of a given Kripke structure K =
(S, I,R, L), where s0 ∈ I:

πi |= p iff p ∈ L(si)

πi |= ¬ϕ iff πi |=/ ϕ
πi |= ϕ ∧ ψ iff (πi |= ϕ) ∧ (πi |= ψ)
πi |= Xϕ iff πi+1 |= ϕ
πi |= [ϕUψ] iff ∃k ≥ i s.t. (πk |= ψ) ∧

(∀i ≤ j < k � πj |= ϕ)

A formula ϕ holds in a Kripke structure K, denoted K |= ϕ, iff it
holds in every path of K.

DEFINITION 3 (COMPUTATION TREE LOGIC (CTL) [8]).
Given a finite set AP of atomic propositions, CTL formulas are
recursively defined as follows:

• Every atomic proposition is a CTL formula.

• If ϕ and ψ are CTL formulas then so are ¬ϕ, ϕ ∧ ψ, AXϕ,
EXϕ, A[ϕUψ] and E[ϕUψ],

where AX and EX are “forall next” and “exist next” operators,
and AU and EU are “forall until” and “exists until” operators,
respectively.

Additional operators, “forall/exists future” and “forall/exists glob-
ally”, are defined as syntactic sugar over the ones above:

AFϕ = A[true Uϕ] EFϕ = E[true Uϕ]

AGϕ = ¬E[true U¬ϕ] EGϕ = ¬A[true U¬ϕ]

The formal semantics of a CTL formula is defined with respect a
Kripke structure K = (S, I,R, L).The notation K, s |= ϕ means
that the formula ϕ is true in state s of the Kripke structure K.

K, s |= p iff p ∈ L(s)
K, s |= ¬ϕ iff K, s 6|= ϕ
K, s |= ϕ ∧ ψ iff (K, s |= ϕ) ∧ (K, s |= ψ)
K, s0 |= AXp iff for all paths (s0, s1, ...) �K, s1 |= p
K, s0 |= EXp iff for some path (s0, s1, ...) �K, s1 |= p
K, s0 |= A[ϕUψ] iff for all paths (s0, s1, ...)�

(∃i ≥ 0 �K, si |= ψ) ∧
(∀0 ≤ j < i �K, sj |= ϕ)

K, s0 |= E[ϕUψ] iff for some path (s0, s1, ...)�
(∃i ≥ 0 �K, si |= ψ) ∧
(∃0 ≤ j < i �K, sj |= ϕ)

We say that a CTL formula ϕ holds in a Kripke structure K =
(S, I,R, L) iff ∀si ∈ I �K, si |= ϕ.

DEFINITION 4 (FAIR COMPUTATION). Let b be Boolean ex-
pression overAP andK be a Kripke structure. We say that a com-
putation path π of K is fair with respect to the fairness constraint
b iff the LTL formula GF (b) holds on π.

We write K, s |=fair ϕ for fair satisfaction of ϕ by K and s that
is defined as |= above with all “paths” replaced by “fair paths”.

Automata and Computations.

DEFINITION 5 (AUTOMATON). An automaton A is a tuple
(Q,Σ, δ, Q0, F) where: Q is a finite set of states, Σ is a finite
set of symbols (the alphabet), δ ⊆ Q× Σ×Q is a total transition
relation , Q0 ⊆ Q is the set of initial states and F ⊆ Q is the set
of final (accepting) states.

A run r of an automaton on an input wordw = a0, a1, ... is a (finite
or infinite) sequence of states q0, q1, ..., where ∀i, qi ∈ Q such that
q0 ∈ Q0, (qi, ai, qi+1) ∈ δ.

We use two kinds of automata: non-deterministic finite automata
(NFA) and non-deterministic Büchi automata (NBA). If A is an
NFA, runs over it are finite. We say that a run r = q0, q1, ..., qn is
accepting iff qn ∈ F . Thus, an NFA accepts finite words over Σ.
The universe of finite words is denoted by Σ∗.

Runs of an NBA A are infinite. For a run r, we define Inf (r) to
be the set of states that occur infinitely often in r. We say that r is
accepting iff Inf (r) ∩ F 6= ∅. Thus, NBA automata accept infinite
words over Σ. The universe of infinite words is denoted by Σω .

A word w ∈ Σ∗ ∪ Σω is accepted by A iff there exists as ac-
cepting run for it. The language of A, denoted L(A), is the set of
all words accepted by A.

DEFINITION 6 (FUSION AUTOMATON [10]). Let
A = (QA, ΣA, δA, Q

0
A, FA) be an NFA and B =

(a) (b) (c)

a
b

b, c
d

a
b d

b

b, c

Figure 3: Automata for: (a) a · b∗, (b) (b + c) · d∗, and (c) the
fusion (a · b∗) ◦ ((b+ c) · d∗).

(QB ,ΣB , δB , Q
0
B , FB) be an NFA or an NBA. The fu-

sion automaton of A and B is an automaton A ◦B =
(QA ∪QB ,ΣA ∪ ΣB , δA ◦B , Q0

A, FB), such that

δA ◦B = δA ∪ δB ∪ {(q, a, q′) | ∃f ∈ FA � (q, a, f) ∈ δA ∧
∃i ∈ Q0

B � (i, a, q
′) ∈ δB} .

The fusion automaton A ◦B has the initial states of A, and the
final states of B. The transitions to a final state of A are fused with
the transitions from an initial state of B. Note that while A is an
NFA, B can be either an NFA or an NBA, and the resulting fusion
automaton A ◦B is of the same type as B. An example of a fusion
automaton over NFAs in Figure 3(a) and Figure 3(b) is shown in
Figure 3(c).

3. CONDITIONAL SCENARIO SPECIFI-
CATION LANGUAGE (CSSL)

In this section, we define the syntax and semantics of Conditional
Scenario Specification Language (CSSL). CSSL extends PSL with
a branching suffix implication (BSI). We first review PSL and then
describe syntax and semantics of the new branching operator, illus-
trating it on properties of our running example.

3.1 Property Specification Language (PSL)
PSL adds regular expressions to LTL via the operator 7→, known

as the suffix implication operator. The formula r 7→ ϕ (read r
“suffix-implies” ϕ) requires that if there exists a non-empty prefix
of the path satisfying r then the suffix starting at the last letter of
the prefix should satisfy ϕ.

DEFINITION 7 (SERES). Sequentially Extended Regular
Expressions (SEREs) of PSL are built from a set AP of atomic
propositions, defined recursively as follows:

• Every Boolean expression over AP is a SERE.
• If r and s are SEREs, then so are r∗, r · s, r ◦ s, r ∪ s, and
r ∩ s,

where r∗ is the Kleene star operator, r · s is the concatenation of
two SEREs, r ◦ s is fusion – the concatenation of two SEREs with
an overlap of one state, r∪s is the union and r∩s is the intersection
of two SEREs, respectively.

We omit SERE operators that can be defined from the ones above.
Let K = (S, I,R, L) be a Kripke structure. The language of

SERE overK is a set of finite paths, defined inductively as follows:

L(b) = {s | s ∈ S ∧ b ∈ L(s)}
L(r∗) = {ε} ∪ {π | ∃n ≥ 1 � π = π1 · π2 · ... · πn ∧

∀1 ≤ i ≤ n � πi ∈ L(r)}
L(r · s) = {π1 · π2 | π1 ∈ L(r) ∧ π2 ∈ L(s)}
L(r ◦ s) = {π1 · s · π2 | π1 · s ∈ L(r) ∧ s · π2 ∈ L(s)}
L(r ∪ s) = L(r) ∪ L(s)
L(r ∩ s) = L(r) ∩ L(s)

DEFINITION 8 (PSL). PSL formulas are defined inductively:

• Every Boolean expression over AP is a PSL formula.

• If ϕ and ψ are PSL formulas and r a SERE, then the follow-
ing are PSL formulas: ¬ϕ, ϕ ∧ ψ, ϕUψ, Xϕ, r 7→ ϕ, and
r �→ ϕ.

The suffix implication operator r 7→ ϕ states that whenever a prefix
of the path matches a SERE r, then the suffix of the path (with one
state overlapping) must satisfy ϕ.

The suffix conjunction operator r �→ ϕ holds iff there exists
some prefix of the path that matches r and the (overlapping) suffix
satisfies ϕ. Note that the suffix conjunction operator is dual to the
suffix implication: ¬(r 7→ ϕ) = r �→ ¬ϕ.

The semantics of PSL formulas is defined with respect to infinite
paths in a Kripke structure K = (S, I,R, L). The semantics of a
Boolean expression b and the formulas ¬ϕ, ϕ∧ψ , ϕ U ψ andXϕ
are the same as those for LTL. Let π = s0, s1, ... be a path in K.
We define semantics of the two suffix operators below:

πi |= r 7→ ϕ iff ∀j � (si · · · · · sj ∈ L(r)⇒ πj |= ϕ)

πi |= r �→ ϕ iff ∃j � (si · · · · · sj ∈ L(r) ∧ πj |= ϕ)

Several PSL properties are shown in Table 1. Note that in some
formulas r ψ, we use a regular expression r′ as ψ. This should
be read as an abbreviation for r′ �→ true . For property P1, neither
the suffix implication nor the suffix conjunction operator is being
used, and so the expression of the property is the same as LTL.
Properties P2 and P3 use the suffix implication operator.

3.2 Branching Suffix Implication (BSI)
We now enrich PSL with a branching construct , called

“branching suffix implication” (BSI). Intuitively, p ψ, where
p is a regular expression and ψ a PSL formula, is satisfied by a
Kripke structure K iff every finite path in K that satisfies p can be
extended with a suffix (in K) that satisfies ψ.

DEFINITION 9 (BSI SATISFACTION). Let r be a regular ex-
pression, ψ be a PSL formula, and K = (S, I,R, L) be a Kripke
structure. Then,K, s |= (r ψ) iff for all paths π = (s0, . . . , sn)
in K s.t. π |= r, there exists a suffix π′ = (s′0, . . . , s

′
k) s.t. π · π′ is

a path in K and π′ |= ψ.

We say K |= r ψ iff ∀s0 ∈ I �K, s0 |= (r ψ).
Additional operators “next” and “globally” are defined as syn-

tactic sugar using the BSI operator:

X(r ψ) = true · r ψ G(r ψ) = true∗ · r ψ

The resulting language, which includes PSL together with BSI, is
called CSSL.

Table 1 lists several properties that use the new BSI operator
(corresponding toP3−P7). Note that most of these use the operator
“globally” introduced above.

Consider the CSSL expression of property P3. With prefix true ,
it easily allows us to specify the existential scenario as a property
which is intended to hold in the system. Properties P3 − P7 il-
lustrate that the suffix for a BSI operator can be an arbitrary LTL
formula. Moreover, this suffix is finite for properties P3 − P6 and
infinite for property P7.

Since CSSL subsumes PSL, all scenarios in Table 1, correspond-
ing to all four scenario types, are expressible in this new language.

4. MODEL-CHECKING CSSL
In this section, we discuss how to model-check CSSL properties.

Specifically, we show how to reduce model-checking of a CSSL

property with a BSI operator, of the form ϕ = r ψ, to CTL
model checking, via the construction of an auxiliary automaton.

We give the construction and prove its correctness in Section 4.1
and analyze its complexity in Section 4.2. In Section 4.3, we dis-
cuss the implementation of our method in NuSMV [7], and illus-
trate it on the ATM example. In the rest of this section, when we
say a CSSL formula, we always mean a formula like ϕ above.

4.1 From CSSL to CTL
Let K = (S, I,R, L) be a Kripke structure and ϕ = r ψ

be a CSSL specification. Without loss of generality, we assume
that ε 6∈ L(r), where ε is the empty string. Otherwise, we simply
extend K with a dummy initial state and modify both r and ψ to
skip that state.

In order to model check whether ϕ holds in K (K |= ϕ), we
build an automaton Aϕ and a CTL formula Pϕ such that

K |= ϕ ⇐⇒ K ×Aϕ |= Pϕ.

In order to reduce a CSSL formula ϕ = r ψ to CTL, we first
build the automaton Aϕ (see below) and then use it to derive the
CTL formula Pϕ. Depending on ψ, the reduction is either finite or
infinite. If ψ holds after a finite number of steps, i.e., its satisfaction
is detected by an NFA, we call it a finite formula. For example, as in
the CSSL expression of property P5. Otherwise, it needs an NBA,
which makes it an infinite formula, e.g., as in the CSSL expression
of property P7, ¬login should hold forever.

Note that our finite and infinite classification is based on the wit-
nesses, and is dual to the standard notions of safety and liveness
that are based on counterexamples. A safety formula, e.g., Gp, is
one for which a counterexample is finite. A liveness formula, e.g.,
Fp, is one for which the counterexample is infinite. On the other
hand, we say that Gp is infinite because its witness is infinite, and,
similarly, Fp is finite.

4.1.1 Finite Suffix
Given a formula ϕ = r ψ, where ψ is finite, our goal is to

build an automaton Aϕ and a CTL formula Pϕfin.
We first build two NFAs: Ar that accepts L(r), and Aψ that

accepts ψ. Both automata are built using standard methods [13,
36]. We then build Aϕ – a fusion automaton (see Definition 6) of
Ar and Aψ .

For Pϕfin, we introduce three new atomic propositions.

• in_Aψ is true exactly when Aϕ is in one of the states that
originated from Aψ;

• at_Fr is true exactly when Aϕ is in a final state of Ar;

• at_Fψ is true exactly when Aϕ is in a final state of Aψ .

The CTL formula Pϕfin is defined as follows:

Pϕfin = AG((EX at_Fϕ)⇒ EX(in_Aψ ∧ EF at_Fψ)) (1)

The prefix of the formula, EX at_Fϕ, identifies those states s on
the execution paths that have a one-step (EX) continuation to an
accepting state of Ar . Recall that in the fusion automaton Aϕ, we
added transitions from one state before final inAr to one state after
initial in Aψ . We thus require that s has a one-step continuation
that ‘lands’ in a state of Aψ . We further require that one of the
branches that land in Aψ have a continuation leading to the final
state of Aψ (denoted at_Fψ), which is where ψ is accepted.

The above construction allows us to perform model-checking of
CSSL formulas using standard CTL model-checking tools.

Correctness. To show correctness of the above construction, we
need to show that K |= ϕ ⇐⇒ K ×Aϕ |= Pϕfin .

Proof: Let ϕ = r ψ be a CSSL formula and let Ar and Aψ be
the automata for the prefix r and the (finite) suffix ψ, respectively.
Let Aϕ be the fusion automaton of Ar and Aψ , and let P be as
defined by (1).

Assume K × Aϕ 6|= P . We show that K 6|= r ψ. From the
assumption, let (s0, a0) · · · (sn, an) be the counterexample to the
AG part of P . Then, the path π = s0, . . . , sn satisfies r since Ar
has an accepting run a0, . . . , an+1 on π. Note that the run has one
more state than letters in the input. Assume that sn 6|= EXin_Aψ .
Then, by construction of the fusion automaton, the path s0, . . . , sn
cannot be continued to satisfy the CSSL formula. Assume sn |=
EXin_Aψ and sn 6|= EX(in_Aψ ∧ EFat_Fψ). Then, there is no
continuation of the path s0, . . . , sn that satisfies the suffix. This
completes the proof.

For the other direction, assume K 6|= r ψ. Then there exists
a path s0, . . . , sn in K that satisfies r and cannot be continued
to satisfy ψ (i.e., a counterexample to r ψ). Thus, there exists
an execution (s0, a0), . . . , (sn, an), (sn+1, an+1) ofK×Aϕ such
that an+1 is an accepting state ofAr . Assume by contradiction that
there exists a continuation (sn, b1), . . . , (sn+m, bm) such that bm
is an accepting state ofAψ . Then the path s0, . . . , sn, . . . , sn+m−1

satisfies r ψ; hence, s0 . . . , sn is not a counterexample. This
contradicts our assumption that K 6|= r ψ.

4.1.2 Infinite Suffix
Let ϕ = p ψ, where ψ is infinite. Aψ is now an NBA and so

is the fusion automaton Aϕ. That is, for a computation path to be
accepted, a final state of Aϕ should be visited infinitely often. We
reduce the infinite case to fair CTL. The acceptance condition of
Aϕ is translated into a fairness constraint. Note that using at_Fψ
as a fairness constraint is too strong: it would mean that only paths
where at_Fψ appears infinitely often are checked; a bug, if it exists,
would be masked. Instead, we introduce another atomic proposi-
tion, in_Ar , which is true exactly when Aϕ is in one of the states
that originated fromAr , and define in_Ar∨at_Fψ to be the fairness
constraint.

The (fair) CTL formula for this case is given below:

Pϕinf = AG((EX at_Fϕ)⇒ EX(in_Aψ ∧ EG >)) (2)

As in the finite case, we first identify the states s on the execution
paths that have a one-step (EX) continuation to an accepting state
of Ar . We then require that each s has a one-step continuation that
‘lands’ in a state of Aψ . At this point, we only require that one of
the branches that continue to Aψ has an infinite continuation. This
is sufficient, since the fairness constraint ensures that infinite paths
left in the model (that can no longer visit states from Ar) are those
on which a final state of Aψ is visited infinitely often. Thus, ψ
holds on those paths.

Correctness. To show correctness of the above construction, we
need to show that K |= ϕ ⇐⇒ K ×Aϕ |=fair Pϕinf .
Proof: Assume K × Aϕ 6|= Pϕinf. Then there exists a path
(s0, a0) · · · (sn, an) in K × Aϕ (under the fairness constraint)
such that (sn, an) |= (EX at_Fϕ) but (sn, an) 6|= EX(in_Aψ ∧
EG >). The path π = s0, . . . , sn in K satisfies r since Ar has
an accepting run a0, . . . , an+1 on π. We have to show that sn
has no continuation satisfying ψ. Assume by contradiction that
a continuation πn = sn, sn+1, ... such that πn |= ψ does exist
in K. By the construction of the fusion automaton, there exists a

path (sn, an), (sn+1, an+1), ... in K × Aϕ such that an, an+1, ...
is a run of Aψ that accepts ψ. This means that an, an+1, ... visits
a final state of Aψ infinitely often, and thus it is a fair compu-
tation. We have found a fair path, starting at (sn, an) on which
EX(in_Aψ ∧ EG >) holds, contradicting our assumption.

For the other direction, assume K 6|= r ψ. Then there
exists a path s0, . . . , sn in K that satisfies r and cannot be con-
tinued to satisfy ψ. Thus, there exists an execution path π =
(s0, a0), . . . , (sn, an), (sn+1, an+1) of K × Aϕ such that an+1

is an accepting state of Ar . Note that π can be continued with
(sn+2, an+2), (sn+3, an+3), . . ., where an+2, an+3, ... are states
of Ar (because of the totality of the transition relation). Note
further that this path is fair (it stays in states from Ar forever).
Thus, state (sn, an) exists in a fair path of K × Aϕ. We know
that (sn, an) |= (EX at_Fϕ) (along π). We have to show
that (sn, an) 6|= EX(in_Aψ ∧ EG >). Assume by contra-
diction that it does. Then from (sn, an) there is a continuation
π′ = (s′n+1, a

′
n+1), (s′n+2, a

′
n+2), (s′n+3, a

′
n+3), . . . that enters

the automaton Aψ , and is infinite. By the fairness constraint, π′

must be fair, and since it is out of Ar , it must visit an accepting
state of Aψ infinitely often. Thus, sn, s′n+1, , s

′
n+2, s

′
n+3... is a

path in K that satisfies ψ, which contradicts our assumption that
such a path does not exist.

4.2 Complexity
The complexity of CTL model checking is linear in the size of

the model and the formula [8]. Model-checking complexity of a
CSSL formula ϕ = r ψ on a Kripke structure K is O(|K| ×
|Aϕ| × |Pϕ|). Note that the size of Pϕ is constant and does not
depend of ϕ. The size of Aϕ is O(|Ar| + |Aψ|), where |Ar| =
O(|r|). The size of Aψ depends on ψ. In the general case, we
need to build a Büchi automaton for the LTL formula ψ, which is
of size 2|ψ|. The complexity of model checking of CSSL is thus
O(|K| × |r| × 2|ψ|), which is the model-checking complexity of
the original PSL.

Yet, for some PSL formulas, the size of the automatonAψ can be
of size |ψ|. For such cases, model-checking complexity of CSSL is
O(|K| × |r| × |ψ|), i.e., if model-checking of ψ is efficient, then
so is model-checking of the resulting CSSL (and PSL) formula.

Thus, we are able to enrich PSL with a branching operator with-
out incurring an additional model-checking cost.

4.3 Implementation and Illustration
We have implemented the translation of a CSSL formula ϕ =

r ψ on top of the model checker NuSMV.
Let SMr be the state machine for the prefix r and SMψ – the

state machine for the suffix. We illustrate the construction using
two properties specified in Table 1: P5, for the finite suffix case,
and P7 for the infinite suffix.

We start with property P5, where

r = true∗ · pwd · verify · ok
ψ = (¬changePin U (reqCash ∧X(cash)))

The code for SMr in the language of NuSMV is shown in Fig-
ure 4, lines 3-11. It describes a simple non-deterministic state ma-
chine, with its initial state set by the init statement, and transitions
determined by a case statement. cases are evaluated top to bot-
tom. When the first condition becomes true , its corresponding as-
signment is executed, determining the next state. The language
allows specification of non-deterministic transitions, captured in
a set. These mean that the machine may non-deterministically

1 : VAR SMr : { 1 , 2 , 3 , 4 , a c c e p t , s i n k } ;
2 : ASSIGN
3 : i n i t (SMr) := { 1 , 2 } ;
4 : n e x t (SMr) :=
5 : c a s e
6 : SMr = 1 : { 1 , 2 } ;
7 : SMr = 2 & pwd : 3 ;
8 : SMr = 3 & v e r i f y : 4 ;
9 : SMr = 4 & ok : a c c e p t ;
1 0 : TRUE : s i n k ;
1 1 : e s a c ;
1 2 :
1 3 : DEFINE SMrCanAccept := (SMr = 4 & ok) ;
1 4 :
1 5 : VAR SMpsi : { wai t , 1 , 2 , 3 , a c c e p t , s i n k } ;
1 6 : ASSIGN
1 7 : i n i t (SMpsi) := w a i t ;
1 8 : n e x t (SMpsi) :=
1 9 : c a s e
2 0 : SMpsi = w a i t & ! SMrCanAccept : w a i t ;
2 1 : SMpsi = w a i t & reqCash : { wai t , 3 } ;
2 2 : SMpsi = w a i t & ! changeP in : { wai t , 1 , 2 } ;
2 3 : SMpsi = 1 & ! changeP in : { 1 , 2 } ;
2 4 : SMpsi = 2 & reqCash : 3 ;
2 5 : SMpsi = 3 & cash : a c c e p t ;
2 6 : TRUE : s i n k ;
2 7 : e s a c ;
2 8 :
2 9 : DEFINE In_SMpsi := ! (SMpsi i n { wai t , s i n k }) ;
3 0 :
3 1 : SPEC AG(EX(SMr= a c c e p t) −>
3 2 : EX (In_SMpsi & EF (SMpsi = a c c e p t)))

Figure 4: NuSMV code for checking property P5.

choose an element of the set as its next-state value and its initial
value.

The main challenge in the implementation is the fusion of SMr

and SMψ , since SMψ starts working in the initial state of the sys-
tem while we need it to start operating only when SMr has reached
an accepting state. To solve this problem, we add a wait state to
SMψ , in which it starts and stays until SMr has (almost) reached
an accepting state. At that point, SMψ is triggered and starts its
intended work.

On line 13, we DEFINE SMrCanAccept as a “going to accept”
signal, used to trigger the suffix automaton SMψ . We then imple-
ment SMψ in lines 15-27. While SMψ can leave the wait state
in lines 21 and 22, we allow it to stay in wait as one of the non-
deterministic options. This is done to accommodate cases where
SMr reaches the accepting state more than once on a given path,
and thus SMψ should be triggered more than once as well.

Using SMr and SMψ , and the intermediate definition of the
signal In_SMpsi, we specify the property to be checked as shown
on lines 31-32 in Figure 4. This model is verifiable by NuSMV.

We now consider the property P7 in Table 1, where

r = true∗ · pwd · verify · ok
ψ = (G ¬logout) ∧ (GF (reqCash ∨ . . . ∨ changePin))

Here, the suffix is infinite. In order to encode an NBA automaton
to represent it, we need to use NuSMV’s fairness mechanism.

The state machine for the prefix r is the same as in Figure 4.
The state machine for the suffix ψ is given in Figure 5, lines 1-13.
We then make additional definition in line 15 and add a fairness
constraint (line 17). This ensures that no legal path is omitted for
the wrong reason. We can now define the specification as shown in
lines 19-20, and the resulting code is again verifiable by NuSMV.

1 : DEFINE O p e r a t i o n : (reqCash | . . . | changeP in) ;
2 : VAR SMpsi Inf : { wai t , 1 , 2 , a c c e p t , s i n k } ;
3 : ASSIGN
4 : i n i t (SMpsi Inf) := w a i t ;
5 : n e x t (SMpsi Inf) :=
6 : c a s e
7 : SMpsi Inf = w a i t & ! SMrCanAccept : w a i t ;
8 : SMpsi Inf = w a i t & SMrCanAccept : { wai t , 1 } ;
9 : SMpsi Inf = 1 & ! l o g o u t : { 1 , 2 } ;
1 0 : SMpsi Inf = 2 & O p e r a t i o n & ! l o g o u t : a c c e p t ;
1 1 : SMpsi Inf = a c c e p t & ! l o g o u t : 1 ;
1 2 : TRUE : s i n k ;
1 3 : e s a c ;
1 4 :
1 5 : DEFINE In_SMps i In f := ! (SMpsi Inf i n { wai t , s i n k }) ;
1 6 :
1 7 : FAIRNESS (SMpsi Inf i n { wai t , a c c e p t })
1 8 :
1 9 : SPEC AG (EX(SMr= a c c e p t)
2 0 : −> EX (In_SMps i In f & EG True))

Figure 5: NuSMV code for checking property P7.

(a)

Tuner Top Tuner DriverUser Video Top Video Driver

t.tune.i

t h.dropreq
h.driver.blank

h.driver.blank.ack
t h.dropreq.ack

t.driver.tune.i

t.driver.tune.ack

t h.restore
h.driver.unblank

h.driver.unblank.ret
t h.restore.ret

t.tune.ret

(b)

Tuner Top Tuner DriverUser Video Top Video Driver

t.tune.i

t h.dropreq
h.driver.blank

h.driver.blank.wait
t h.dropreq.wait

t.tune.ret
h.driver.blankack

t h.dropack

t.driver.tune.i

t.driver.tune.ack

t h.restore
h.driver.unblank

h.driver.unblank.ret
t h.restore.ret

t.tune.ret

Figure 6: Two scenarios of the TV system.

5. CASE STUDIES
In this section, we present our experience specifying and veri-

fying CSSL properties for two realistic examples. These examples
and the underlying tool support have been successfully evaluated
by the ESEC/FSE artifact evaluation committee.

5.1 Philips TV Controller Protocol
We describe the application of CSSL to the specification and ver-

ification of an industrial protocol for a product family of Philips
television sets [34]. The product family supports sets with multi-
ple tuners and video output devices that can be configured by the
television user to display several signals in different configurations.
The protocol is concerned with controlling the signal path in a TV
to avoid visual artifacts. To do so, it coordinates between four main
component types: video and tuner tops which perform horizontal
communication to route the signal path, and video and tuner drivers
that perform vertical communication between their corresponding
top and physical device.

The key property that the protocol must ensure is that the signal

Name Expression Result
TV1 G(t_h.restore.ret ⇒ (

∧
i∈Freq ¬t.driver.tune.i U (t_h.dropreq.ack ∨ t_h.dropack))) Yes

TV2 true∗ · t.tune.i (t_h.dropreq · h.driver.blank · h.driver.blank.ack · t_h.dropreq.ack · t.driver.tune.i · t.driver.tune.ack · t_h.restore · No
h.driver.unblank · h.driver.unblank.ret · t_h.restore.ret · t.tune.ret)

TV3 true∗ · t.tune.i (t_h.dropreq · h.driver.blank · h.driver.blank.wait · t_h.dropreq.wait · (t.tune.ret · h.driver.blankack | h.driver.blankack · No
t.tune.ret) · t_h.dropack · t.driver.tune.i · t.driver.tune.ack · t_h.restore · h.driver.unblank · h.driver.unblank.ret · t_h.restore.ret ·
t_h.dropack.ret · h.driver.blankack.ret)

TV4 true∗ · t.tune.i (t_h.dropreq · h.driver.blank · h.driver.blank.ack · t_h.dropreq.ack · t.driver.tune.i · t.driver.tune.wait · (t.tune.ret · No
t.driver.tuneack | t.driver.tuneack · t.tune.ret) · t_h.restore · h.driver.unblank · h.driver.unblank.ret · t_h.restore.ret · t.driver.tuneack.ret)

TV ′2 See Section 5.1 Yes
TV ′3 See Section 5.1 Yes
TV ′4 See Section 5.1 Yes

TV5 (true∗ · t_h.dropreq.wait · ¬(t_h.dropack ∨ t.tune.ret ∨ t.tune.i)∗) (t.tune.ret · t.tune.i) Yes

TV6 (true∗ · t.driver.tune.wait · ¬(t.driver.tuneack ∨ t.tune.ret ∨ t.tune.i)∗) (¬t.driver.tuneack U t.tune.i) Yes
TV7 G(t_h.dropreq.ack⇒ X(t_h.dropack⇒ (¬t_h.dropreq U t_h.restore.ret))) Yes
TV8 (true∗ · t_h.dropreq.wait · ¬(t_h.dropack ∨ t.tune.ret ∨ t.tune.i)∗ · t.tune.i) Yes

 (true · t.tune.ret · t.driver.tune.i · t.driver.tuneack · t_h.restore · t_h.restore.ret · t_h.dropack.ret)

TV9 (true∗ · t.tune.i) ((¬t.tune.j ∧ ¬t.driver.tune.j)∗ · t.driver.tune.i) Yes

Table 2: Properties of the TV Controller Protocol.

frequency on the wire connected to a video device is only changed
by the tuner driver when the video device has been blanked. We
formalize it as a CSSL property TV1 later in this section. First, we
look at some simple scenarios involving this protocol.

The simplest scenario, which consists of a TV set with
one tuner and one video device, is when the user changes
the channel on which the tuner top receives a t.tune.i re-
quest, where i is the frequency of the channel to be dis-
played. Then the tuner top requests the video top to blank
the screen (t_h.dropreq). The video top requests the video
driver to blank the video device (h.driver.blank), receives
an acknowledgment (h.driver.blank.ack) and then acknowl-
edges the tuner top’s request (t_h.dropreq.ack). The tuner top
then requests the tuner driver to change its signal to frequency
i (t.driver.tune.i) and once it receives the acknowledgment
(t.driver.tune.ack), requests the video top, which, in turn, re-
quests the video driver to unblank the screen and display the im-
age being sent over the wire (t_h.restore, h.driver.unblank,
h.driver.unblank.ret, t_h.restore.ret). This behaviour is
specified as an existential triggered scenario shown in Figure 6(a)
and formalized in CSSL as property TV2. This and other properties
of the TV system are shown in Table 2.

Part of the complexity of the protocol is that requests from
tops to drivers may not be acknowledged immediately. For in-
stance, the video driver may respond to a blanking request from
a video top with an h.driver.blank.wait event rather than with
h.driver.blank.ack. In this case, the protocol returns and
waits for an upcall, h.driver.blankack from the video driver
to the video top, informing it that the video has finally been
blanked. The upcall is sent to the tuner top (t_h.dropack)
which proceeds as in the previous scenario to change the wire
frequency and then acknowledges the upcall (t_h.dropack.ret)
to the video top which, in turn, acknowledges it to the video
driver (h.driver.blankack.ret). This behavior is specified in
Figure 6(b) and formalized as a CSSL property TV3. Events
t.tune.ret and h.driver.blankack can occur in any order.

The tuner driver may not acknowledge straight away, respond-
ing with t.driver.tune.wait rather than t.driver.tune.ack
to a request of changing the signal’s frequency. In this case,
the protocol returns and awaits an upcall from the tuner driver
(t.driver.tuneack). When the upcall occurs, the video is un-
blanked and the upcall acknowledged (t.driver.tuneack.ret).

Events t.tune.ret and t.driver.tuneack can occur in this sce-
nario in any order, as captured in property TV4 (see Table 2).

A key aspect of this protocol, which can be traced to a respon-
siveness requirement, is that the protocol must process user tuning
requests while the TV set is in intermediate states (i.e., those where
it is waiting for an upcall from the tuner device or video device).
Such properties can be expressed as existential triggered scenarios
and formalized in CSSL as TV5 and TV6, respectively.

Another important aspect of the protocol, which can be traced to
efficiency constraints, is that it must not request blanking the screen
if it is already blanked. This is a safety property, formalized in
CSSL as TV7. TV7 together with TV5 and TV6 are inconsistent
with the first three existential scenarios, TV2 − TV4. The latter
require that if users request tuning the TV set, then the protocol
must be able to do so in three different ways (depending on whether
devices acknowledge or upcall). Each of these scenarios requests
that it be possible to blank the video device. TV5 requires user
tune requests to be processed while the video screen is blanked;
hence, in conjunction with any of TV2 − TV4, the protocol must
able to process the user’s request by (among other things) blanking
the screen. However, this would violate property TV7.

Scenarios TV2−TV4 are too strong, since the trigger part of the
scenario (or the prefix of the CSSL formula) does not account for
the possible states in which the TV set may be when receiving a
t.tune.i command. They require the behaviour (the main chart of
the scenario or the suffix of the CSSL formula) that should only be
required when the protocol is idle (i.e., when the frequency being
displayed on the video device is that of the last t.tune command).
This can be formalized by changing the prefix in TV2 − TV4 to be

true∗ · t.tune.i · (
∧
j∈Freq ¬t.tune.j)∗ · t.driver.tune.i ·

(
∧
j∈Freq ¬t.tune.j)∗ · (t.driver.tune.ack ∨ t.driver.tuneack) ·

(
∧
j∈Freq ¬t.tune.j)∗ · t.tune.i

resulting in new properties, TV ′2 − TV ′4 , respectively.
There are many properties that are relevant to the protocol in

this case study. Due to space restrictions, we mention two final
conditional existential statements related to the responsiveness of
requests to tune the TV set. The first one, called TV8, strengthens
TV6 by exemplifying one way in which t.tune must be processed
when it is received while waiting for the screen to be blanked. The
other, called TV9, states that whenever the tuner is requested to
tune on frequency i (t.tune.i), then it must be possible for the
next frequency change on the wire to be to frequency i.

CLK

FRAME#

AD Addr D1 D2 D3

C/BE# Cmd ByteE1 ByteE2 ByteE3

IRDY#

TRDY#

DEVSEL#

GNT#

Figure 7: An example of a PCI transaction.

Finally, we now formalize the main safety property TV1, dis-
cussed in the beginning of this section. t_h.dropreq.ack and
t_h.dropack are sent from the video top to the tuner top as are
the events that indicate that the video device has been blanked, and
t_h.restore.ret (sent from the video top to the tuner top) is the
only event that indicates that the video device has been unblanked.

In order to verify properties TV1 − TV9 and TV ′2 − TV ′4 , we
took a sample model of the TV-tuner, expressed in FSP [21] and
originally written by Magee and van Ommering [34] (the latter is
one of the original protocol developers). Using a simple LTSA-to-
SMV converter, we converted it into the format of NuSMV. Then
each of the properties has been encoded in CTL using the process
described in Section 4. Table 2 shows the result of verifying all of
the properties formalized above against the NuSMV model of the
protocol. The table shows that properties TV2 − TV4 fail, whereas
others hold. All properties took under a second to verify, so we
do not list the exact running times. While the protocol model is
relatively complex, it is quite small by NuSMV’s standards, and
thus the analysis took a very short time.

We chose to start our presentation with properties that do not
hold in the model. While it is commonplace to present, as use cases
or scenarios, examples of behaviours that a system is expected to
exhibit, often the preconditions or triggers of such scenarios are
too weak. When this happens, the suffix behaviour is exhibited in
cases when, in fact, it should not. Conditions for existential state-
ments can be complicated to get right, as we have experienced dur-
ing this case study, and we certainly welcomed having mechanized
model-checking support to help us debug our specs. In fact, they
underwent several iterations before they took their current, correct,
form. Furthermore, our current model-checking approach converts
the CSSL property to (fair) CTL, which means that counterexam-
ples that NuSMV produced were very incomplete (see a discussion
in Section 7).

5.2 PCI
Our second case study demonstrates the usefulness of the

branching-suffix implication operator and thus the resulting CSSL
logic in a different setting, that of hardware verification.

The Peripheral Component Interconnect (PCI) [27] is a local bus
protocol commonly used for the communication between hardware
devices (such as network cards, modems and USB ports) inside a
computer. While multiple devices may be connected to a single PCI
bus, we describe here a typical transaction between one initiator (or
“master") and one target device. All signals of the PCI protocol are
‘active low’, that is, are asserted when dropped from 1 to 0.

A transaction on a PCI bus starts with the initiator asserting its
FRAME#, and at the same time driving the address of the target
device on the address/data (A/D) bus, as well as the command (the
type of transaction) on the C/BE bus. The cycle in which FRAME#
is asserted is called the address-phase. The selected device, once
recognizing its address, asserts the DEVSEL# signal. In a write

transaction, the initiator, when ready, drives the data to be trans-
ferred on the A/D bus and asserts its IRDY# signal. This is the
beginning of a data-phase. When the target is ready to read the
data, it asserts its TRDY# signal; until then, the IRDY# must re-
main active. Whenever both TRDY# and IRDY# are asserted to-
gether, the data held in the A/D bus is assumed to be transferred,
and this is the end of a data-phase. In a read transaction, the target
device is the one responsible to drive the data on the A/D bus, as-
serting TRDY# when the data is ready for transfer. A transaction
may have multiple data-phases, and each one may last one cycle
(if IRDY# and TRDY# are active together in consecutive cycles) or
more if one or more of IRDY#, TRDY# are inactive for some cy-
cles. The last data-phase is indicated by the initiator with FRAME#
de-asserting when IRDY# is being asserted. One cycle after the last
data-phase ends, IRDY#, DEVSEL#, and TRDY# must all be de-
asserted. Figure 7 demonstrates a simple PCI transaction with 3
data phases. Another target-driven signal (which does not appear
in Figure 7) is the STOP# signal. It is used by the target to indicate
that it cannot complete the transaction. If STOP# is asserted, with
or without the assertion of TRDY#, it means that the target requests
the initiator to end the current transaction and “retry" it later.

In order to verify a PCI target device, we model the behavior of
the initiator device, mainly that of FRAME#, IRDY# and the C/BE
bus, that control the command of the transactions. For simplic-
ity, we model only bit 0 (C/BE[0]) of this bus, which determines
whether the transaction is a read (0) or a write (1). For the veri-
fication to be thorough, our model of the initiator allows all legal
behaviors to occur.

We concentrate on checking the dependency between the asser-
tion of TRDY# and IRDY#. The PCI specification indicates that
each of the initiator and target is free to assert its corresponding
RDY# signal when ready. In read transactions, however, the initia-
tor is allowed to wait until the target asserts TRDY# before assert-
ing its IRDY# (so it can have more than one cycle to process the
data). If both the initiator and the target condition the assertion of
their RDY# signals on the assertion of the other’s, this results in a
deadlock. The above case was a real problem found in verification
of the PCI component performed by an industrial partner.

Such a problem can be identified by checking the following
CSSL property: “If when FRAME# is asserted (address-phase)
C/BE[0]=0 (it is a read transaction), then at the beginning of every
data-phase that is not retried, there exists at least one continuation
where TRDY# is asserted before IRDY#.” It is formalized as fol-
lows (F stands for FRAME#, D for DEVSEL#, S for STOP#, I
and T for IRDY and TRDY, respectively):

(true∗ · F · (¬F ∧ (C/BE[0]=0)) · (¬F)∗ · (¬F ∧ ¬D∧
S ∧ ((T ∧ I) ∨ (¬T ∧ ¬I))) X((I ∧ S) U ¬T).

Such a property failed when checked on the original model, expos-
ing an error identified after the built PCI bus was used in the field.

It is common knowledge that verification engineers naturally
think about universal properties, which is one of the reasons why
industrial standards are based on linear temporal logics. This case
study demonstrates that universal properties are not sufficient, since
there are bugs that require some branching to be detected. CSSL
adds just the right amount of branching needed.

6. RELATED WORK
Scenarios. Our work is concerned with reasoning about the sys-

tem behaviour in the presence of universal and existential state-
ments, and, in particular, of conditional existential statements
which are commonplace in scenario and use-case specifications.
Hence, our work is related to a large body of work in the area of

scenario-based specifications which were originally conceived as
existential, i.e., example based, specifications.

The ITU Message Sequence Chart standard [16] and, subse-
quently, the UML Sequence Diagrams are widespread notations
for documenting scenarios which in their original formulations do
not provide mechanisms for distinguishing between existential and
universal statements and, in practice, have been interpreted existen-
tially. Many variants of these languages have been proposed. The
first to support multiple modalities is LSC [9]. However, LSCs do
not support conditional existential scenarios. Although the origi-
nal formulation of existential LSCs included a prechart (a prefix)
P and a main chart (a suffix) M , their semantics is equivalent to
a non-conditional existential scenario that concatenates both charts
(i.e., P ·M). Later versions of LSCs, e.g., [3], drop the existential
prechart. Indeed, formalization of LSC semantics can be given in
linear temporal logic. CSSL is capable of supporting a more ex-
pressive language than LSCs, one that includes proper conditional
existential scenarios.

Sibay et al. [28] present a language with conditional existential
and conditional universal scenarios. The language semantics is pro-
vided in terms of CTL, and verification is done through construc-
tion of Modal Transition Systems (MTS) [19], model merging, and
MTS weak alphabet refinement [5]. The language is restricted to
two temporal patterns: a triggered existential statement of the form
AG(trigger ⇒

∧
w EXw), where w ranges over the language of

the main chart, and a triggered universal statement of the form
AG(trigger ⇒

∧
w EXw ∧ AX

∨
w w), where w ranges of the

language of the main chart. The languages of the trigger and main
chart are defined by a finite partial orderings of events. CSSL can
express properties not expressible by the scenario language of [28].

Arguably the most widespread form of conditional existential
statements are use cases [17], when they are used with precon-
ditions, as advocated in popular software engineering practition-
ers’ literature [25]. The importance of documenting and reasoning
about such kinds of statements can be inferred from popular devel-
opment methods such as RIP [18], and has been argued for from
multiple perspectives such as supporting "what-if" elaboration of
requirements specifications [22] and the progressive shift from ex-
istential statements, in the form of examples and use-cases, to uni-
versal statements in the form of declarative properties [12]. This
motivates the need for a logic with the expressiveness of CSSL.

Branching properties. It is often assumed that linear properties
are easy to express and, thus, linear logics are widely used to spec-
ify requirements [30, 33]. On the other hand, branching is seen
as confusing and often avoided, and, thus, there are very few ap-
proaches which use branching logics. Yet some forms of branching
are essential. For example, an industrial case study [24] showed
that properties that are natural in the early design phases (espe-
cially when some information is uncertain) are branching. The au-
thors of the study informally proposed the same branching pattern
that underlies CSSL. We are unaware of other approaches to extend
existing logics with “limited” branching.

Logic and model-checking. The early 2000’s saw an activity,
led by the IEEE Accellera committee, to define an industrial tempo-
ral logic language. In addition to PSL [14], it yielded the Standard
for SystemVerilog Assertions (SVA) [15]. Both PSL and SVA are
linear languages with regular expressions. They are supported by
major CAD vendors (see [4]). The use of regular expressions im-
proves both the expressive power and usability of these languages.

However, neither of these languages can express widespread
branching properties like existential conditional statements. While
PSL’s standard defines an “optional branching extension”, it is es-

sentially CTL, which does not allow the use of linear temporal op-
erators or regular expressions.

CTL* is a very expressive language which allows combina-
tion of linear and branching temporal operators (but not regular
expressions) and is more than adequate for capturing scenarios.
However, not only is specifying properties in CTL* highly non-
intuitive, CTL* model-checking does not scale to industrial-size
models [37].

The model-checking method introduced in this paper combines
auxiliary automata with temporal logic specifications, where the
propositions used in the specification are derived from the automata
states. This was inspired by the work described in [2], where au-
tomata are embedded into regular expression-based specifications.
In [2], this approach was used to gain reusability as well as to re-
duce the overall size of the automata built. In this paper, it gives
us a clean way to implement a fusion automaton, and thus to add
branching capabilities to an otherwise linear language.

7. CONCLUSION AND FUTURE WORK
Software engineers use a variety of languages to specify the in-

tended behaviour of a software system. These include scenarios,
use cases, declarative global properties, as well as local operational
properties such as preconditions for actions. This heterogeneity is
due to the different contexts in which such languages are used (ini-
tial elicitation and elaboration stages, communication with stake-
holders, final complete specification, communication with design-
ers, etc.); however, it poses technical challenges when such speci-
fications need to be analyzed automatically. In particular, the use
of conditional existential scenarios (or use cases) require reasoning
in branching time while grounded approaches to behaviour specifi-
cation and verification shy away from branching-time logics due to
their relatively unintuitive semantics.

In this paper, we introduced an extension to PSL which gives
“just enough branching” to be able to capture existential condi-
tional scenarios without an increase in the model-checking com-
plexity. The resulting language, called CSSL, can be used for
formalizing and reasoning about heterogeneous specifications that
include use-cases, variants of sequence chart notations and gen-
eral (linear) safety and liveness properties. We showed how to do
model-checking of CSSL properties using NuSMV and illustrated
the usefulness of CSSL on two real-life examples.

Like all branching properties, CSSL has a fundamental prob-
lem with counterexamples produced when a property fails. Since
a CSSL formula r ψ consists of a universal and an existential
part, when it fails, the counterexample is provided only for the uni-
versal part, demonstrating a path on which r holds. To demonstrate
failure of ψ, we would have to produce the entire set of continua-
tions of this path. This makes debugging difficult, especially if ψ
is a long formula. In the future, we are interested in creating an
automated support for debugging failed CSSL properties.

Our work on formal reasoning of scenario languages is not lim-
ited to verification, when the model of the system is already given.
Scenarios are often used as a specification language for software,
as a prototyping mechanism, and as a way to synthesize an opera-
tional model [32]. In this context, efficient algorithms for satisfia-
bility, synthesis, and vacuity detection are a must [5]. Satisfiability
allows us to determine whether a set of CSSL properties is con-
sistent, i.e., whether it is possible to build a model in which all of
these properties hold. Vacuity [11] enables us to check whether
a formula holds “for the wrong reason”, i.e., vacuously. This can
happen when a universal prefix of conditional scenarios is false,
and thus the property is always true. It would also be interesting
not only to tell that a property is vacuous but also to determine the

cause of this vacuity [11]. Finally, given a (consistent) set of CSSL
properties, it would be very desirable to synthesize a preliminary
operational model which is guaranteed to satisfy them.

Synthesis, satisfiability, and vacuity checking algorithms exist
for CTL*, so we have a clear upper bound on the complexity of the
corresponding CSSL procedures. However, we have yet to deter-
mine whether algorithms with better lower bounds for CSSL exist.

Finally, PSL allows us to specify safety properties of the system-
to-be, thus providing an over-approximation of its behaviour. Our
new operator, BSI, allows us to express existential and conditional
existential scenarios, describing under-approximations of the be-
haviour of the system-to-be. We are interested in studying whether
CSSL can effectively replace µ-calculus as the language charac-
terizing properties of partial behavioural models, synthesized from
properties and scenarios [6, 32].

Acknowledgements. We thank the anonymous ESEC/FSE
referees and Kristin Rozier for their suggestions for improving the
paper and Winnie Lam for her help with the tool support. The work
was partially funded by ERC PBM-FIMBSE, CONICET, UBACyT
X021, PIP112-200801-00955KA4, PICT-PAE 37279, NSERC and
Ontario Postgraduate Fellowship.

8. REFERENCES
[1] I. F. Alexander and N. Maiden, editors. Scenarios, Stories, Use

Cases: Through the Systems Development Life-Cycle. Wiley, 2004.
[2] S. Ben-David, D. Fisman, and S. Ruah. “Embedding Finite Automata

within Regular Expressions”. Theor. Comput. Sci., 404(3):202–218,
2008.

[3] Y. Bontemps, P. Heymans, and P.-Y. Schobbens. “From Live
Sequence Charts to State Machines and Back: A Guided Tour”. IEEE
TSE, 31(12):999–1014, 2005.

[4] D. Borionne, M. Liu, P. Ostier, and L. Fesquet. “PSL-based Online
Monitoring of Digital Systems”. In Proc. of FDL’05, pages 465–479,
2005.

[5] G. Brunet, M. Chechik, D. Fischbein, N. D’Ippolito, and S. Uchitel.
"Weak Alphabet Merging of Partial Behaviour Models". ACM
TOSEM, 2011. To appear.

[6] M. Chechik, A. Gurfinkel, S. Uchitel, and S. Ben-David. “Raising
Level of Abstraction with Partial Models: A Vision”. In Proc. of
NSF/MSR Wrksp. on Usable Verification, 2010.

[7] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore,
M. Roveri, R. Sebastiani, and O. Tacchella. “NuSMV 2: An
Opensource Tool for Symbolic Model Checking”. In Proc. of
CAV’02, pages 359–364. Springer, 2002.

[8] E.M. Clarke and E.A. Emerson. “Design and synthesis of
synchronization skeletons using Branching Time Temporal Logic”.
In Proc. Workshop on Logics of Programs, volume 131 of LNCS,
pages 52–71. Springer-Verlag, 1981.

[9] W. Damm and D. Harel. “LSCs: Breathing Life into Message
Sequence Charts”. FMSD, 19:45–80, 2001.

[10] C. Eisner and D. Fisman. A Practical Introduction to PSL. Springer,
2006.

[11] A. Gurfinkel and M. Chechik. “How Vacuous Is Vacuous?”. In Proc.
of TACAS’04, volume 2988 of LNCS, pages 451–466, March 2004.

[12] D. Harel and R. Marelly. Come, Let’s Play: Scenario-Based
Programming Using LSC’s and the Play-Engine. Springer-Verlag
New York, Inc., 2003.

[13] J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory,
Languages, and Computation. Addison-Wesley, 1979.

[14] IEEE Standard for Property Specification Language (PSL), Annex B.
IEEE Std 1850TM-2010.

[15] IEEE Standard for SystemVerilog, Annex F. IEEE Std 1800TM-2009.
[16] ITU-TS. ITU-TS Recommendation Z.120: Message Sequence Chart

(MSC). Geneva, 1992.
[17] I. Jacobson. Object-Oriented Software Engineering: a Use Case

driven Approach. Addison–Wesley, 1995.

[18] I. Jacobson, G. Booch, and J. Rumbaugh. The Unified Development
Process. Addison-Wesley, 1999.

[19] K. G. Larsen and B. Thomsen. “A Modal Process Logic”. In Proc. of
LICS, pages 203–210, July 1988.

[20] S. Leue and T. Systä, editors. Scenarios: Models, Transformations
and Tools, volume 3466 of LNCS. Springer, 2005.

[21] J. Magee and J. Kramer. “Concurrency - State Models and Java
Programs”. John Wiley, 1999.

[22] N. Maiden and S. Robertson. “Developing Use Cases and Scenarios
in the Requirements Process”. In Proc. of ICSE’05, pages 561–570,
2005.

[23] A. Pnueli. “The Temporal Logic of Programs”. In Proc. of IEEE
Symp. on Foundation of Comp. Sci., pages 46–57, 1977.

[24] A. Post, I. Menzel, and A. Podelski. “Applying Restricted English
Grammar on Automotive Requirements – Does it Work? A Case
Study”. In Proc. of REFSQ’11, volume 6606 of LNCS, pages
166–180. Springer, 2011.

[25] R.S. Pressman. Software Engineering: A Practitioner’s Approach.
McGraw-Hill, 7th edition, 2010.

[26] K. Schwaber. Agile Project Management With Scrum. Microsoft
Press, 2004.

[27] T. Shanley and D. Anderson. PCI System Architecture. Mindshare,
Inc., 4th edition, 1999.

[28] G. Sibay, V. Braberman, S. Uchitel, and J. Kramer. “Synthesizing
Modal Transition Systems from Triggered Scenarios”, March 2010.
submitted for journal publication.

[29] G. Sibay, S. Uchitel, and V. Braberman. “Existential Live Sequence
Charts Revisited”. In Proceedings of ICSE’08, pages 41–50, 2008.

[30] R. Smith, G. Avrunin, L. Clarke, and L. Osterweil. “PROPEL: An
Approach Supporting Property Elucidation”. In Proc. of ICSE’02,
pages 11–21, 2002.

[31] A. G. Sutcliffe, N.A.M. Maiden, S. Minocha, and D. Manuel.
“Supporting Scenario-Based Requirements Engineering”. IEEE TSE,
24:1072–1088, 1998.

[32] S. Uchitel, G. Brunet, and M. Chechik. “Behavioural Model
Synthesis from Properties and Scenarios”. IEEE TSE,
3(35):384–406, 2009.

[33] Axel van Lamsweerde. Requirements Engineering: From System
Goals to UML Models to Software Specifications. Wiley, 2009.

[34] R. van Ommering, F. van der Linden, J. Kramer, and J. Magee. “The
KOALA Component Model for Consumer Electronics Software”.
IEEE Computer, 33(3):78–85, 2000.

[35] M.Y. Vardi. “Branching vs. Linear Time: Final Showdown”. In Proc.
of TACAS’01, pages 1–22, 2001.

[36] M.Y. Vardi and P. Wolper. “An Automata-Theoretic Approach to
Automatic Program Verification (Preliminary Report)”. In Proc. of
LICS’86, pages 332–344, 1986.

[37] W. Visser and H. Barringer. “Practical CTL* Model Checking :
Should SPIN be Extended?”. STTT, 2(4):350–365, 2000.

