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Abstract. We address the problem of refactoring existing, closely related prod-
ucts into product line representations. Our approach is based on comparing and
matching artifacts of these existing products and merging those deemed simi-
lar while explicating those that vary. Our work focuses on formal specification
of a product line refactoring operator called merge-in that puts individual prod-
ucts together into product lines. We state sufficient conditions of model compare,
match and merge operators that allow application of merge-in. Based on these,
we formally prove correctness of the merge-in operator. We also demonstrate its
operation on a small but realistic example.

1 Introduction
Numerous companies develop and maintain families of related software products. These
products share a common, managed set of features that satisfy the specific needs of a
particular market segment and are referred to as software product lines (SPLs) [4]. SPLs
often emerge from experiences in successfully addressed markets with similar, yet not
identical needs. It is difficult to foresee these needs a priori and hence to structure and
manage the SPL development upfront [11]. As a result, SPLs are usually developed in
an ad-hoc manner, using available software engineering practices such as duplication
(the “clone-and-own” paradigm where artifacts are copied and modified to fit the new
purpose), inheritance, source control branching and more. However, these software en-
gineering practices do not scale well to product line development, resulting in massive
rework, increased time-to-market and lost opportunities.

Software Product Line Engineering (SPLE) is a software engineering discipline
aiming to provide methods for dealing with the complexity of SPL development [4,
18, 5]. SPLE practices promote systematic software reuse by identifying and managing
commonalities – artifacts that are part of each product of the product line, and variabil-
ities – artifacts that are specific to one or more (but not all) individual products across
the whole product portfolio. Commonalities and variabilities are controlled by feature
models [7] (a.k.a. variability models) which specify program functionality units and re-
lationships between them. A product of the product line is identified by a unique and
legal combination of features, and vice versa.

SPLE approaches can be divided into two categories: compositional, which imple-
ment product features as distinct fragments and allow generating specific product by
composing a set of fragments, and annotative, which assume that there is one “max-
imal” product in which annotations indicate the product feature that a particular frag-
ment realizes [8, 3]. A specific product is obtained by removing fragments correspond-
ing to discarded features. We follow the annotative approach here.



A number of works, e.g., [18, 5], promote the use of annotative SPLE practices
for model-driven development of complex systems. They are built upon the idea of
explicating and parameterizing variable model elements by features. The parameterized
elements are included in a product only if their corresponding features are selected,
allowing coherent and uniform treatment of the product portfolio, a reduced number of
duplications across products, better understandability and reduced maintenance effort,
e.g., because modifications in the common parts can be performed only once.
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Fig. 1. Washing Machine Controllers.

Example. Consider three fragments of
UML statechart controllers depicted in
Fig. 1. These models were inspired by a
real-life SPL developed by a partner (since
partner-specific details are confidential, we
move the problem into a familiar domain
of washing machines). Controller A in
Fig. 1(a) weighs the laundry and displays an
error message if the weight is more than 5
kg. Otherwise, it locks the washing machine
and sends a signal to the wash engine, re-
sponsible for performing the washing cycle.
When washing is done, the Controller

signals the dryer to perform the drying cy-
cle, after which it proceeds to unlock the
washing machine and finish. Controller
B in Fig. 1(b) differs from the one in
Fig. 1(a) by using the timer component
to delay the wash cycle and by setting the
wtrLevel attribute of the wash engine to
the desired water level based on the weight
of the laundry. This model also lacks the
dryer capability. Similarly to the one in
Fig. 1(b), Controller C in Fig. 1(c) uses
the wtrLevel attribute to set the desired
water level of the wash engine based on the
laundry weight. However, it allows laundry
weights up to 6 kg. It also lacks both the
dryer and the timer capabilities but initiates
an acoustic notification at the end of the
program by invoking the beeper engine.

These controllers have a large degree of similarity and can be refactored into SPLE
representations where duplications are eliminated and variabilities are explicated. An
example of a possible refactoring is given in Fig. 2(b), where the Drying, Waiting and
Beeping states and their corresponding transitions are annotated by a set of features
depicted in the right upper part of the figure. The refactored product line in our exam-
ple encapsulates only the original input products, thus we have just three alternative
features representing these products – fA, fB and fC . The set of annotations specifies
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fA States: 
 Drying 
Transitions: 
 (Locking->Washing) 
 (Washing->Drying) 
 (Drying->Unlocking) 

fB  
 

States: 
 Waiting 
Transitions: 
  (Locking->Waiting) 
  (Waiting->Washing) 
  (Washing->Unlocking) 
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fA  
 

States: 
 Drying 
Transitions: 
 (Locking->Washing) 
 (Washing->Drying) 
 (Drying->Unlocking) 
 (Unlocking->final) 
Actions: 
 (Locking->Washing) wash.sendSignal(SigStart); 
Guards: 
  (Weighing->Locking)  <=5kg 
  (Weighing->final)  >5kg 

fB  
 

States: 
 Waiting 
Transitions: 
  (Locking->Waiting) 
  (Waiting->Washing) 
  (Washing->Unlocking) 
  (Unlocking->final) 
Guards: 
  (Weighing->Locking)  <=5kg 
  (Weighing->final)  >5kg 

fC  
 

States: 
 Beeping 
Transitions: 
 (Locking->Washing) 
 (Washing->Unlocking) 
 (Unlocking->Beeping)          
 (Beeping->final) 
Actions: 
 (Locking->Washing) wash.wtrLevel=weight*0,5; 
   wash.sendSignal(SigStart); 
Guards: 
  (Weighing->Locking)  <=6kg 
  (Weighing->final)  >6kg 

(b) Controller A+B+C.
Fig. 2. Possible Refactorings of the Washing Machine Controllers in Fig. 1.

elements to be included given a particular feature selection. E.g., selecting fA filters
out all elements not annotated with that feature, which results in Controller A in
Fig. 1(a). Likewise, selecting feature fB (fC) results in Controller B (Controller
C) in Fig. 1(b) (Fig. 1(c)).

The annotations themselves are shown in a table on the left-hand side of the fig-
ure (see “State” and “Transitions” entries in the table). While the transition between
Locking and Washing states exists in both Controller A and C (Fig. 1(a,c)), the
corresponding actions on the transition are different and thus are also annotated by
features in the combined version (see “Actions” entry in the table). Likewise, laundry
weight guards on the transitions exiting the Weighing state are annotated by the corre-
sponding features as well (see “Guards” entry in the table).



Product Line Refactoring Framework. Despite the benefits of applying SPLE prac-
tices which include improved time-to-market and quality, reduced portfolio size, engi-
neering costs and more [4], it is impractical to assume that existing (legacy) product
line systems can be abandoned altogether for creating new ones that take advantage
of the SPLE reuse techniques. Thus, a transition process which involves identification
and extraction of common and variable artifacts together with variability models that
control them, becomes a necessity [12, 1].

In our work, we propose a generic framework for mining legacy product lines and
automating their refactoring to contemporary feature-oriented SPLE approaches, ini-
tially suggested in [19]. We consider those refactorings that just include the set of exist-
ing products rather than allowing novel feature combinations (e.g., a product with both
the timer and the beeper capabilities). Our approach is based on comparing elements
of the input products to each other (by calculating a weighted similarity of their cor-
responding sub-elements), matching those whose similarity is above a preset threshold
and merging these together.

Our refactoring framework is applicable to a variety of model types, such as UML,
EMF or Matlab/Simulink, and to different compare, match and merge operators. In this
paper, we develop a generic model representation and a generic and parameterizable
compare / match / merge infrastructure underlying the refactoring framework. Using
them, we prove that our refactoring approach is semantically correct, i.e., it can gen-
erate exactly the original products, regardless of a particular implementation used and
parameters chosen. The main contribution of this paper is thus the formal foundation
that underlays the parameterizable and configurable, yet semantically correct refactor-
ing framework.

There are multiple ways to merge-in input products into a product line, even if we
only consider those refactorings that maintain the original set of input products. The
resulting refactorings vary syntactically, depending on how elements are matched and
combined. For example, in Fig. 2(b), transitions from Locking to Washing states of
Controllers A and C (Fig. 1 (a,c)) are matched to each other and combined, while
their corresponding actions are annotated by features. Instead, these transitions do not
have to be matched, so that the generated result has two separate transitions, each an-
notated by the corresponding feature. Also, the Unlocking state of Controller A in
Fig. 1(a) could be matched and combined with the Beeping state of Controller C in
Fig. 1(c) because of their structural similarity – both transition to the final state of the
statechart.

In this work, we formally prove that all these syntactically different refactorings are
able to produce the set of original input products and thus are “correct”. Elsewhere [20],
we focus on techniques for distinguishing between multiple possible refactorings based
on their qualitative properties and choosing a desired one which satisfies the set of de-
fined objectives (e.g., one objective might be to decrease the size of the produced result,
while another – to keep a low number of annotated elements per diagram). In [20], we
also instantiate our approach on product lines defined in UML – a common specifica-
tion language in automotive, aerospace & defense, and consumer electronics domains,
and demonstrate its applicability on several large-scale examples.



The remainder of this paper is organized as follows. We introduce our data model
and give the necessary background on product lines representations in Sec. 2. We give
formal foundations of model merging in Sec. 3 and define our merging-based product
line refactoring technique in Sec. 4. We prove semantic correctness of the technique in
Sec. 5. We conclude the paper with a discussion of related work in Sec. 6, presenting a
summary and future research directions in Sec. 7.

2 Preliminaries
In this section, we describe our representation of models and model elements and fix
our notation for representing product line models annotated by features.

Model Representation. Following XMI principles [17], we define models to be trees of
typed elements. Each element has a unique id which identifies it within the model and
a role which defines the relationship between the element and its parent. For example,
in UML, an element of type Behavior can have an Entry action or Do activity roles
in a state. In addition, a single element can fulfill several roles in a model: a Behavior
can be a Do activity of a state and an Effect of a transition at the same time. To allow
reusing elements for different roles, we employ a cross-referencing mechanism where
an element of type Ref represents the referenced element by carrying its id. Cross-
referencing, combined with roles, allows representing labeled graphs using trees: an
element can be linked to multiple different elements, each time in a distinct role.

Element types, denoted by T, and roles, denoted by R, are defined by the domain
model. For UML, types include Class, State, OpaqueBehavior, etc. Roles include
PackagedElement, Subvertex, Effect, etc. If the types Ref and String are not
defined by the domain model, we add them to T as well.

We differ from [17] by representing all element attributes, as first-class model ele-
ments. That is, an element’s name is represented by a separate model element of role
Name and type String. The implication of our representation is that elements’ attributes
now have their own ids and thus, an element can have multiple attributes in the same
role, e.g., multiple names or Effects for a transition. These qualities are required for
defining the product line merge-in operator in Sec. 4. A formal representation of our
notations is given by Def. 1 below.
Definition 1. (Model Element) A model element m is a tuple 〈m|id,m|t,m|r,m|v, m|s〉,
where m|id is a numeric identifier of the element, m|t ∈ T is the element’s type, m|r ∈ R
is the element’s role, m|v is the element’s value – either String or an id of another element
(representing a reference), and m|s is a (nested) list of sub-elements.

Fig. 3 shows partial representation of the Controller A statechart in Fig. 1(a),
where states Drying and Unlocking, together with their incoming and outgoing transi-
tions, are omitted to save space. In this figure, sub-elements are represented as element’s
children in the tree.

We refer to types that have no owned properties, such as String or Ref, as atomic.
Other types, such as Class, State or Transition, are compound. Elements of atomic
and compound types are referred to as atomic and compound elements, respectively.
While atomic elements have values, values of compound elements are determined from
values of their sub-elements. Thus, two compound elements may be equal (i.e., have
the same type and role, like elements with ids 3 and 6 in Fig. 3) but not equivalent, as
they might have different sub-elements.



id = 1
t = StateMachine
r = OwnedBehaviour

id = 2
t = Pseudostate
r = Subvertex
v = start

id = 3
t = State
r = Subvertex

id = 4
t = String
r = Name
v = Weighing

id = 15
t = Transition
r = Transition

id = 16
t = Reference
r = Source
v = 2

id = 17
t = Reference
r = Target
v = 3

id = 6
t = State
r = Subvertex

id = 7
t = String
r = Name
v = Locking

id = 8
t = State
r = Subvertex

id = 9
t = String
r = Name
v = Washing

id = 5
t = Pseudostate
r = Subvertex
v = choice

id = 14
t = FinalState
r = Subvertex

id = 21
t = Transition
r = Transition

id = 22
t = Reference
r = Source
v = 5

id = 23
t = Reference
r = Target
v = 6

id = 24
t = Constraint
r = OwnedRule
v = <=5kg

id = 25
t = Transition
r = Transition

id = 26
t = Reference
r = Source
v = 5

id = 27
t = Reference
r = Target
v = 14

id = 28
t = Constraint
r = OwnedRule
v = >5kg

id = 29
t = OpaqueBehav.
r = Effect
v = displayError();

id = 18
t = Transition
r = Transition

id = 19
t = Reference
r = Source
v = 3

id = 20
t = Reference
r = Target
v = 5...

..
.

id = 30
t = Transition
r = Transition

id = 31
t = Reference
r = Source
v = 6

id = 32
t = Reference
r = Target
v = 8

id = 33
t = OpaqueBehav.
r = Effect
v = wash.

    sendSignal
    (SigStart);

Fig. 3. Partial representation of the Statechart in Fig. 1(a).

Definition 2. (Equivalence) Given a universe of model elements M, let M1,M2 ∈ 2M be
distinct sets of elements.m1 ∈M1,m2 ∈M2 are equal, denoted bym1

∼= m2, iffm1|t = m2|t,
m1|r = m2|r andm1|v = m2|v . Equal atomic elements are equivalent. Compound elements are
equivalent, denoted by m1 = m2, iff m1

∼= m2, and their corresponding trees of sub-elements
are isomorphic wrt. equality.

Definition 3. (Model and Model Equivalence) A set of elements M ∈ 2M is a model iff
all elements in M are connected in a tree structure by the sub-elements relationship, and each
m ∈ M has a unique id. Models M1 and M2 are equivalent, denoted by M1 = M2, iff their
corresponding root elements are equivalent.

Product Line Engineering. Next, we describe the formal semantics of the annotative
SPLE approach.

Definition 4. (Feature Model and Configuration – simplified version of [23]) Given a universe
of elements F that represent features, a feature model FM = 〈F , ϕ〉 is a set of features F ∈ 2F

and a propositional formula ϕ defined over the features from F . A feature configuration F̂M
of FM is a set of selected features from F that respect ϕ (i.e., ϕ evaluates to true when each
variable f of ϕ is substituted by true if f ∈ F̂M and by false otherwise.)

Definition 5. (Product Line – adapted from [2]) A product line PL = 〈FM,M,R〉 is a
triple, where FM is a feature model,M ∈ 2M is a domain model, andR ⊆ F ×M is a set of
relationships that annotate elements ofM by features of F .

Fig. 2(a) presents a snippet of a domain model, whose elements are connected to
features from a feature model using annotation relationships. In this case, features fA
and fB are alternative to each other, i.e., the propositional formula ϕ which specifies
their relationship is (fA ∨ fB)∧¬(fA ∧ fB). Thus, the only two valid feature configu-
rations are {fA} and {fB}.

A specific product derived from a product line under a particular configuration
is a set of elements annotated by features from this configuration. For example, the
statechart in Fig. 1(a) can be derived from the product line in Fig. 2(a) under the con-
figuration {fA}.

In this work, we assume that common product line elements, i.e., elements that are
present in all products derived from a product line, are annotated by all features of F .
Variable elements are annotated by some, but not all, features of F . To avoid clutter,
we do not display annotation relationships for common product line elements in Fig. 2.



We denote by ∆ the mapping between an element of the product line model and the
corresponding element of the product model. We denote by ∆−1 the inverse mapping.
For example, let m and m̂ refer to the transition between Locking and Washing states
in Fig. 1(a) and Fig. 2(a), respectively. Then, under the configuration {fA},∆(m) = m̂
and ∆−1(m̂) = m.

Definition 6. (Product Derivation – adapted from [2]) Let PL = 〈FM,M,R〉 be a product
line and let F̂M be its feature configuration. A set of model elements M̂ is derived from the
product line PL under the configuration F̂M, denoted by M̂ = ∆(PL, F̂M), iff the following
properties hold:

(a) An element belongs to the derived model if and only if this element is annotated by a fea-
ture of the feature configuration F̂M (under which the derivation was performed): ∀m ∈
M,∆(m) ∈ M̂ ⇔ ∃f ∈ F̂M · (f,m) ∈ R.

(b) Only one element can be derived from a given domain model element:
∀m ∈M, ∃!m̂ ∈ M̂ · m̂ = ∆(m).

(c) Only derived elements are present in the derived model: ∀m̂ ∈ M̂, ∃!m ∈M· m̂ = ∆(m).
(d) Each element of the derived model preserves the type/role/value of its corresponding domain

model element: m̂ = ∆(m)⇒ m̂ ∼= m.
(e) Each element of the derived model preserves those sub-elements of its corresponding domain

model element that were annotated by the features from F̂M: ∀m̂ ∈ M̂, m̂c ∈ m̂|s ⇔
∆−1(m̂c) ∈ ∆−1(m̂)|s ∧ ∃f ∈ F̂M · (f,∆−1(m̂c)) ∈ R).

It is easy to show that a feature model configuration uniquely identifies the derived
product model.

Lemma 1. (Uniqueness) Let PL = 〈FM,M,R〉 be a product line, F̂M be a feature config-
uration and M̂ = ∆(PL, F̂M). Then, for each M̂ ′ = ∆(PL, F̂M), M̂ ′ = M̂ .

Proof. Assume to the contrary that M̂ ′ 6= M̂ and assume without loss of generality that ∃m̂ ∈
M̂ such that m̂ 6∈ M̂ ′. By Def. 6(c), m̂ ∈ M̂ implies that ∃m ∈M · m̂ = ∆(m). By Def. 6(a),
this means that ∃f ∈ F̂M · (f,m) ∈ R. Since M̂ ′ was derived from PL under the same
configuration F̂M, ∆(m) ∈ M̂ ′ by Def. 6(a), which implies that ∃m̂′ ∈ M̂ ′ · m̂′ = ∆(m) by
Def. 6(b). Since m̂ = ∆(m) = m̂′, we conclude that m̂ ∈ M̂ ′ which creates a contradiction.

3 Model Merging
In this section, we formalize properties of model merging [22, 16]. Model merging is an
operation which consists of (1) compare, which determines how similar model elements
are to each other, (2) match, which detects pairs of elements that should constitute a
match and (3) merge, which puts information contained in input models together while
keeping a single copy of matched elements. We specify the minimal set of properties
that these three model merging steps should satisfy in order to be used for combining
individual products into product lines.

Compare is a heuristic function that calculates the similarity degree, a number between
0 and 1, for each pair of input model elements. It receives models M1, M2 and a set of
empirically computed weights W = {wR | R ∈ R} which represent the contribution
of sub-elements in role R to the overall similarity of their owning elements.



Table 1. State Similarity Weights W Used by Compare for Fig. 1.
Element Name Type Depth Actions Transitions
Weight 0.2 0.05 0.1 0.3 0.35

For the example in Fig. 1, a similarity degree between two states is calculated as
a weighted sum of the similarity degrees of their names, entry and exit actions, do
activities, incoming and outgoing transitions, etc.1 Comparing Locking states from
Fig. 1(a,b) to each other yields a relatively high similarity degree of 0.85, as these ele-
ments have identical names and similar incoming transitions. However, their outgoing
transitions have different actions and lead to non-similar states; thus, the states are not
identical. Comparing Drying and Waiting states yields a lower number, as these states
have different names and different incoming and outgoing transitions.

Definition 7. (Compare) Let M1,M2 ∈ 2M be models. Compare(M1,M2,W) is a total func-
tion that produces a set of triples C ⊆ (M1 ×M2 × [0..1]) that satisfy the following properties:

(a) The similarity degree of equal elements is 1: (m1 = m2)⇒ (m1,m2, 1) ∈ C.
(b) The similarity degree of elements having different types or roles is 0:

(m1|t 6= m2|t) ∨ (m1|r 6= m2|r)⇒ (m1,m2, 0) ∈ C.
(c) While comparing, references are substituted by the elements they refer to:

m1|t = m2|t = Ref⇒ ((m1,m2, x) ∈ C ⇔ (M1[m1|v],M2[m2|v], x) ∈ C);
m1|t = Ref ∧m2|t 6= Ref⇒ ((m1,m2, x) ∈ C ⇔ (M1[m1|v],m2, x) ∈ C);
m1|t 6= Ref ∧m2|t = Ref⇒ ((m1,m2, x) ∈ C ⇔ (m1,M2[m2|v], x) ∈ C).

(d) compareT,R are domain-specific functions, used to calculate the similarity degree between
atomic elements of type T in role R (e.g., elements’ names): m1|t = m2|t = T , m1|r =
m2|r = R, T is atomic⇒ ((m1,m2, x) ∈ C ⇔ x =compareT,R(m1,m2)).

(e) The similarity degree of compound elements is calculated as a weighted sum of their sub-
elements’ similarity: m1|t = m2|t = T , T is compound ⇒ ((m1,m2, x) ∈ C ⇔ x =∑
{R}

wR ∗ sR), where {R} is a set of possible roles for sub-elements of T , wR is the contri-

bution of sub-elements in role R to the overall similarity of T (
∑
{R}

wR = 1), and sR is the

calculated similarity between sub-elements of m1 and m2 in role R.

Modifying weights W can produce syntactically different matches. To obtain the
model in Fig. 2(b), we calculated state similarity using weights in Table 1, which were
set empirically. Decreasing the weight of the name similarity between states while in-
creasing the weight of the similarity of their corresponding incoming and outgoing tran-
sitions could, for example, result in lowering the similarity degree between Washing

states in Fig. 1(a,c) from 0.8 to 0.7, as their incoming and outgoing transitions differ
significantly. This can subsequently lead to not matching these states and thus, unlike
in the model in Fig. 2(b), each would be present in the resulting refactoring.

Match is a heuristic function that receives pairs of model elements together with their
similarity degree and returns those pairs that are considered similar, using empirically
determined similarity thresholds S = {ST |T ∈ T}. Matched elements are combined
together by the merge function, while unmatched are copied to the result without mod-
ification.

1 Some compare algorithms, e.g., [16], might perform several iterations until they stabilize and
calculate the final similarity degree between elements.



Definition 8. (Match) Let M1,M2 ∈ 2M be models and let C be a set of triples produced
by compare(M1,M2,W). Then, match(M1,M2, C, S) is a function that produces a set of pairs
S ⊆ (M1 ×M2) that satisfy the following properties:
(a) Each element from M1 can be matched with only one element of M2, and vice versa:

(m1,m2) ∈ S ⇒ ∀(m′1,m′2) ∈ S(m′1|id = m1|id ⇔ m′2|id = m2|id).
(b) Only identical atomic elements are matched:

m1|t = m2|t = T , T is atomic⇒ (m1,m2) ∈ S ⇔ (m1,m2, 1) ∈ C.
(c) Compound elements are matched only if their similarity degree exceeds the threshold that is

set for their type:
m1|t = m2|t = T , T is compound⇒ (m1,m2) ∈ S ⇔ (m1,m2, x) ∈ C ∧ x ≥ ST .

(d) If two elements are matched, their parent elements are matched as well (e.g., it is not possible
to match transition guards without matching the owning transitions): (m1,m2) ∈ S ⇒
(∃mp

1 ∈M1,m
p
2 ∈M2 ·m1 ∈ mp

1|s ∧m2 ∈ mp
2|s ⇒ (mp

1,m
p
2) ∈ S).

(e) Either root elements of M1 and M2 are matched with each other, or one of them has no
match at all: ¬∃mp

1 ∈ M1 ·m1 ∈ mp
1|s ∧ ¬∃m

p
2 ∈ M2 ·m2 ∈ mp

2|s ⇒ ((m1,m2) ∈
S ∨ ¬∃m′1 ∈M1 · (m′1,m2) ∈ S ∨ ¬∃m′2 ∈M2 · (m1,m

′
2) ∈ S).

Consider the above example where Washing states had the calculated similarity degree
of 0.8 and 0.7 for two different settings of compare weights W. Setting the state sim-
ilarity threshold to 0.75 results in matching the states to each other in the former case
and not matching in the latter. Likewise, the transitions between Locking and Washing
states in Fig. 1(a,c) can be matched, resulting in the refactoring in Fig. 2(b), where the
corresponding actions are parameterized by features, or not matched, resulting in two
separate parameterized transitions.

Merge is a function that receives two models together with pairs of their matched ele-
ments and returns a merged model that contains all elements of the input, while matched
elements are unified and appear in the resulting model only once.

We denote by σ the mapping from an element of an input model to its corresponding
element in the merged result, and say that σ transforms an input model element to its
corresponding element in the result. We denote by σ−11 and σ−12 the reverse mappings
from an element in the merged result to its origin in the first and second models, respec-
tively (or ∅ if such an element does not exist in one of them). For example, let m1, m2

and m denote the states Washing in the models in Fig. 1(a), 1(b) and 2(a), respectively.
Then, σ(m1) = σ(m2) = m, σ−11 (m) = m1 and σ−12 (m) = m2.

Definition 9. (Merge) LetM1,M2 ∈ 2M be models,C be a set of triples produced by compare(
M1,M2,W) and S be a set of pairs produced by match(M1,M2, C, S). Then, merge(M1,M2,
S) is a function that produces the merged model M̄ and satisfies the following properties:
(a) Matched elements are transformed to the same element in the output model M̄ :

(m1,m2) ∈ S ⇔ σ(m1) = σ(m2).
(b) Each input model element is transformed to exactly one element of M̄ :
∀m1 ∈M1, ∃!m̄ ∈ M̄ · m̄ = σ(m1) and ∀m2 ∈M2,∃!m̄ ∈ M̄ · m̄ = σ(m2).

(c) Each element of M̄ is created from an element of M1 and/or an element of M2. Moreover,
no two distinct elements of an input model can be transformed to the same element in the
result: ∀m̄ ∈ M̄ · (∃!m1 ∈M1 ·m1 = σ−1

1 (m̄)) ∨ (∃!m2 ∈M2 ·m2 = σ−1
2 (m̄)).

(d) Each element of M̄ preserves the type, role and value of its corresponding original elements.
(By Def. 7(b) and 8(b), only elements with the same type, role and value can be matched:
atomic elements are matched only if identical, while compound elements do not have values.)
∀m ∈M1 ∪M2, ∀m̄ ∈ M̄, m̄ = σ(m)⇒ m̄ ∼= m.



(e) Each element of M̄ preserves sub-elements of its corresponding original elements:
∀m̄ ∈ M̄, m̄c ∈ m̄|s ⇔ (σ−1

1 (m̄c) ∈ σ−1
1 (m̄)|s) ∨ (σ−1

2 (m̄c) ∈ σ−1
2 (m̄)|s).

While the compare and match functions rely on heuristically set weights W and simi-
larity degrees S, merge is not heuristic: its output is uniquely defined by the input set of
matched elements. For this work, we rely on union-merge [22] realization of the merge
function. Union-merge unifies matched elements and copies unmatched elements “as
is” to the result. Since our data model in Sec. 2 represents attributes of model elements
as separate entities, an element in the merged result can have several attributes of the
same type fulfilling the same role (which, for example, is not allowed by UML for
effects on a transition or state do activities). We use this property of the data model
to capture annotative product line representations generated when merging individual
products into product lines.

4 Product Line Refactoring
In this section, we define the merge-in operator, which is used to put together input
products into a product line. It constructs a product line by adding input products one
by one and has two parameters: an (already constructed) product line and the next model
to add2. For the example in Fig 1, combining Controller A and B in Fig. 1(a,b) results
in a product line A+B depicted in Fig. 2(a), with features fA and fB . Selecting the first
one derives the original statechart of Controller A, while selecting the second – that
of Controller B. Subsequent merge-in of Controller C (Fig. 1(c)) into this product
line produces a representation depicted in Fig. 2(b), out of which all three original
statecharts can be derived.

Definition 10. (Merge-in Construction) PL′ = 〈FM′,M′,R′〉 is a product line constructed
by merging-in a product M into the product line PL (denoted by PL′ = PL ⊕W,S M ), using
the rules below:
(a) A new feature fM , representing the merged-in product M , is added as an alternative to all

existing features: if FM = 〈F , ϕ〉 then FM′ = 〈F ′, ϕ′〉, F ′ = F ∪ {fM |fM ∈ F,
fM 6∈ F}, and ϕ′ = (ϕ ∨ fM ) ∧

∧
f∈F
¬(fM ∧ f).

(b) The domain model is generated by merging the existing domain model with the newly added
modelM : ifC = compare(M,M,W) and S = match(M,M,C, S) thenM′ = merge(M,
M, S).

(c) The set of annotation relationships is enhanced by the relationships that annotate elements
that originated in M by fM : R′ = {(f, σ(m)) | f ∈ F ,m ∈ M, (f,m) ∈ R} ∪
{(fM , σ(m)) |m ∈M}.

We refer to PL as the original product line and to PL′ as the constructed product line.

5 Correctness of Product Line Refactoring
In this section, we prove the correctness of the merge-in operator introduced in Sec. 4.
Specifically, we show that merge-in produces minimal behavior-preserving product line
refinements [2], that is, the input product models are the only ones which can be derived
from the refactored product line model (Theorem 1).

2 The first product is implicitly converted into a “primitive” product line – a product line with
only one feature and a set of annotations that relate all model elements to that feature.



In what follows, let W be a set of weights used by the compare function and S be a
set of similarity thresholds used by the match functions. Let PL = 〈FM,M,R〉 be a
product line.
Merge-in Monotonicity. Lemma 2 below shows that any feature configuration that con-
tains only features from the original product linePL is also a valid feature configuration
for the constructed product line PL′, i.e., it complies to the constrains ϕ defined on the
features of PL′. For the example in Fig. 2, this means that a feature configuration of
the product line A+B in Fig. 2(a), e.g., {fA}, is also a valid feature configuration for
the “extended” product line A+B+C in Fig. 2(b).

Lemma 2. Let F̂M be a subset of FM. Then, F̂M is a feature configuration of FM if and
only if it is a feature configuration of FM′.

Proof. By construction of ϕ′ (Def. 10(a)), ϕ′ = (ϕ∨fM )∧
∧

f∈F
¬(fM ∧f). Since fM 6∈ F̂M,

¬(fM ∧ f) evaluates to true for every f , and ϕ′ = (ϕ ∨ false) = ϕ. Thus, F̂M respects ϕ if
and only if it respects ϕ′.

Lemma 3 shows that, under configurations used in Lemma 2, a model derived from
PL is equal to the one derived from PL′. That is, under the configuration {fA}, the
same model of ControllerA in Fig. 1(a) is derived from both product lines A+B and
A+B+C (Fig. 2(a) and (b), respectively).

Lemma 3. Let F̂M be a subset of FM. If F̂M is a feature configuration for FM, M̂ =

∆(PL, F̂M) and M̂ ′ = ∆(PL′, F̂M), then M̂ = M̂ ′. That is, given a feature configuration
that contains only features from PL, a set of elements that is generated from PL is equivalent to
that generated from PL′, under the same configuration.

Proof. To prove the lemma, we show that f = ∆(σ(∆−1(.))) is an isomorphism between the
elements of M̂ and the elements of M̂ ′ that respects ∼=. That is, we prove the following four
statements, showing that f is an edge-preserving bijection. The construction of the correspond-
ing elements in M̂ and M̂ ′ is schematically sketched in Fig. 4.

1. Any element of M̂ has the corresponding equal element in M̂ ′: ∀m̂ ∈ M̂, ∃!m̂′ ∈
M̂ ′ · m̂′ = f(m̂) ∧ m̂′ ∼= m̂.
Let m̂ ∈ M̂ . By Def. 6(a), this means that there exists an element m ∈ M, and a feature
f ∈ FM, such that (f,m) ∈ R and m̂ = ∆(m). By Def. 9(b), m is transformed by merge
to an element m̄′ ∈ M′, such that m̄′ = σ(m). By Def. 10(c), this element is annotated by the
same feature as m: (f, σ(m)) ∈ R′. Thus, ∆(σ(m)) ∈ M̂ by Def. 6(a). Since m̂ is derived
fromm,m = ∆−1(m̂). It follows that∆(σ(∆−1(m̂))) ∈ M̂ ′. Let’s denote that element by m̂′.
There exists only one such element by Def. 6(b,c) and 9(b). m̂′ ∼= m̂ by Def. 6(d) and 9(d).

2. Any element of M̂ ′ has the corresponding equal element in M̂ : ∀m̂′ ∈ M̂ ′,∃!m̂ ∈
M̂ · m̂′ = f(m̂) ∧ m̂′ ∼= m̂.
Let m̂′ ∈ M̂ ′. By Def. 6(a), this means that there exist an element m̄′ ∈ M′, and a feature
f ∈ FM, such that (f, m̄′) ∈ R′ and m̂′ = ∆(m̄′). By Def. 9(c), there are three possible
cases: (1) σ−1

1 (m̄′) ∈M, σ−1
2 (m̄′) = ∅; (2) σ−1

1 (m̄′) = ∅, σ−1
2 (m̄′) ∈M ; (3) σ−1

1 (m̄′) ∈M,
σ−1
2 (m̄′) ∈M .

For cases (1) and (3), (f, m̄′) ∈ R′ implies that (f, σ−1
1 (m̄′)) ∈ R by Def. 10(c), and thus,

∆(σ−1
1 (m̄′)) ∈ M̂ by Def. 6(a). Let’s denote this element by m̂. It is easy to see that f(m̂) = m̂′

(that is ∆(σ(∆−1(m̂))) = m̂′. There exists only one such element m̂ by Def. 6(b,c) and 9(c).
m̂′ ∼= m̂ by Def. 6(d) and 9(d). For case (2), σ−1

1 (m̄′) = ∅ implies by Def. 10(c), that m̄′ is
annotated by fM , and, since fM 6∈ F̂M, ∆(m̄′) 6∈ M̂ ′, which, together with m̂′ = ∆(m̄′),



creates a contradiction to m̂′ ∈ M̂ ′.
3. Any sub-element of m̂ has the corresponding sub-element in f(m̂): ∀m̂ ∈ M̂(m̂c ∈

m̂|s ⇒ f(m̂c) ∈ f(m̂)|s).
Since m̂c ∈ m̂|s, by Def. 6(a,e), there exist elements m,mc ∈ M, and features f, fc ∈ FM,
such that (f,m) ∈ R, (fc,mc) ∈ R, m̂ = ∆(m), m̂c = ∆(mc) and mc ∈ m|s (it is
also possible that f = fc). By Def. 9(b,e), σ(mc) ∈ σ(m)|s. By Def. 10(c), (f, σ(m)) ∈ R′
and (fc, σ(mc)) ∈ R′, which, by Def. 6(a,e), implies that ∆(σ(mc)) ∈ ∆(σ(m))|s. Since
mc = ∆−1(m̂c) and m = ∆−1(m̂), f(m̂c) ∈ f(m̂)|s), as desired.

4. Any sub-element of m̂′ has the corresponding sub-element in m̂: ∀m̂′ ∈ M̂ ′(m̂′c ∈
m̂′|s ⇒ ∃m̂, m̂c ∈ M̂ · m̂′ = f(m̂) ∧ m̂′c = f(m̂c) ∧ m̂c ∈ m̂|s.
Let m̂′c, m̂′ ∈ M̂ ′ be elements such that m̂′c ∈ m̂′|s. By Def. 6(a,e), there exist elements
m̄′, m̄′c ∈ M′, and features f, fc ∈ FM, such that (f, m̄′) ∈ R′, (fc, m̄′c) ∈ R′, m̂′ =
∆(m̄′), m̂′c = ∆(m̄′c) and m̄′c ∈ m̄′|s (it is also possible that f = fc). Similarly to case 2,
σ−1
1 (m̄′) 6= ∅ and σ−1

1 (m̄′c) 6= ∅. By Def. 9(e), either σ−1
1 (m̄′c) ∈ σ−1

1 (m̄′)|s or there exist
m1,m2 ∈M , such that σ−1

1 (m̄′c) is matched withm1, σ−1
1 (m̄′) is matched withm2, andm1 ∈

m2|s. The later case is impossible by Def. 8(a,d,e) – we omit the details due to the space limita-
tions. For the former case, since (f, m̄′) ∈ R′, (fc, m̄′c) ∈ R′, by Def. 10(c), (f, σ−1

1 (m̄′)) ∈
R, (fc, σ−1

1 (m̄′c)) ∈ R and thus, by Def. 6(a,e), ∆(σ−1
1 (m̄′c))) ∈ ∆(σ−1

1 (m̄′)))|s. Let’s
denote these elements by m̂c and m̂, respectively. f(m̂c)) = ∆(m̄′c) = m̂′c and f(m̂)) =
∆(m̄′) = m̂′, implies m̂c ∈ m̂|s, as desired.

Fig. 4. A sketch for the proof of Lemma 3.

The above lemma implies that
our construction preserves the be-
havior of the original product line
model: the set of models derived
from PL can still be derived from
PL′, as shown by the following
corollary.

Corollary 1. Let bPLc denote a set
of all models derived from a prod-
uct line PL. That is, bPLc =

{∆(PL, F̂M) | F̂M is a feature configuration of FM}. Then, a set of models de-
rived from PL can be derived from PL′ as well: bPLc ⊆ bPL′c.
Proof. For each M̂ ∈ bPLc, there exists a configuration F̂M, such that M̂ = ∆(PL, F̂M).
By Lemmas 2 and 3, M̂ = ∆(PL′, F̂M). Thus, M̂ ∈ bPL′c.
For the example in Fig. 2, the above corollary means that both Controller A and
Controller B that can be derived from the product line A+B in Fig. 2(a) can still be
derived from the constructed product line A+B+C in Fig. 2(b), after Controller C
was merged-in to it.
Merge-in Behavior Preservation. We now show that model M which we merge-in
into the original product line PL can be derived from the constructed product line PL′.
That is, when we merge-in Controller C in Fig. 1(c) into the product line A+B in
Fig. 2(a), we can derive it back from the constructed product line A+B+C in Fig. 2(b).

Since fM is the feature that annotates elements of the merged-in model (fC in our
example), we first show that {fM} is a valid feature configuration (Lemma 4). Then,
Lemma 5 shows that the original model M is derived from the constructed product line
PL′ under that configuration.



Lemma 4. {fM} is a feature configuration for PL′.

Proof. By construction of FM′ (Def. 10(a)), fM ∈ F ′. We now show that {fM}
respects ϕ′ = (ϕ∨ fM )∧

∧
f∈F
¬(fM ∧ f). Since f 6∈ {fM} for any f ∈ F , ¬(fM ∧ f)

evaluates to true for every f ∈ F . Since fM = true, ϕ ∨ fM also evaluated to true. It
follows that {fM} respects ϕ′ and is a feature configuration for PL′.

Lemma 5. Let {fM} be a feature configuration. Then, a model that is derived from PL′ under
that configuration is equivalent to M . That is, M = ∆(PL′, {fM}).

The proof of this lemma, similarly to the proof of Lemma 3, shows that f = σ(∆(.)) is
an isomorphism between the elements of M and the elements of M̂ ′, and is omitted.

Finally, Theorem 1 shows that our merge-in operator is behavior preserving: the set
of product models that are derived from the constructed product line PL′ is equal to
the set of models that are derived from the original product line PL′, in addition to the
merged-in model M .

Theorem 1. bPL′c = bPLc ∪ {M}.

Proof. We first prove that bPL′c ⊆ bPLc ∪ {M}. Let M̂ ∈ bPL′c be a model derived from
PL′. Then there exists a feature configuration F̂M

′
, such that M̂ = ∆(PL′, F̂M

′
). Let fM be

in FM′ r FM.
1. If fM 6∈ F̂M

′
, then F̂M

′
⊆ FM. Thus, by Lemma 3, M̂ = ∆(PL, F̂M

′
), which

implies that M̂ ∈ bPLc.
2. If fM ∈ F̂M

′
, then, by construction of FM′ (Def. 10(a)), F̂M

′
= {fM}. By Lemma 5,

M = ∆(PL′, F̂M
′
). Thus, by Lemma 1, M̂ = M .

We now show that bPLc∪ {M} ⊆ bPL′c. bPLc ⊆ bPL′c by Corollary 1. By the construction
of FM′ (Def. 10(a)), fM ∈ F ′. Thus, by Lemmas 4 and 5, {fM} is a valid feature configuration
for PL′ and M = ∆(PL′, {fM}), which implies that M ∈ bPL′c.

For the example in Fig. 2, where Controller C in Fig. 1(c) is merged-in into the
product line A+B containing Controller A and B, this means that Controller A,
B, and C, and only them, can be derived from the constructed product line A+B+C in
Fig. 2(b).

6 Related Work
A general theory of product line refinement was introduced in [2] where the authors
established product line properties supporting stepwise and compositional product line
development and evolution. Our approach instantiates this theory by providing a con-
crete refactoring technique for combining products into product lines. We prove that
our refactoring is the minimal behavior-preserving product line refinement, according
to the definition in [2].

Several works (e.g., [9, 10]) capture guidelines and techniques for manually trans-
forming legacy product line artifacts into SPLE representations. Instead, our goal is to
introduce automation into the refactoring process by comparing, matching and merging
artifacts to each other. While no automated approach can replace a human product line



designer and produce a solution which is as good as a hand-crafted one, automation can
assist the designer and speed-up the refactoring process.

Similarly to us, Koschke et. al. [11] and Ryssel et. al. [21] introduce automatic
approaches to re-organize product variants into annotative representations while identi-
fying variation points and their dependencies. The former work reasons about compo-
nents, interfaces and their grouping into subsystems. The latter works on Matlab mod-
els. Our work differs from both [11] and [21] by exploring product line commonalities
and variabilities for any type of model that can be represented as XMI and by providing
a formal proof of correctness of our approach.

Feature-oriented refactoring [13, 15] focuses on identifying the code for a feature
and factoring the code out into a single module or aspect aiming at decomposing a pro-
gram into features. Since our aim is consolidation of variants into single-base product
line representations, these are out of the scope for our work. Similarly, UML model
refactoring (e.g., [6, 24]) and code refactoring techniques (e.g., [14]), while closely re-
lated to our work, usually focus on improving the internal structure and design of a
software system rather than on identifying and restructuring the system’s common and
variable parts.

7 Conclusion and Future Work

Extracting product line representations from existing legacy product line systems can
support product line engineering adoption: reusing and leveraging knowledge accumu-
lated in the legacy systems during their development lifetime can be more efficient than
“starting from scratch”. In this work, we formally specified a simple data model and a
refactoring technique for transforming individual products into more compact product
line representations. Our data model, inspired by XMI principles, is powerful enough
to accommodate labeled-graph representations, in particular, UML. At the same time, it
is flexible enough to support product line notations where several alternative elements
can fulfill the same role, which is not allowed by UML itself.

Relying on the data model, we formally stated necessary and sufficient conditions
allowing us to use model compare, match and merge operators for combining individ-
ual products into product lines. We proved that once these conditions are satisfied, the
merge-in can be safely applied for combining products into product lines, as it produces
representations that encode precisely the set of initial products. This provides formal
foundation that underlays the parameterizable and configurable, yet semantically cor-
rect refactoring framework. The applicability of the framework to real-life examples, as
well as techniques for distinguishing between different possible refactorings, is studied
elsewhere [20].

There are several directions for continuing this work. First, we are interested in
exploring more sophisticated refactoring techniques that are able to detect fine-grained
features in the combined products. This would allow us to create new products in the
product line by “mixing” features from different original products. We also plan to
enhance model merging techniques with additional capabilities, such as using code-
level clone detection techniques for comparing statechart actions and activities. We are
also interested in devising alternative methods of calculating graph similarity, e.g., by
counting the number of identical or similar sub-graphs and more.
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